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Abstract—Feature selection is a critical step in translational 

omics research. False discovery rate (FDR) is anintegral tool of 

statistical inference in feature selection from high-throughput 

data. It is commonly used to screen features (SNPs, genes, 

proteins, or metabolites) for their relevance to the specific clinical 

outcome under study. Traditionally, all features are treated 

equally in the calculation of false discovery rate. In many 

applications, different features are measured with different levels 

of reliability. In such situations, treating all features equally will 

cause substantial loss of statistical power to detect significant 

features. Feature reliability can often be quantified in the 

measurements. Here we present a new method to estimate the 

local false discovery rate that incorporates feature reliability. We 

also propose a composite reliability index for metabolomics data. 

Combined with the new local false discovery rate method, it helps 

to detect more differentially expressed metabolites that are 

biologically meaningful in a real metabolomics dataset. 

Keywords— false discovery rate, high-throughput data, 

genomics, metabolomics, feature selection, reliability score.  

I. INTRODUCTION 

In the analysis of high-throughput biological data, e.g. gene 
expression, proteomics, and metabolomics data, tens of 
thousands of features (genes, proteins, metabolites etc) are 
tested simultaneously for their association with certain clinical 
outcomes under study. This creates the well-known multiple 
testing problem and causes trouble in statistical inference and 
data interpretation. The concept and estimation procedures of 
false discovery rate (FDR) was developed to address this issue 
[1, 2], which provides a sound statistical framework for 
inference and feature selection. The FDR is the expected 
proportion of falsely rejected null hypotheses, i.e. false 

discoveries, among all features called significant. The concept 
of local false discovery rate (lfdr) went one step further to give 
a statistical statement at the single feature level [3], i.e. the 
probability a specific feature being null  given the test 
statistics of all features in the study.  

Over the years, a number of estimation procedures were 
developed for FDR and lfdr[2, 4-11]. Much effort has been 
invested in the estimation of the null distribution and 
proportion of differentially expressed features. Although 
different modeling approaches were used, all the methods 
share some common theme – the features are treated equally, 
certain statistics or p-values are computed for each feature, and 
the false discovery rates are computed based on the estimation 
of the distribution of null density from the observed test 
statistics or p-values.  

In many high-throughput datasets, features are measured at 
different reliability levels. Here by “reliability” we refer to the 
confidence level we have on the point estimates of the 
expression values of a feature. In statistical terms, it can mean 
the size of the confidence interval relative to the measured 
values, which has a direct bearing on the statistical power to 
detect differential expression of the feature. In some other 
situations, it can also mean the probability that a detected 
feature is real (v.s. pure noise), either based on the measured 
values or some external information.  

When different features are measured with different 
reliability, subjecting all features to the traditional false 
discovery rate procedures may yield sub-optimal results. We 
present two examples here. The first is detecting differentially 
expressed genes using RNA-seq data.Some genes are 
measured with low total read counts. For such genes, the 
measurement reliability, as well as the statistical power of 
detecting their differential expression is limited. As a result, 
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their p-values cannot reach very low when robust testing 
procedures are used[12-14]. When a false discovery rate 
procedure is applied to the test results of all genes, the 
low-read count genes mostlycontribute to the null 
(non-differentially expressed) distribution. Involving both 
high-read count and low-read count genes in the FDR or lfdr 
procedure will reduce the significance level of all the genes.  

The second example is more extreme. In LC/MS 
metabolomics data, features are detected based on the data 
point patterns in the three dimensional space of mass-to-charge 
ratio (m/z), retention time (RT) and signal intensity [15, 16]. 
Certain signal to noise ratio (S/N) threshold and peak shape 
models are applied. The number of features detected relies on 
the stringency of the peak detection criterion. There is a 
trade-off between the detection of noise as features versus the 
loss of true features with low intensities [17]. Often lenient 
thresholds are used in order to capture as many real features as 
possible, and as a result, a large number of features are 
detected. Presumably some of them are derived from pure 
noise. The hope is such features will be filtered out in the 
feature selection process. However, the presence of such false 
features, for which we do not know how many there are, 
reduce the significance of all the features in false discovery 
rate calculation.  

 

Fig. 1.  Illustration of the impact of noise features on the calculation of false 

discovery rate using simulated p-values. P-values of 5000 

non-differentially expressed features and 400 differentially expressed 

features were generated from the uniform distribution and exponential 
distribution respectively. The histograms of p-values are shown. Red 

dashed line: the part of histogram corresponding to the non-differentially 

expressed genes. (a) Without noise features. (b) With an additional 3000 
noise features, whose p-values follow the uniform distribution.  

A simple illustration of this issue is presented in Figure 1. 
In this simple simulation, we demonstrate the effect of 
involving pure noise features on the FDR adjustment. We 
simulated p-values of non-differentially expressed features 
from the uniform distribution, and the p-values of differentially 
expressed features from an exponential distribution. We 
applied two widely used FDR approaches – the 
Benjamini-Hochberg procedure [1], and the Storey q-value 
procedure [2]. As shown in Figure 1a, when no pure noise 
genes are present, ~400 features are claimed significant at the 
FDR level of 0.2, which is close to the hidden truth (Fig. 1a). 
However when pure noise features are present, they contribute 
to the null distribution, i.e. the uniform distribution in this case, 
and make all features less significant. Only ~200 features can 
be claimed significant at the FDR level of 0.2 (Fig. 1b).  

Although the involvement of pure noise features is an 
extreme scenario which is only relevant in metabolomics data, 
similar effects can be caused by features measured with low 
reliability, e.g. low read count genes in RNAseq data, 
probesets with highly variant probe intensities in microarray 
data, and proteins with few matched peptides in proteomics 
data. Often the reliability of features can be partially quantified, 
not in rigorous statistical terms, but with good heuristic 
approximation that makes intuitive sense. For example, the log 
total read count of a gene can be used for RNAseq data.  

In this study, we focus on metabolomics data, which has 
the biggest feature reliability issue among all omicsdata types. 
Several quantities can be used to indicate how reliable a 
metabolic feature is. They include the percentage of missing 
values, the magnitude of the signal, and within-subject 
variation when technical repeats are available.Using these 
quantities, we develop a composite reliability index for 
metabolomics data. Once the reliability is quantified, we devise 
a new lfdr procedure to incorporate reliability for better lfdr 
estimation. In simple terms, the method amounts to stratifying 
features based on their reliability levels. Each feature is 
compared to the null distribution derived fromall the features 
with similar reliability level to obtain the lfdr values. However 
no hard threshold is used. Rather, the null density is computed 
based on permutation without changing the reliability indices. 
Our estimation procedurebears some resemblance to 
themulti-dimensional local fdr by Ploner et al[8]. However it is 
more efficient, and the explicit use of reliability index makes it 
more useful than picking arbitrary pairs of test statistics.  

II. METHODS 

A. The local fdr procedure 

Following the consensus of the local fdr literature, we 
consider the density of the test statistic:  
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𝑓(𝑧) = 𝜋0𝑓0(𝑧) + (1 − 𝜋0)𝑓1(𝑧),                 (1) 

where 𝑓 is the mixture density for the observed statistic𝑍 = 𝑧, 
𝑓0 and 𝑓1 are the respective densities of the test statisticof 
thenull (non-differentially expressed) and non-null 
(differentially expressed) metabolic features, and 𝜋0 is the 
proportion of true null features. 

 The lfdr is then defined as 

fdr(z) = 𝜋0
𝑓0(𝑧)

𝑓(𝑧)
                 (2) 

at observed test statistic 𝑍 = 𝑧  and 𝑧 is a 𝑘 -dimensional 
statistic.  

In this study, the test statistics were obtained from a 

metabolome-wide association study (MWAS). To identify 

metabolic features whose expression levels are associated with 

a certain clinical outcome or risk factor, simultaneous 

hypothesis testing is carried out. We use linear models with 

log-intensity of the features as the dependent variable, and the 

risk factor as the independent variable, adjusting for other 

confounders, e.g. age, gender, ethnicity and experimental 

batch effect. The regression is conducted one metabolic 

feature at a time. After obtaining the t-statistic and the 

corresponding p-values of all the metabolic features, different 

FDR and lfdr procedures can be applied to select significant 

metabolic features.  

Here, we compare the 1-dimensional (𝑘 = 1; fdr1d) and 

2-dimensional (𝑘 = 2; fdr2d) local fdr procedures. Density 

estimation is done non-parametrically.The fdr1d only uses the 

t-statistic (𝑡) from the simultaneous hypothesis testing, while 

fdr2d takes both 𝑡  and the composite reliability index,𝑟 , 

which will be further described in the next sub-section. 

Estimation of (2) is done via plug-in estimators of 𝜋0, 𝑓0(𝑧) 
and 𝑓(𝑧). 

 Let the observed statistics be denoted as 𝑇 = (𝑡1, … , 𝑡𝑚) 
and 𝑅 = (𝑟1, … , 𝑟𝑚), where 𝑚 is the number of metabolic 
features.The null density 𝑓0(𝑧)  is estimated using the 
permutation method.We permute the risk factor (independent 
variable of the MWAS analysis) to obtain K sets of permuted 
variables. We run the MWAS procedure described earlier 
using each set of the permuted risk factor as the independent 
variable. TheK sets of t-statistics𝑇∗ = (𝑇1

∗, … , 𝑇10
∗ ) produced 

from the MWAS form the dataset for non-parametric 
estimation of 𝑓0.In this study we used K=10.  

 Both 𝑓0  and 𝑓  are estimated using kernel density 
estimation methods, available in the R package KernSmooth 
[18, 19]. The bandwidth is selected using existing direct 
plug-in methodology[18, 20]. The observed density 𝑓  is 
estimated using the observed data, 𝑇 for fdr1d, and (𝑇, 𝑅) 
for fdr2d. The null density 𝑓0 is estimated using the permuted 
dataset, 𝑇∗ for fdr1d and (𝑇∗, 𝑅∗) for fdr2d, where𝑅∗ is just 
K replicates of 𝑅.  

 We suggest that 𝜋0  be estimated from (1), using the 
estimate obtained from Efron’s 1D fdr procedure [5], which is 
more robust than basing the estimation on a 2-dimensional 
model fitting.In the presence of low-reliability features, the 
estimate of �̂�0 using the 1D approach is an over-estimate of 
the truth, because low-reliability features only contribute to 
the null density. Using this over-estimate will result in slightly 
inflated lfdr estimates, which causes the overall lfdr procedure 
to be relatively conservative. However this inflation is minor. 
For example, an increase of  �̂�0  from 0.8 to 0.9 inflates the 
lfdr estimate by a factor of 1.1, which is well acceptable.  

 With the 3 estimates, �̂�0, 𝑓0
2𝑑(𝑡𝑖 , 𝑟𝑖) and 𝑓2𝑑(𝑡𝑖 , 𝑟𝑖), we 

can plug in these estimators into (2) to get fdr2d. 2D density 
estimates of 𝑓0 and 𝑓 at the observed (𝑡𝑖 , 𝑟𝑖), denoted by 

𝑓0
2𝑑(𝑡𝑖, 𝑟𝑖)  and 𝑓2𝑑(𝑡𝑖, 𝑟𝑖) , can be interpolated from their 

respective 2D kernel density estimates.  

B. The composite reliability index for metabolomics data 

measured in triplicates. 

 Metabolic intensities are usually measured in triplicate, ie. 

for each feature, there are 3 readings per subject. The 

reliability index aims to account for within-subject variation 

and the intensity level. We define the reliability index for a 

single feature as 

𝑟 = √
𝑀𝑆𝑅

𝑀𝐿𝐶
,           (3) 

where MSR is the mean square residual obtained from the 

linear regression of log-intensity of a single feature against 

subject ID, and MLC is the mean log-intensity of the 

metabolic feature. This calculation is carried out for all of the 

m metabolic features in the dataset. 

 MSR is calculated from the analysis of variance of the 

linear model of log-intensity of a feature against the risk factor 

and adjusted for batch effect. That is, 

𝑀𝑆𝑅 =
∑ ∑ [𝑙𝑜�̂�(𝐶𝑖𝑗+1)−𝑙𝑜𝑔(𝐶𝑖𝑗+1)]

23
𝑗=1

𝑛
𝑖=1

𝑑𝑓
,     (4) 

where 𝑙𝑜�̂�(𝐶𝑖𝑗 + 1) and 𝑙𝑜𝑔(𝐶𝑖𝑗 + 1) are the estimated and 

observed log-intensity of a single feature for the j-th replicate 

of the i-th subject respectively. The degrees of freedom (df) in 

the denominator of (4) is obtained from 𝑑𝑓 = 3𝑛 − 𝑛𝑚 − 𝑝 −
1 , where 𝑛  is the total number of subjects, 𝑛𝑚 =
∑ ∑ (1 − 𝜔𝑖𝑗)

3
𝑗=1

𝑛
𝑖=1  is the number of missing intensity values, 

with 𝜔𝑖𝑗  as an indicator for a non-missing intensity, and 𝑝 

is the number of subjects with at least 1 observed replicate. In 

this way, MSR accounts for within-subject variation and the 

proportion of missing values. 

 MLC is the mean log-intensity of a single feature and is 

defined as  

𝑀𝐿𝐶 =
∑ ∑ 𝜔𝑖𝑗𝑙𝑜𝑔(𝐶𝑖𝑗+1)

3
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝜔𝑖𝑗
3
𝑗=1

𝑛
𝑖=1

.     (5) 

It only takes observed values into account.  
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 By this definition, we have a reliability index that takes 

smaller values when a feature is more reliably measured. The 

smallest possible value is zero.  

III. RESULTS 

A. The data used in this study 

In this study, we used the metabolomics data generated 
from 494 subjects from the Emory Cardiovascular Biobank, 
which consists of patients who have undergone coronary 
angiography to document the presence/absence of coronary 
artery disease (CAD). Demographic characteristics, medical 
histories, behavioral factors and fasting blood samples have 
been documented and details about risk factor definitions and 
coronary angiographic phenotyping have been described 
previously[21, 22]. 

Each samplewas analyzed in triplicate with high-resolution 
liquid chromatography – mass spectrometry (LC-MS), using 
anion exchange and C18 chromatography combined with the 
Thermo Orbitrap-Velos (Thermo Fisher, San Diego, CA) mass 
spectrometer using an m/z range of 85 to 850. The data was 
pre-processed using xMSAnalyzer[23] in combination with 
apLCMS[16, 24]. For each feature, there were three readings 
per subject. An average metabolicintensity value was 
calculated from the non-zero readings for each subject. That is, 
an average reading of 0 was obtained only if all 3 readings for 
the subject were 0. This is the combined metabolic intensity 
data we used for subsequent analysis. This data was not 
corrected for batch effect. In our analysis, batch effect was 
accounted for linearly in the MWAS regression analysis as a 
confounder. There were 18,325 metabolic features detected. 

B. Comparison between 2D lfdr and 1D lfdr 

The reliability indices of each feature of this dataset of 
18,325 features were calculated as described in the methods 
section. They range from 0.0042 to 0.26, with smaller values 
indicating more reliable measurements. The 10% most reliable 
features (n = 1841) had reliability indices of 0.0042 – 0.025.  

In this proof-of-concept study, the risk factor of interest 
was High-Density Lipoprotein (HDL). The HDL levels ranged 
from 5 – 95 mg/dL, with mean 42.3 mg/dL and standard 
deviation 12.8 mg/dL. The MWAS was carried out as 
described in Section II.A.  

Using our proposed fdr2d method, we found 301 
significant features at the fdr cutoff of 0.2, while fdr1d found 
210 significant features. By comparing the density plots, we 
clearly see the difference. As shown in Fig. 2(a), in fdr1d, 
Between the two lists, 174 of the significant features overlap, 
which means most of the features found by fdr1d were also 
found by fdr2d, and fdr2d found an extra ~100 features. Fig. 3 
shows a comparison between the fdr levels as plotted against 
the test statistic. We see that for larger absolute values of the 
t-statistic, mostly the fdr2d procedure yielded lower fdr levels 
than fdr1d.   

 

 

Fig. 2.  Density plots of the test statistics. (a) test statistic density from fdr1d; 

(b) Joint density of test statistic and reliability score for fdr2d. For 

clarity, the t-statistics from permutations are not shown in the plot. Grey 
points: observed t-statistics and reliability scores. Three contours curves 

from inside out:density 0.9, 0.5 and 0.1. Grey: the density of f(t); red: 

the density of f0(t) based on permutation.  

 
Fig. 3. Comparing the fdr levels generated from fdr1d and fdr2d. Black 

curve: local fdr versus t-statistic based on fdr1d; grey points: local fdr 
versus t-statistic based on fdr2d.  
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We next looked at pathway analysis for these significant 
features. We used R package xMSanalyzer [23]to annotate the 
features and MetaboAnalyst 2.0 [25]to see which of the 
pathways might be of interest. The annotated results match the 
feature m/z values to multiple known possible compounds in 
the Kyoto Encyclopedia of Genes and Genomes (KEGG), 
which can then be used by MetaboAnalyst 2.0 to determine 
possible significant pathways. 

The 301 significant features under the fdr2d method had 
451 annotated matches to known KEGG compounds with 109 
unique m/z values. The pathways of possible interest include 
steroid hormone biosynthesis, primary bile acid biosynthesis, 
D-Glutamine and D-glutamate metabolism, and linoleic acid 
metabolism (Fig. 4a). 

The 210 significant features under the fdr1d method had 
310 annotated matches to known compounds with 78 unique 
m/z values. The pathways of potential interest 
includeD-glutamine and D-glutamate metabolism, limonene 
and pinene degradation, and alanine, aspartate and glutamate 
metabolism (Fig. 4b).  

As the risk factor in this study is the level of High-Density 
Lipoprotein (HDL), clearly the fdr2d selected pathways, which 

are largely related to lipid metabolism, make better biological 
sense. For example, the class B type I scavenger receptor, 
SR-BI, is an HDL receptor that provides substrate cholesterol 
for steroid hormone synthesis[26]. Hepatocyte nuclear 
factor-1alpha (TCF1) regulates both bile acid and HDL 
metabolism [27]. In addition, the top pathway found by fdr1d, 
D-Glutamine and D-glutamate metabolism, is shared with the 
fdr2d result. More detailed biological interpretation will be 
conducted in a separate manuscript that focuses on the 
biomedical aspects of the Biobank metabolomics data.  

Often jointly studied with HDL is the low-density 
lipoprotein (LDL). LDL itself is not measured by the LC/MS 
data, because LC/MS metabolomics measures small molecules. 
Nonetheless, because LDL was measured by a traditional 
method in this study, we tried to add it to the metabolite table 
and conduct the analysis. After obtaining its test statistics and 
adjusting it together with all other metabolites, we found that 
LDL is significant by the 2D lfdr method, with an lfdr value of 
0.077. On the other hand, the 1D method assigned it an lfdr 
value of 0.475. Because HDL and LDL are known to associate 
with heart disease risk in a reverse manner in the population 
under study, this serves as a positive control and validates our 
new method. 

 

 

Fig. 4.  Pathway analysis results using MetaboAnalyst 2.0 [25]. (a) Important pathways from the 301 significant features identified by the fdr2d method. (b) 
Important pathways from the 210 significant features identified by the fdr1d method. Pathways with large impact scores and/or small p-values are labeled.  

IV. DISCUSSION 

 In the fdr2d approach, the permutation procedure 
ensures that the reliability index values of the metabolic 
features, (𝑟1, … , 𝑟𝑚)  don’t change. Thus the marginal 
density of the data points on the reliability index axis 
doesn’t change in the permutations. Only the marginal 

density of the t-statistic, and conditional densities of 
t-statistic given reliability index changes. As a result, the 
t-statistic of each feature is effectively compared to the 
distribution of t-statistics of all features with similar 
reliability values. Thus in a sense, the fdr2d approach can be 
approximated by a 1D fdr estimation in which the features 
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are stratified based on their reliability indices.  We can 
think of this as horizontal bands in Fig. 2b.  

If we can assume that most differentially expressed 
features are concentrated in the most reliable range, another 
way the reliability indices can be used is to reduce the 
number of features that enter into the FDR/lfdr estimation. 
The fewer the number of features that are involved in the 
simultaneous hypothesis testing, the smaller adjustment to 
individual p-values. This approach amounts to taking only 
the stratum of the most reliable features. It is similar to the 
pre-filtering of genes based on variation criterion in gene 
expression data analysis.  

For the Biobank dataset, when we consider only the 1841 
features in the top 10% most reliable group, the 
Benjamini-Hochberg method [1]produced 95 significant 
features at the FDR level of 0.2. Applying the 
Benjamini-Hochberg method to all features, there were 269 
features that were considered significant. Of these 269 
features, 39 of them were in the top 10% most reliable group.  

We then compared the FDR levels for the features in the 
most reliable 10% group. When only the 10% of features 
were involved in the FDR calculation, the FDR values were 
smaller than those obtained when involving all features (Fig 
5). This result is expected as the Benjamini-Hochberg 
method is based on p-values and ranks[1].  

We do not argue for substantially reducing the number of 
features under study, just to obtain better FDR or lfdr 
estimates and hence find more significant features. This 
simple demonstration mainly shows that a stratification 
approach may be used as a simpler version of the 2D fdr 
procedure when reliability measure is available, especially 
when the number of features under study is limited and 
cannot support robust 2D density estimation. When sufficient 
data points are available, still the fdr2d is preferred, as it 
avoids hard thresholding to stratify the data.  

In broad terms, variation in the measurements of a 
metabolite can be dissected into biological variation (diet, 
diurnal variation, etc) and technical measurement noise. 
Biologically highly variant metabolites should not be 
confused with those with high measurement noise. In this 
manuscript, by reliability we mean technical reliability, i.e. a 
quantity that reflects technical measurement noise. This is 
possible to estimate in metabolomics data measured in 
replicates. Our reliability score is obtained by a regression 
model. It can be seen as a pooled coefficient of variation (CV) 
among the samples. It measures the technical measurement 
noise, but not the biological variation. 

In non-targeted metabolomics, there is a risk of generating 
large number of fake metabolites if peak detection is carried 
out in an overly lenient manner. This is often done when the 
interest is to detect environmental impacts, because all 
environmental chemicals exist in the human blood in very 
low concentrations. When large numbers of fake metabolites 
are present, they certainly contain no biological variation at 
all. At the same time their technical variation is very big 
because they are just noise in LC/MS profiles, hence low 
reliability. While traditional methods allow them to 

contaminate the null distribution, our method suppresses 
their impact in the statistical inference to obtain more 
accurate local false discovery rate estimates. 

 

Fig. 5.  Comparing the Benjamini-Hochberg FDR results between using 

all features v.s. using only the 10% most reliable features. The plot 

shows the FDR estimate versus the test statistic.  

In conclusion, we presented a method for the 
computation of local false discovery rate that incorporates 
reliability index.In situations where substantial noise features 
are present, the method improves the statistical power of 
detecting differentially expressed features by minimizing the 
influence of noise features, because such features tend to 
have worse reliability values. One major aspect of this 
procedure is to quantify the reliability using a single variable. 
As we have shown, a composite reliability index for 
metabolic features worked well. Similar measures can be 
derived for other data types.  
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