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Abstract—With the development of high-throughput and low-

cost sequencing technology, a large amount of marine microbial 

sequences is generated. So, it is possible to research more 

uncultivated marine microbes. Generally, the functional 

capability and taxa structure are highly related with environment 

factors in microbial communities, which are hidden in these large 

amount sequences. However, most works used the canonical 

correlation analysis (CCA) method to research the correlative 

relationship among taxa, pathways and environmental factors. 

CCA is difficult to find which environmental factors are the 

major determinants of some special taxa and pathway. In this 

paper, we integrated 14 ocean metagenomes with geographical, 

meteorological and geophysicochemical data to construct the 

correlative weighted networks with Spearman correlation. By 

using an improved weighted network community detection 

algorithm, named as IWNCD, we find some special correlation 

patterns among taxa, pathways and environmental factors. 

Analysis of  these patterns shows that the climatic factors such as 

temperature, sunlight, and correlated CO2, and the nutrients 

such as chlorophyII and primary production are the main 

determining factors of the functional community composition; 

The growth and development of some special taxa are dependent 

on some main environmental factors such as sunlight, 

temperature, CO2, primary production, dissolved oxygen, 

dissolved silicate; In addition, sampling sites more similar in 

geographic location have a greater tendency to be closer together 

based on their metabolic pathways. 
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I.  INTRODUCTION  

Microbial communities are the combinations of bacteria, 
archaea, fungi, yeasts, eukaryotes and viruses, often co-
occurring in a single habitat, which carry out the majority of 
the biochemical activity on the earth. The metabolic process 
performed by microbes is important both for understanding and 
manipulating ecosystems. However specific ecological 
functional relationships among these microbial taxa and 
environment factors are largely unknown. This is partly due to 
the dilute, microscopic nature of the planktonic microbial 
community, which prevents direct observation of their 
interactions [1]. With the development of high-throughput 
DNA sequencing technologies to sample the genetic content of 
heterogeneous environments, a mass of reads of small-subunit 

rRNA gene (16S rRNA/18S rRNA) and DNA were generated. 
So, we can describe the compositions of microbial 
communities, their metabolic functional diversity and how 
communities change across space based on these sequence data 
[2]. However, most of the current analytical approaches of 
describing and comparing the structure of communities often 
focus on the total numbers of taxa, the relative abundances of 
individual taxa and the extent of phylogenetic or taxonomic 
overlap between communities or community categories[3-5], 
and often use the canonical correlation analysis (CCA) method 
to analyze the relationships among taxa, pathway and 
environmental factors[6-9]. CCA is difficult to find which 
environmental factors are the major determinants of some 
special taxa and pathway. In contrast, there has been far less 
attention focused on using sequence data to explore the direct 
or indirect relationship among microbial taxa and environments. 
Although some researchers used the network analysis to 
explore co-occurrence pattern in soil and ocean[1-2, 10-11], 
they just constructed the association networks to show the co-
occurrence pattern, and did not further mine the networks to 
find the pattern structures. 

Generally, the functional capability and taxonomic 
structure are highly related with environment factors in 
microbial communities, which are hidden in these large amount 
sequences. In this paper, we integrated 14 ocean metagenomes 
with geographical, meteorological and geophysicochemical 
data, and used Spearman method to compute the correlation 
among taxa, pathways and environmental factor for 
constructing the correlative weighted networks, and adopted an 
improved weighted network community detection algorithm to 
research the correlation patterns among taxa, pathways and 
environmental factors. The aim was to find which 
environmental factors are the major determinants of some 
special taxa and pathway. 

II. MATERIAL AND METHODS 

A. Dataset 

Sequences and metadata (acidity, CO2, chlorophyII, nitrate, 
dissolved oxygen, phosphate, primary production, salinity, 
dissolved silicate, sunlight, temperature, sample depth, water 
depth, mixed layer depth) from GOS (Global Ocean Sampling) 
Expedition [12-13] were downloaded from CAMERA[14].We 
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first filtered the data of the GOS Expedition to keep only those 
sites that used a filter size of 0.1-0.8μm (i.e. majority 
prokaryote samples). To ensure reliability of the following 
analysis, we selected 14 sites by filtering those with less than 
5000 usable sequences, less than 33% pathway annotation rate 
of sequences, less than 53% taxon annotation rate of sequences 
and incomplete metadata. These sampling sites locate in North 
Atlantic, Mid-Atlantic and South Pacific. 

B. Pathway and taxon annotation 

There are two kinds of approaches to annotate the 
metagenomic sequences. One is the taxonomic annotation, 
many computational tools have been proposed for this task[15-
16]. The other is functional annotation, which can be achieved 
by several tools [17-19]. For simplifying analysis, we obtained 
the taxonomic annotations at class level and functional  
annotations at pathway level (that is, KEGG Orthologous 
groups, KO) directly from MG-RAST web 
(http://metagenomics.anl.gov). Then, we can derive two 
abundance matrices: one is taxonomic abundance matrix with 
68 classes * 14 samples, which contains 1,082,546 sequences, 
another is pathway abundance matrix with 134 KOs *14 
samples, which contains 844,702 sequences. 

C. Weighted correlative  network modeling 

In order to investigate the correlation among taxon and 
environmental factor, pathway and environmental factor, we 

used vector , ,i j kT P E  to represent taxon, pathway and 

environmental factor, respectively. 

1 2 14[ , ,..., , , ]T

i i i si iT t t t t
           

( 1,2,...,68)i 
              (1) 

1 2 14[ , ,..., , , ]T

j j j sj jP p p p p
   

( 1,2,...,134)j 
            (2)  

1 2 14[ , ,..., , , ]T

k k k sk kE e e e e
   ( 1,2,...,14)k                   (3) 

 where tsi is the i-th taxon abundance value in the s-th sampling, 
that is, tsi equals the ratio of annotated sequence number Nsi 

contained in i-th taxon and the total annotated sequence 
number Ns contained in the s-th sampling; psj is the j-th 
pathway abundance value in the s-th sampling, that is, psj 
equals the ratio of annotated sequence number Nsj contained in 
j-th pathway and the total annotated sequence number Ns 
contained in the s-th sampling. To reduce the bias of 
correlation analysis, the tsi and psj were set to zero if tsi<0.001 
and psj<0.001. esk is the k-th environmental factor value in the 
s-th sampling. Ek represents the environmental factor variable 
such as CO2 (E1),water depth (E2), chlorophyll (E3), acidity 
(E4), sample depth (E5), mixed layer depth based on 
temperature (E6), nitrate (E7), dissolved oxygen (E8), 
phosphate (E9), salinity (E10), dissolved silicate (E11), 
sunlight (E12), temperature (E13) and daily primary production 
(E14), which was normalized with zero-mean and standard 
deviation σ=1.  

Spearman method was used to compute the pairwise 
correlations among taxon variables and environmental 
variables, pathway variables and environmental variables, 
respectively, and the permutation test was adopted to calculate 

the statistical significance. If P-value<0.01, the correlations 
among taxon and environmental variables, pathway and 
environmental variables are considered as strong correlation, 
that is, there is an edge to link the taxon (or pathway) variable 
with environmental variable. If the correlation coefficient value 
is used to represent the edge, we can construct two 
correlatively weighted networks: taxon-environmental factor 
network and pathway-environmental factor network. 

D. Improved weighted network community detection 

algorithm 

Lu et al. [20] borrowed the notion of conductance[21] 

defining the community conductance function and the 

belonging degree, and further proposed a community detection 

algorithm to mine the weighted networks. Their algorithm fits 

this kind of weighted networks in which the edge weight value 

is positive. However, some edge weight values in our taxon-

environmental factor network and pathway-environmental 

factor network are negative. Then, we proposed an improved 

weighted network community detection algorithm, named as 

IWNCD.  

Let G=(V, E) represents a weighted and undirected network, 

where V denotes the node set and E denotes the edge set. We 

first defined two functions: belonging degree and conductance.  

For a community C and a node u, the belonging degree   

( , )B u C of u belonging C is defined as:  

( , ) uv u

v C

B u C w k



                                              (4) 

where 
v Nu

u uvk w


    is the weighted degree of node u, and Nu 

is the neighbor set of node u.  

The conductance ( )C   of community C is defined as: 

( ) / ( )C C CC E I E  
                                             (5) 

where 
,

C uv

u v C

I w


    is the sum of absolute weigh value of 

edges in C, 
,

C uv

u C v C

E w
 

   is the sum of absolute weigh value 

of edges on the boundary of C. With lower conductance ( )C , 

more edge weights are within the community and the identified 

community is better.  

The improved community detection algorithm for weighted 

networks can be described as follow. For a given weighted 

network G, we first choose those nodes connected by the 

highest weight edges as a candidate community C and calculate 

its conductance ( )C . Then, the boundary adjacent node u of 

community C with the highest ( , )B u C   is combined with C, 

and also compute ( )C u  . If ( ) ( )C u C   , add node u 

to C forming a new community 'C ; otherwise, C is designated 

as a detected community. The whole process is repeated until 

the edge set is empty.  
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The whole process of matagenomic sequences annotation 
and detection of the correlation patterns of taxa-environmental 
factors and pathway-environmental factors was shown in the 
Figure 1. 

 

Fig.1. The flowchart of the taxonomy, pathway annotation and detection of 
correlation patterns of taxa-environmental factors and pathway-

environmental factors 

III. RESULTS AND DISCUSSION 

A. Variation in metabolic function corresponds to 

geographic regions  

With metastats algorithm[22], we found 14 significantly 

different pathways among sampling sites. Using these 14 

pathway abundance features to compute the pairwise 

correlation between sites, we observed significantly variation 

between the sampling sites as shown in Figure 2, where site 

pairs are color-coded according to their similarity. Additionally, 

based on the similarity of pathway abundance features, the 14 

sampling sites were clustered into three groups: the North 

Atlantic, the Mid-Atlantic, and the Pacific, which is strong 

concordance with geographic location. We also analyzed the 

significant pathways, and found that the ko00280(Valine, 

leucine and isoleucine degradation), ko02020(Two-component 

system), ko00330 (Arginine and proline metabolism), 

ko00630(Glyoxylate and dicarboxylate metabolism, 

ko00350(Tyrosine metabolism), ko00140(Steroid hormone 

biosynthesis), ko04113(Meiosis-yeast), ko00930(Caprolactam 

degradation), ko00983(Drug metabolism-other enzymes) are 

higher enriched in North Atlantic samples, and most of these 

pathways are involved in Amino acid metabolism, Signal 

transduction, Carbohydrate metabolism, Cell growth, 

Xenobiotics biodegradation and metabolis; the 

ko0970(Aminoacyl-tRNA biosynthesis), ko0130(Ubiquinone 

and other terpenoid-quinone biosynthesis), ko4066(HIF-1 

signaling pathway), ko0040(Pentose and 

glucuronateinterconversions), ko0906(Carotenoid biosynthesis), 

ko0750(Vitamin B6 metabolism),  ko3060(Protein export), 

ko0440(Phosphonate and phosphinate metabolism) are highly 

enriched in Pacific samples, and most of these pathways are 

involved in Translation, Metabolism of cofactors and vitamins, 

Signal transduction. These results suggest that sampling sites 

more similar in geographic location have a greater tendency to 

be closer together based on their metabolic pathways.  

 

Fig.2. Site-site correlations and clustering results with significantly different 

pathway abundance features 

B. The pathway-environment correlation patterns detected 

by IWNCD 

Pervious researches have shown a clear impact of 

environmental conditions on the functional composition of 

microbial community [8, 23]. Here, we used the IWNCD 

algorithm to investigate which environmental factors are the 

main drivers in the pathways. The correlation patterns of 

pathways and environmental factors detected by IWNCD were 

shown in Figure 3. Four patterns (or communities) in Figure 3 

show that some environmental factors are strongly correlative 

with some special pathways. For example, in C1 community, 

the environmental factors dissolved oxygen (E8) and dissolved 

silicate (E11) are strongly correlative with ko00040, ko00330, 

ko00930, ko00960, ko00983, ko04080, ko04113, ko04144, 

ko03040, ko05204. In C2 community, the environmental 

factors CO2(E1), chlorophyII(E3), sunlight(E12), 

temperature(E13) and primary production(E14) are strongly 

correlative with ko00130, ko00140, ko00195, ko00196, 

ko00240, ko00280, ko00350, ko00362, ko00450, ko00630, 

ko00710, ko00860, ko00900, ko00906, ko00930, ko00970, 

ko02020, ko02060, ko03030, ko03420, ko04110, ko04115, 

ko04151, ko05200 and ko05340. We also counted the number 

of pathways whose correlative coefficient absolute value with 

some special environmental factors are more than 0.6 

( 0.6r  ), and found that there are 42, 26, 24, 19, 13, 11, 8 

and 6 pathways correlating with temperature (E13), chorophyII 

(E3), CO2 (E1), primary production (E14), silicate (E11), 

dissolved oxygen (E8), sunlight (E12) and water depth (E2), 

respectively. These results and C1, C2, C3 communities in 

Figure 3 suggest that the climatic factors such as temperature 

and sunlight (and correlated CO2), and the nutrients such as 

chlorophyII and primary production are the main determining 

factors of the functional community composition.  
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Fig. 3. The correlation patterns of pathway and environmental factors 

detected by IWNCD 

C. The taxa-environment correlation patterns detected by 

IWNCD 

The correlation patterns of taxa and environmental factors 

detected by IWNCD were shown in Figure 4. Five patterns (or 

communities) in Figure 4 show that some environmental 

factors are strongly correlative with some special taxa. For 

example, in C1 community, the primary production (E14) has 

strongly negative correlation with Aquificae, Bacilli, Chlorobia, 

Chloroflexi, Clostridia, Deferribacteres, Deinococci, 

Deltaproteobacteria, Dictyoglomia, Fusobacteriia, 

Methanobacteria, Methanococci, Negativicutes, Thermococci, 

Thermoprotei, Thermotogae, which indicates that these marine 

microbes draw the nutrients from the primary production for 

growing. In community C5, the climatic factors sunlight (E12), 

temperature (E13) and correlated CO2 (E1) are strongly 

correlative with Elusimicrobia, Erysipelotrichi, Halobacteria, 

Mollicutes, Proteobacteria, Spartobacteria, Synergistia and 

Verrucomicrobiae.  

 

Fig. 4. The correlation patterns of taxa and environmental factors detected 

by IWNCD 

IV. CONCLUSIONS 

Mining the marine taxa and functional correlation patterns 
and diversity is a key step for exploiting the marine resources. 
Considering that the environmental factors strongly effect the 
marine microbes, we integrated different metagenomic data 
from 14 global ocean sampling sites, and used an improved 
weighted network community detection algorithm (IWNCD) to 
research which environmental factors are the major 
determinants of some special taxa and metabolic pathway. The 

results show that the climatic factors such as temperature, 
sunlight, and correlated CO2, and the nutrients such as primary 
production and chlorophyII are the main determining factors of 
the functional community composition; The growth and 
development of some special taxa are dependent on the main 
environmental factors such as sunlight, temperature, CO2, 
primary production, dissolved oxygen, dissolved silicate; In 
addition, sampling sites more similar in geographic location 
have a greater tendency to be closer together based on their 
metabolic pathways. 
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