
Dissecting the Obesity Disease Landscape: 
Identifying Gene-Gene Interactions that are Highly 

Associated with Body Mass Index 
 

Rishika De 
Department of Genetics 

Geisel School of Medicine at Dartmouth 
Hanover, NH, USA 

IBC BMI Working Group 

Michael V. Holmes 
University of Pennsylvania 

Philadelphia, PA, USA 

Jason H. Moore 
Department of Genetics 

Geisel School of Medicine at Dartmouth 
Hanover, NH, USA 

Jason.H.Moore@dartmouth.edu 

Shefali S. Verma 
Center for Systems Genomics 

The Pennsylvania State University 
University Park, PA, USA 

 

Folkert W. Asselbergs 
University Medical Center Utrecht 

Utrecht, The Netherlands 

Brendan J. Keating 
The Children’s Hospital of Philadelphia 

Philadelphia, PA, USA 
 
 

 Marylyn D. Ritchie 
Center for Systems Genomics 

The Pennsylvania State University 
University Park, PA, USA 

 Diane Gilbert-Diamond 
Department of Community and Family Medicine 

Geisel School of Medicine at Dartmouth 
Hanover, NH, USA 

Diane.Gilbert-Diamond@dartmouth.edu

 
Abstract— Despite heritability estimates of 40-70% for obesity, 

less than 2% of its variation is explained by Body Mass Index 
(BMI) associated loci that have been identified so far. Epistasis, 
or gene-gene interactions are a plausible source to explain 
portions of the missing heritability of BMI. Using genotypic data 
from 18,686 individuals across five study cohorts – ARIC, 
CARDIA, FHS, CHS, MESA – we filtered SNPs (Single 
Nucleotide Polymorphisms) using two parallel approaches. SNPs 
were filtered either on the strength of their main effects of 
association with BMI, or on the number of knowledge sources 
supporting a specific SNP-SNP interaction in the context of 
obesity. Filtered SNPs were specifically analyzed for interactions 
that are highly associated with BMI using QMDR (Quantitative 
Multifactor Dimensionality Reduction). QMDR is a 
nonparametric, genetic model-free method that detects non-
linear interactions in the context of a quantitative trait. We 
identified seven novel, epistatic models with a Bonferroni 
corrected p-value of association < 0.06. Prior experimental 
evidence helps explain the plausible biological interactions 
highlighted within our results and their relationship with obesity.  
We identified interactions between genes involved in 

mitochondrial dysfunction (POLG2), cholesterol metabolism 
(SOAT2), lipid metabolism (CYP11B2), cell adhesion (EZR), cell 
proliferation (MAP2K5), and insulin resistance (IGF1R). This 
study highlights a novel approach for discovering gene-gene 
interactions by combining methods such as QMDR with 
traditional statistics.  

Keywords—obesity; epistasis; gene-gene interaction, 
multifactor dimensionality reduction, GWAS 

I. INTRODUCTION 
Obesity is a major risk factor for various diseases such as - 

heart disease, type 2 diabetes and even certain types of cancer 
[1], [2]. Approximately, one-third of the adult population in 
the U.S. is categorized to be obese [3]. Globally, obesity has 
the potential to affect 1.12 billion individuals by 2030 [4]. In 
the U.S. alone, the economic burden associated with obesity 
has been estimated to be around $147 billion/year in 
healthcare costs and loss of productivity of affected 
individuals [5]. Moreover, obesity no longer affects only 
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industrialized nations, but it is also making its mark in 
developing nations, especially among children [3], [6].  

Although the current epidemic proportions of obesity can 
be largely attributed to our lifestyle and food choices, there is 
also a strong genetic component of obesity. Twin and adoption 
studies have provided heritability estimates of 40-70% for 
obesity [7], [8]. Such studies have also found that obesity 
tends to cluster within families, and that monozygotic twins 
show greater concordance in Body Mass Index (BMI) and 
adiposity metrics versus dizygotic twins. Technological 
advancements in genomics and highly characterized genome-
wide reference maps in major populations allow researchers to 
query a million or more genetic variants by designing 
genome-wide association studies (GWAS), [9]–[11] and so far, 
researchers have identified BMI-related signals in 32 loci that 
are associated with the trait at a genome-wide level [1]. 
However, these primary associations have been able to explain 
only about 2% of the variation observed in BMI [1]. 

The limited success of GWAS has often been attributed to 
the linear framework employed by these studies. Although, 
single locus analysis strategies have had success in certain 
diseases such as age-related macular degeneration and breast 
cancer [12]–[15], many complex diseases are likely the result 
of interactions between genetic loci – epistasis [9], [11], [16]. 
The ubiquitous nature of epistasis has been discussed 
previously, and it has highlighted the importance of designing 
our studies to embrace the genomic and environmental context 
of Single Nucleotide Polymorphisms (SNPs), by specifically 
searching for non-linear interactions between genetic loci [17], 
[18].  

In this study we aimed to identify interactions between 
SNPs that are associated with BMI using data from 18,686 
individuals across five highly characterized National Heart, 
Lung and Blood Institute (NHLBI) study cohorts. 

II. MATERIALS AND METHODS 

A. Participants 
Figure 1 illustrates the overall study design. Genotype and 

phenotype information were initially combined for a total of 
18,686 individuals of European descent from the following 
studies: Atherosclerosis Risk in Communities (ARIC) [19]; 
Coronary Artery Risk Development in Young Adults 
(CARDIA) [20]; Cardiovascular Health Study (CHS) [21]; 
Framingham Heart Study (FHS) [22]; and Multi-Ethnic Study 
of Atherosclerosis (MESA) [23] (Supplementary Table 1). 

B. Genotyping and quality control 
Genotyping was performed using the gene-centric 

ITMAT-Broad-CARe (IBC) array. This array was designed 
specifically to test over 2,000 loci implicated in various 
cardiovascular, metabolic and inflammatory phenotypes [24]. 
The array contains 47, 451 SNPs. Samples with a call rate less 
than 90% were excluded. Additionally, SNPs with a call rate 
less than 95%, with an exact test of Hardy-Weinberg 
equilibrium p-value greater than 1.00E-07 or a minor allele 
frequency (MAF) < 0.05 were also excluded. SNPs were 
further tested for linkage disequilibrium (LD) – a SNP was 

removed from each pair of SNPs that had an LD (r2) ≥ 0.6. 
This reduced our dataset to 17,268 individuals and 28,453 
SNPs. Non-founder individuals were also removed from the 
study population. To check for relatedness between 
individuals, markers were used for an Identity-by-descent 
(IBD) analysis using PLINK [25]. For pairs of individuals 
with a pi-hat ( ) value greater than 0.3, one individual was 
removed. Complete phenotype data was also required for 
inclusion of an individual in the analysis. This resulted in a 
final dataset of 15,737 individuals and 28,453 SNPs. To 
decrease both the computation time and the multiple testing 
burden two filtering strategies were employed [26]. These are 
described in more detail below.  

C. Marker Selection 
1) Main effect filter 
As an additional filtering step, SNPs were tested for their 

independent association with the continuous BMI outcome 
using linear regression. Upon visual inspection of the 
distribution of p-values, a cut-off value of p < 0.016 was 
chosen, as there was a distinct separation between SNPs 
exhibiting a stronger main effect and the rest of the SNPs at 
this cut-off. This resulted in a final list of 498 markers for 
further analysis [27].  

2) Biofilter 

As a parallel filtering procedure, SNPs were also analyzed 
using Biofilter [28]. Biofilter is a knowledge-based approach 
that enables the analysis of multi-SNP interactions in a large 
dataset. The software identifies multi-SNP models that exhibit 
marginal effects on a phenotype, but are also biologically 
plausible. It combines information from multiple public 
knowledge sources such as Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Database of 
Interacting Proteins (DIP) and the Protein Families Database 
(Pfam) [29]. These sources provide information regarding 
pairs of genes that may be putative sources of epistasis and 
relate genes to one another through their mutual participation 
in biological processes, signaling pathways, protein-protein 
interactions as well as via the structural similarity between 
protein motifs. Biofilter measures the strength of the 
knowledge-based support for a given multi-SNP model with 
an implication index. The implication index is the sum of the 
number of supporting data sources for each of the genes in a 
given gene-gene relationship. For our analysis, models with an 
implication index of five or greater were retained, resulting in 
a list of 1815 markers (22,644 SNP-SNP models). The 
selected implication index cut-off was slightly more stringent 
than those used in previous studies [30]. 

D. Statistical analyses 
1) Covariate adjustment 

Baseline BMI values were regressed on Age, Age2, Sex, 
the first three principal components of race computed using 
EIGENSTRAT software [31] and the index SNP rs11642841 
in the FTO region. SNPs in the FTO locus are some of the 
strongest genetic associations identified for obesity risk [32]. 
Hence, adjustments were made for a SNP in the FTO locus to 
increase our ability to identify SNP-SNP models that were not 
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primarily driven by the strong main effect of this gene. The 
residual BMIs from this regression model were then used as 
the continuous outcome variable in the QMDR analysis. 

2) Association analysis – QMDR 
SNPs obtained from the two parallel filtering procedures 

described above, were tested for association with the 
continuous BMI outcome using Quantitative Multifactor 
Dimensionality Reduction (QMDR) [33]. QMDR is an 
extension of the two-class MDR algorithm that can detect and 
characterize epistatic SNP-SNP interactions in the context of a 
quantitative trait [34].  

The original MDR algorithm was designed as a data 
reduction approach to identify multi-locus genotype 
combinations that are associated with high or low risk of 
disease [34]. Within a given dataset of m SNPs, k SNPs can be 
selected to examine a k-order interaction. MDR then 
constructs a contingency table for these k SNPs, and calculates 
case-control ratios for each of the possible multi-locus 
genotypes. Next, the case-control ratio for each multi-locus 
genotype is compared to the global case-control ratio for the 
whole dataset. Accordingly, a genotype is considered high-
risk if its case-control ratio exceeds the global case-control 
ratio. Alternatively, it is considered to be low-risk. 

 

 
Fig. 1. Schematic design of the QMDR (Quantitative Multifactor Dimensionality Reduction) analysis for identifying SNP-SNP interaction models associated with 
BMI. Genotyping was performed using the IBC (ITMAT-Broad-CARe) array. The workflow also includes the initial quality control procedures, subsequent 
association analyses, and covariate adjustment steps performed. 

 
However, when QMDR constructs a similar contingency 

table for k SNPs, it compares the mean value of the phenotype 
to the overall mean of the phenotypic trait within the dataset. 
Hence, a genotype combination is considered high-level if its 
mean value is larger than the overall mean of the phenotypic 

trait within the dataset. Otherwise, it is considered low-level. 
Next, QMDR combines the ‘high-level’ and ‘low-level’ 
genotypes into respective groups, and compares the 
phenotypic outcomes between these two groups using a T-test.  
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QMDR also uses a 10-fold cross-validation procedure 
similar to the original MDR algorithm. The dataset is divided 
into 10 portions – 9 portions are used as a training dataset, and 
the remaining portion is used as a testing dataset. Next, the 
training t-statistic is calculated for each k-way interaction in 
the training dataset. The k-way model with the best training 
score is then used to predict the case-control status in the 
testing dataset. Ultimately, the best k-order interaction model 
is chosen based upon the training t-statistic and the highest 
testing t-statistic is used to select the best overall model for the 
dataset.  

In the current analyses, we utilized QMDR to specifically 
test filtered SNPs for all possible two-way (SNP-SNP) 
interaction models that are associated with the continuous 
BMI outcome based on their training T-statistic scores. 
Amongst these models, we selected the 100 best overall SNP-
SNP models using their testing T-statistic scores. 

3) Permutation testing to assess statistical significance 
Permutation procedures were performed to determine a 

cut-off threshold for an α=0.05 significance level. A 1000 
permutations were performed, and in each permuted dataset 
the 100 best two-way SNP models were selected based on 
their T-statistic training and testing values. The null 
distribution of the 100 best SNP models and T-statistic values 
obtained from all permutations was utilized to calculate p-
values for SNP-SNP models. P-values were also corrected for 
multiple testing using standard Bonferroni corrections. 

4) Assessing the non-additive nature of identified pairwise 
interactions 

A 1000 permuted datasets were created using the explicit 
test of epistasis, by shuffling genotypic data for each SNP [35]. 
However, genotype frequencies were maintained so that 
independent main effects were preserved while non-linear 
interactions were randomized. Linear regression was used to 
model the identified statistically significant SNP-SNP 
interactions in relation to BMI within the original and 
permuted datasets. Interactions between SNPs were coded as 
Cartesian products within the regression model. The nine 

possible two-locus genotypes were coded from 0-8 (Table S2). 
The null distribution was created using the F-statistic values 
for the regression models from the 1000 permuted datasets. 
This was used to calculate the ‘explicit epistasis’ p-value 
associated with the original pairwise interactions that were 
identified. 

5)  Biological evidence for identified pairwise interactions 
To identify known biological evidence supporting the 

statistically significant pairwise interactions, we mapped each 
SNP to a corresponding gene using information from dbSNP 
(build 139) and SCANdb (http://www.scandb.org). We also 
searched for evidence of functional relationships between 
interacting genes using the Integrated Multi-Species 
Prediction (IMP) web server [36]. IMP integrates information 
from a large number of sources including experimentally 
verified information from gene expression studies, IntAct, 
MINT, MIPS, and BioGRID databases. It mines empirical 
data to provide a predictive probability that two genes work 
together within a given biological process.  

III. RESULTS 

A. Main effect filter 
Using the set of SNPs that emerged from the main effect 

filter, QMDR analysis identified seven novel SNP-SNP 
interaction models that were associated with BMI (Bonferroni 
corrected p-value <0.06) (Table 1). These SNP-SNP models 
also reflect strong epistatic relationships. P-values associated 
with the non-additive nature of these interactions are also 
presented in Table 1. We also queried the biological and 
functional context of these interactions using IMP. However, 
since both FLJ30838 and C7orf10 are of unknown function, 
we gained most insight regarding interactions 3, 5 and 6 (Table 
1). ASTL and CYP11B2 were found to interact via two genes – 
MEP1B and CYP2C9 (Figure 2a). A functional partner of EZR 
was found to interact with MAP2K5 through other participants 
in the MAPK signaling pathway (Fig 2b). Lastly, a member of 
the IGF1R protein complex was found to interact with CAV3 
(Fig 2c). 

 

TABLE I. Results for QMDR association analysis for continuous BMI outcome. Seven signals reached a Bonferroni corrected p-value < 0.1. SNPs have been 
mapped to their corresponding genes using dbSNP (build 139) and SCANdb. SNP1 and SNP2 indicate the individual SNPs within a given SNP-SNP interaction 
model identified by QMDR. Chromosomal location of SNPs is noted in the following format - Chromosome:Base pair. P-values were calculated from a 
distribution built from 1000 permutations. P-values were also corrected using the Bonferroni method. Explicit epistasis p-values were calculated from a 
distribution built from 1000 permutations using the 'explicit test of epistasis'. 

 

Rank  Model  SNP1  Chr:bp  Gene1   SNP2  Chr:bp  Gene2  Permuted
P-Value

 Bonferroni
Corrected
P-value

 Explicit
Epistasis
P-value

1 rs17171686,rs1427463 rs17171686 7:40335451 C7orf10 rs1427463 17:59923044 POLG2 < 0.00011 0.01 0.000

2 rs12617233,rs1427463 rs12617233 2:58893502 FLJ30838 rs1427463 17:59923044 POLG2 < 0.00012 0.01 0.012

3 rs749457,rs1799998 rs749457 2:96159671 ASTL rs1799998 8:143996602 CYP11B2 < 0.00026 0.03 0.000

4 rs12617233,rs12210959 rs12617233 2:58893502 FLJ30838 rs12210959 6:6121143 F13A1 < 0.00038 0.04 0.003

5 rs3102976,rs997295 rs3102976 6:159110007 EZR rs997295 15:65803397 MAP2K5 < 0.00046 0.05 0.000

6 rs2268484,rs8038415 rs2268484 3:8748950 CAV3 rs8038415 15:97316957 IGF1R < 0.00046 0.05 0.009

7 rs12617233,rs822682 rs12617233 2:58893502 FLJ30838 rs822682 12:51798711 SOAT2 < 0.00061 0.06 0.018
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B. Biofilter 
Using the set of SNPs that emerged from the Biofilter 

procedure, QMDR analysis did not identify any significant 
SNP-SNP interaction models that were associated with BMI. 

IV. DISCUSSION 
In this study, we analyzed the genetic and phenotypic 

information for a total of 15,737 individuals combined from 
five study cohorts – ARIC, CARDIA, CHS, FHS and MESA. 
SNPs were either filtered based on the strength of their 
independent effects or on the number of independent sources 
of biological knowledge supporting them. Filtered SNPs were 
then specifically tested for SNP-SNP interactions.  

Historically, GWA studies have employed a linear 
modeling framework that tests single SNPs one at a time, for 
its association with a given phenotype. Unfortunately, such an 
approach does not consider the genomic context of a SNP. 
Moreover, Hirschhorn et al have shown that positive results 
from studies employing such an approach typically cannot be 
replicated across independent studies [37]. This has 
highlighted the need for embracing the complexity of a 
genotype-phenotype relationship by focusing on gene-gene 
interactions [38]. However, detecting gene-gene interactions 
in a GWAS presents a considerable computational and 
statistical challenge. Moore and Ritchie describe the need for 
designing new computational methods for detecting high-
order non-linear interactions since traditional approaches such 
as logistic regression have limited power when modeling such 
interactions in high-dimensional data [39], [40]. They also 
stress upon the importance of filtering methods for the 
selection of SNPs to be included in an analysis. The 
exhaustive search of all possible combinations of thousands of 
SNPs is computationally very expensive. Our approach 
addresses both of these challenges. QMDR – an extension of 
the original MDR developed for quantitative traits – is a non-
parametric method that does not assume any genetic model. 
Most importantly, MDR greatly reduces the degrees of 
freedom required for modeling interactions. We also address 
the SNP-selection problem by applying two parallel filtering 
approaches, thereby effectively reducing our search space for 
detecting meaningful interactions. 

We identified seven novel interactions that are highly 
associated with BMI. These seven interactions were also 
explicitly tested for the presence of epistasis. All the identified 
interactions exhibited an epistatic component. Four of these 
interactions stand out since SNPs within these interactions 
have previously been identified as independent signals 
associated with BMI [27]. These SNPs are – rs12617233 in 
FLJ30838 and rs997295 in MAP2K5 – within interactions 2, 4, 
5 and 7 (Table 1).  FLJ30838 is a long intergenic non-coding 
RNA (lincRNA) of unknown function. It was found to interact 
with rs1427463 in POLG2, rs12210959 in F13A1, and 
rs822682 in SOAT2. Incidentally, none of these other SNPs 
have been implicated in obesity before. The rs1427463 variant 
has been associated with height previously in an African 
ancestry population, which obviously factors into BMI 
calculations [41].   

In the first two interactions, rs1427463 in POLG2 interacts 
with rs17171686 in C7orf10 and rs12617233 in FLJ30838 
respectively. Although, not much is known regarding the 
functions of C7orf10 and FLJ3083, we can gain some 
understanding regarding these interactions from POLG2. 
POLG2 encodes for a subunit of the mitochondrial DNA 
polymerase gamma. It is largely involved in metabolic 
pathways and the transcriptional activation of mitochondrial 
biogenesis [42], [43]. Researchers have shown that an increase 
in mitochondrial biogenesis was able to prevent the 
development of obesity in mice [44]. Conversely, genetically 
engineered mice with reduced expression of genes involved in 
mitochondrial respiration eventually developed obesity [45]. 
Consequently, the involvement of mitochondrial dynamics in 
obesity has gained a lot of support [46].  

The SNP rs12617233 in FLJ30838 also interacts with the 
SNPs rs12210959 in F13A1, and rs822682 in SOAT2 
respectively. As mentioned before, not much is known about 
FLJ30838 or about the functional role of the SNPs in F13A1 
and SOAT2. F13A1 encodes for the A subunit of the 
coagulation factor XIII [47]. Several SNPs on this gene were 
found to be highly associated with BMI in a study utilizing 
gene expression data from monozygotic twins to deeply 
interrogate GWAS data [48]. Interestingly, the SNP identified 
in our study is independent of the F13A1 signals identified by 
Naukkarinen et al. Moreover, this gene is also a part of the 
pathway involved in the formation of the fibrin clot [42], [43]. 
Several studies in obese individuals and rodent models of 
obesity have also reported increased levels of coagulation 
factors [49], [50] . However, the exact mechanism by which 
this gene and other coagulation factors may impact obesity is 
unknown.  

SOAT2, also known as sterol O-acyltransferase 2, has been 
found to be a major regulator of cholesterol metabolism and 
absorption in the small intestine and liver of mice on a high-
cholesterol and high-fat diet [51]. Impaired cholesterol 
absorption has been linked to high BMI and obesity [52], [53]. 
Although the exact mechanism is unclear, researchers have 
suggested that increased cholesterol synthesis and secretion 
combined with dietary cholesterol being consumed, may 
ultimately affect cholesterol absorption efficiency in obese 
individuals [54].  

We also found a significant association between rs749457 
in ASTL and rs1799998 in CYP11B2 related to BMI. The 
variant rs1799998 has been associated with insulin resistance, 
diabetes, and metabolic syndrome in humans, but it has not 
been shown to have an independent association with BMI 
[55]–[57]. Little is known regarding the function of ASTL in 
humans, a specific protease that uses metals in catalytic 
processes [58]. However, there is moderate support 
connecting ASTL to a functional partner of CYP11B2 (Figure 
2a). ASTL shares a strong sequence similarity and a common 
genetic ancestor with MEP1A. Both MEP1A and MEP1B are 
distinct yet evolutionarily related subunits of meprins – 
proteases that are involved with metals [59]. MEP1B shares a 
transcription factor binding site with and is part of the same 
gene expression signature as CYP2C9. Both CYP11B2 and 
CYP2C9 are functionally related by their roles in lipid 
metabolism [36]. CYP11B2 is specifically involved in 
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mineralocorticoid biosynthesis [42], [43]. Incidentally, the 
mineralocorticoid receptor has been shown to play an 

important role in the positive control of adipogenesis and thus, 
in the development of obesity [60]. 

Fig. 2. Functional relationship networks generated from Integrated Multi-Species Prediction (IMP) from identified SNP- SNP interactions that are highly 
associated with BMI. Identified SNPs were mapped to their respective genes. Gene pairs were used to query IMP to make functional connections between them. 
IMP is a web-based tool that mines empirical data to provide a predictive probability that two genes have a functional relationship. Nodes in the network represent 
genes. Query genes are represented with larger nodes. Edges between nodes represent a functional relationship between two genes. Shown are interactions 
between (a) rs749457 in ASTL and rs1799998 in CYP11B2 (b) rs3102976 in EZR and rs997295 in MAP2K5 (c) rs2268484 in CAV3 and rs8038415 in IGF1R. 

 

We also observed an interaction between rs997295 in 
MAP2K5 and rs3102976 in EZR related to BMI. MAP2K5 is a 
part of the MAPK signaling pathway involved in growth 
factor stimulated cell proliferation. EZR, or ezrin, encodes a 
cytoplasmic peripheral membrane protein that acts as a 
linkage between the plasma membrane and the actin 
cytoskeleton. Consequently, ezrin plays an important role in 
cell adhesion, migration and organization. There is prior 
experimental evidence supporting the physical and functional 
connection between these two genes (Figure 2b). MAP2K5 is 
known to physically interact and participate with MAP3K3 in 
the MAPK signaling pathway. MAP3K3 also interacts with 
the GTPase activating protein IQGAP1. IQGAP1 interacts 
with EZR and is also involved in the regulation of the actin 
cytoskeleton [36]. One can imagine the strong need for 
regulating the actin cytoskeleton during dynamic processes 
such as adipogenesis. 

Lastly, we observed an interaction between rs2268484 in 
CAV3 and rs8038415 in IGF1R related to BMI. CAV3 encodes 
for a muscle-specific form of the caveolin family of proteins. 
Researchers have found that CAV3-knockout mice developed 
insulin resistance in their skeletal muscles [61] and that 
adenovirus-mediated gene transfer of CAV3 was able to 
increase glycogen synthesis in the liver as well as improve 
insulin signaling in diabetic obese mice [62]. IGF1R codes for 
a receptor of insulin-like growth factor, a polypeptide 
hormone that plays an important role in growth. IGF1 also 

regulates pancreatic β-cell mass and thus plays a crucial role 
in insulin signaling. Hence, impaired IGF1 signaling may alter 
insulin secretion by β-cells and negatively impact the 
hypothalamus – a region of the brain associated with food 
intake – ultimately causing weight gain [63]. Interestingly, a 
member of the IGF1R protein complex assembly (RAS1) is 
known to interact with a functional partner of CAV3 in a 
number of processes such as signal transduction, endocytosis 
and focal adhesion (Figure 2c) [36]. 

The use of the IBC array in this study highlights the 
strengths of this custom array in detecting potentially disease-
causing loci that are also supported by a substantial amount of 
biological evidence. However, while the array has dense 
coverage in gene-centric regions, it only includes 2000 loci. 
This limitation of the array was highlighted by the inability of 
BioFilter to identify any statistically significant SNP-SNP 
models. The use of methods such as BioFilter may be more 
suited for larger GWAS datasets including more loci.  

This study identifies gene-gene interactions that are 
potentially associated with obesity. Prior experimental 
evidence suggests the plausible biological relevance of several 
of the identified loci. However, we also identified a few loci 
of unknown function. Unfortunately, the inferences that can be 
drawn from our results are limited by a functional annotation 
bias – well-studied genes are assigned many annotations while 
understudied genes often lack annotations. One could 
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speculate that the genes involved in these interactions are 
multi-functional, thereby connecting various biological 
processes and pathways. Ultimately, further biological 
validations will be necessary to determine whether the 
identified interactions play a role in the complex genetic 
architecture of obesity.  

V. CONCLUSION 
Main effects analyses have explained little of the genetic 

heritability of obesity. The use of methods such as QMDR in 
conjunction with traditional statistical analyses can unravel 
this complex network by identifying gene-gene interactions 
that play key roles in the etiology of obesity. Our QMDR 
analysis of genotypic data from 5 study cohorts identified 
novel interactions between genetic variants that are highly 
associated with BMI. Future studies are necessary to verify the 
observed associations.   
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