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Abstract—Functional enrichment analysis is usually adopted 

after the identification of differentially expressed (DE) genes in 

studies focusing on cancer peripheral blood (PB) gene expression. 

However, whether the disturbed functional signals reflect the 

expression changes in blood cells or the cell population shifts 

under cancer condition remains unclear. By deconvolving the 

gene expression profiles of multiple cancer datasets, we showed 

that the proportion of myeloid-origin cells increased whereas the 

proportion of lymphoid-origin cells decreased in cancer PB. The 

DE genes between cancer PB samples and controls were highly 

consistent with DE genes between myeloid-origin and lymphoid-

origin cells, indicating that cell population shifts contributed 

predominantly to the differential signals in cancer PB. All of the 

functional categories enriched for cancer PB DE genes were 

enriched for DE genes between myeloid-origin and lymphoid-

origin cells, suggesting that functional signals in cancer PB 

probably reflect the changes of population shifts in blood cells, 

thus the enriched functional categories might not be able to 

reflect the cell type specific expression changes. Therefore, 

caution should be taken in translational biomarker discovery 

based on human PB gene expression profiles. 

Keywords—Cancer peripheral blood; differentially expressed 

genes; functional enrichment analysis; myeloid-origin and 
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I.  INTRODUCTION 

Recently, blood gene signatures as noninvasive clinical 

biomarkers have been successfully identified based on the 

detection of mRNA expression profiles in human peripheral 

blood samples from many diseases, such as Alzheimer [1], 

stroke [2], inflammation-related disease [3] and cancer [4-6]. 

After finding the candidate discriminatory genes or 

significantly differentially expressed (DE) genes from a 

peripheral blood (PB) cancer dataset, researchers usually 

perform the functional enrichment analysis to detect the 

significant functional categories enriched for these candidate 

genes [4-7]. However, as PB is known to be a mixture of 

various types of blood cells [8], whether such functional 

signals observed in PB could reflect the blood cell-intrinsic 

expression changes is doubtful. Moreover, it has been reported 

that the number of blood cells originated from the myeloid 

precursor (referred to as myeloid-origin cells for simplicity) 

tend to increase whereas the number of blood cells originated 

from the lymphoid precursor (referred to as lymphoid-origin 

cells for simplicity) tend to decrease under cancer condition 

[9-11]. This means that, in addition to the expression changes 

intrinsic in blood cells, the cell population shifts could also 

contribute to the DE genes observing in cancer PB samples 

compared to controls. Therefore, the functional analysis of 

significant DE genes may only provide important information 

about the blood cells but not directly about the cancer, the 

latter of which is often interpreted by the researchers focused 

on PB gene expression study [4-7]. 

In this report, we first showed that the proportion of 
myeloid-origin cells increased and the proportion of lymphoid-
origin cells decreased in cancer PB samples compared to 
controls. Then, we reported that directions of regulation (up- or 
down-regulations) of DE genes in cancer PB samples were 
highly consistent with that of the DE genes detected between 
myeloid-origin and lymphoid-origin cells. These cancer PB DE 
genes with elevated expression levels identified from different 
cancers enriched in functional categories including many 
immune- and inflammation-related biological processes. The 
down-regulated genes in PB samples of different cancers 
involved in functional categories mainly related to protein 
synthesis, translation control and cellular metabolic. These 
functional categories were all enriched for the DE genes 
identified between myeloid-origin cells and lymphoid-origin 
cells but not enriched for DE genes identified between breast 
cancer and normal CD4+ T cells. Thus, we concluded that the 
commonly disturbed functional categories observed in different 
cancers overwhelmingly reflected the shifts of the cell 
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populations and they may be probably not reflective of the cell 
type specific expression changes. Therefore, the connection of 
functional categories enriched by DE genes identified from 
cancer blood directly to cancer might be misleading as the 
mRNA expression profiles in PB samples were more likely to 
reflect the expression changes induced by population shifts in 
blood cells as a response to the cancer condition. 

II. METHOD 

A. Microarray Data 

We collected two PB microarray datasets for each of the 
three cancer types studied from the GEO database [12] 
respectively (Table I). Because no enough PB datasets were 
available for ovarian cancer, only one dataset was analyzed in 
this report. The normalized data were downloaded from GEO 
and the original platform annotation files released from GEO 
were used to annotate the CloneIDs to GeneIDs. 

The dataset for breast CD4+ T cells contained only the 
gene expression profiles for purified CD4+ T cells from breast 
cancer and healthy controls, which were from the GEO series 
(GEO accession number 'GSE36765'). 

The two datasets for normal leukocyte measured the gene 
expression levels of different leukocyte subtypes from normal 
human peripheral blood. In each dataset, the gene expression 
profiles of normal human leukocyte subtypes were divided into 
two groups: one group was composed of the profiles of 
myeloid-origin cells including monocytes, neutrophils and 
eosinophils while the other group was composed of the profiles 
of lymphoid-origin cells including T cells, NK cells and B cells. 
In Table I, “Case” refers to the myeloid-origin group, while 
“Control” refers to the lymphoid-origin group. 

B. Estimation of Proportions of Myeloid-origin and 

Lymphoid-origin Cells in Peripheral Blood 

To determine whether the myeloid-origin and lymphoid-
origin cell proportions differ in the PB of cancer patients, we  

TABLE I.  DATASETS ANALYZED IN THIS STUDY 

Dataset Case:Controla 

GEO 

accession 

Number 

Platform 

Colorectal cancer 10:9 GSE11545 GPL2986 

19:11 GSE10715 GPL570 

Lung cancer 8:38 GSE42830 GPL10558 

73:80 GSE20189 GPL571 

Breast cancer 11:9 GSE11545 GPL2986 

54:67 GSE16443 GPL2986 

Ovarian cancer 9: 9 GSE11545 GPL2986 

Breast CD4+ T cells 10:4 GSE36765 GPL570 

Normal leukocyte 13:20 GSE28491 GPL570 

17:20 GSE28490 GPL570 

a. The number of case and control samples. 

quantified the proportions of myeloid-origin and lymphoid-
origin cells by a process of deconvolution [13]. If B represents 
the known matrix of microarray expression profiles measured 
for a disease, comprising both disease and control samples; X 
represents the proportions of myeloid-origin and lymphoid-
origin cells; and A represents the known matrix of expression 
levels of genes in the myeloid-origin and lymphoid-origin cells, 
then 

 AX ≈     

The object of deconvolution is to find the solution of the 
deconvolution equation, which will give the cell-type 
proportions for myeloid-origin and lymphoid-origin cells. Thus, 
based on a cancer PB microarray dataset and expression 
profiles of the marker genes specially expressed on myeloid-
origin and lymphoid-origin cells documented in the Immune 
Response in Silico (IRIS) database [14], we could estimate the 
proportions for myeloid-origin and lymphoid-origin cells in 
each sample in the cancer PB dataset. 

 After the proportions of myeloid-origin and lymphoid-
origin cells in each sample of a dataset were calculated by the 
Bioconductor package CellMix [15], we used the two-sample t-
test method to evaluate whether the proportions were 
significantly different between diseases and controls. A p-value 
< 0.05 was considered significant. 

C. Detection of Differentially Expressed Genes 

The two-sample t-test method was used to select DE genes 
with an FDR (false discovery rate) [16] < 10%. In a dataset, a 
DE gene was considered up-regulated (down-regulated) if its 
relative difference of expression between the tumour groups 
and controls was larger (smaller) than zero. 

D. Definition of Consistent Differentially Expressed Gene List 

If a DE gene had the same direction of regulation in two 
datasets for a same disease, this gene was considered as a 
consistently expressed DE gene. Combining all the consistently 
expressed DE genes together, we obtained the consistent DE 
gene list for this disease. 

E. Functional Enrichment Analysis 

For each dataset, two interesting gene lists, the up- and 
down-regulated gene lists were analyzed separately [17] for 
finding significant functional categories using GO-function 
[18]. The significant GO functional categories were identified 
after multiple testing adjustments with an FDR < 10%. If n 
genes are selected as interesting genes (up- or down regulated 
genes) from N genes in a dataset, and k of them were annotated 
to a GO functional category with m genes, the probability of 
observing at least k genes by chance can be appropriately 
modelled by the hypergeometric distribution model, as follows: 
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where p0 was estimated using the cumulative uniform 
distribution model, based on the assumption that the 
enrichment P-values follow a uniform distribution, i.e., every 
enrichment P-value has an equal probability to occur between 
zero and one. A binomial P-value < 0.05 was considered 
significant. 

III. RESULTS 

A. Shifts in Populations of Myeloid-origin and Lymphoid-

origin Cells 

To determine whether DE genes identified from cancer PB 

might be affected by cell population shifts of myeloid-origin 

and lymphoid-origin cells, we estimated the proportions of the 

myeloid-origin and lymphoid-origin cells in colorectal and 

lung cancer datasets using gene expression deconvolution 

methods. We found that the average proportions of myeloid-

origin cells were significantly higher in PB samples with 

cancer compared to controls, while the average proportions of 

lymphoid-origin cells were significantly lower in lung cancer 

patients (Fig. 1, p-value < 0.05, t-test). This indicated that the 

proportions of the myeloid-origin and lymphoid-origin cells 

increased and decreased respectively under cancer condition. 

B. Comparison of DE Genes in Cancer PB to DE Genes in 

Myeloid-origin Cells Compared to Lymphoid-origin Cells 

We evaluated whether the differential mRNAs observed in 
tumor bloods could be explained by the population shift of 
blood cells. First, we defined consistent DE gene list for cancer 
compared to controls and for myeloid-origin compared to 
lymphoid-origin cells respectively. For breast cancer, with an 
FDR < 10%, only seven DE genes were identified from one 
(GEO acc.no.GSE16443) of the two datasets, resulting in no 
overlapping DE genes between the two breast cancer datasets. 
Therefore, this dataset for breast cancer was excluded from the 
following analysis and we integrated the consistent DE genes 
from the two datasets for colorectal cancer, lung cancer and 
leukocyte cells respectively. Totally, the consistent DE gene 
list for colorectal and lung cancer included 309 and 207 genes 
respectively; whereas the consistent DE gene list for myeloid-
origin cells compared to lymphoid-origin cells included 4587 
genes. If a cancer DE has the same direction of regulation as in 
myeloid-origin compared to lymphoid-origin cells, it was 
considered to be explained by the shift populations of myeloid-
origin and lymphoid-origin cells [19]. Among the 309 
consistent DE genes identified for CRC, 157 were also 
differentially expressed between myeloid-origin and lymphoid-
origin cells, and 89.2% of them were deregulated with the same 
directions. In lung cancer, 157 of the 207 consistent DE genes 
were differentially expressed between myeloid-origin and 
lymphoid-origin cells, with the consistent score as high as 
100%. The result demonstrated that the changes in populations 
of myeloid-origin and lymphoid-origin blood cells could 
contribute to a significant proportion of the observed 
differential signals in the cancer blood transcriptome. 

 

Fig. 1. Average proportions of myeloid-origin and lymphoid-origin cells in 

multiple cancer datasets. 

C. Functional Consistency of Differential Genes in Cancer 

Peripheral Blood 

As PB is the pipeline of the immune system carrying 
different types of leukocytes [20], it's possible that the DE 
genes in cancer PB are enriched in biological functional 
categories shifted by changes in the leukocytes. Thus, we used 
GO-function to find the significant GO functional categories 
that consistently enriched by up- or down-regulated PB DE 
genes identified for cancer. A GO functional category was 
considered consistent across the six cancer blood datasets when 
it was detected as significant in at least two datasets (P-value = 
3.28×10-2, binomial test). As shown in Table II, with an FDR < 
10%, we obtained 17 GO functional categories consistently 
enriched for up-regulated genes identified from colorectal, lung, 
breast and ovarian cancer respectively, including functional 
categories related to immune- and inflammation-related 
processes (Table II), which indicated that the immmune system 
responds under cancer condition. The down-regulated genes 
were enriched in 55 functional categories related to the 
metabolic, cellular component and gene expression/translation 
processes (Table II). 

Then, the 17 and 55 significant functional categories were 
also analyzed using the two leukocyte datasets. For the 
functional categories consistently enriched by up-regulated 
genes, all of the 17 functional categories were non-randomly 
enriched by the DE genes between the myeloid-origin and 
lymphoid-origin cell identified from the two leukocyte 
datasets with an FDR < 10%, which could not be expected to 
happen by random chance (P-value = 2.5×10-3, binomial test), 
hinting that gene expression patterns in cancer PB samples 
may reflect the corresponding changes in shift of myeloid-
origin and lymphoid-origin cells. All the 55 functional 
categories consistently enriched for down-regulated genes 
across different cancer datasets were non-randomly enriched 
by the DE genes in the two leukocyte expression datasets with 
an FDR < 10% (P-value = 2.5×10-3, binomial test). 

Notably, we found that, with an FDR < 10%, only one of 
the 17 functional categories enriched for different cancer PB 
DE genes, was enriched for the DE genes identified in CD4+ T 
cells of cancer patients compared to normal CD4+ T cells. 
Similarly, only one of the 55 functional categories enriched for  
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TABLE II.  SIGNIFICANT GO TERMS CONSISTENTLY ENRICHED IN 

VARIOUS CANCER DATASETS 

Gene list GO term name 

up-

regulated 
genes 

Immunization module 

immune system process; response to stress; defense response; 
regulation of body fluid levels; cell activation; hemostasis; 

coagulation; blood coagulation 

Membrane organization module 

membrane organization; cellular membrane organization 

Localization module 

Transport; vesicle-mediated transport; cellular localization; 
establishment of localization in cell 

Catabolic process module 

catabolic process; cellular catabolic process; carbohydrate 
catabolic process 

down-

regulated 
genes 

Cellular component module 
cellular protein complex disassembly; protein complex 
disassembly; macromolecular complex disassembly; cellular 

macromolecular complex disassembly; cellular component 

disassembly; cellular catabolic process; macromolecular 
complex subunit organization; ribonucleoprotein complex 

biogenesis; cellular component biogenesis at cellular level; 

cellular component organization or biogenesis at cellular level; 

cellular component disassembly at cellular level; cellular 

macromolecular complex subunit organization 

Gene expression/translation module 

nuclear mRNA splicing, via spliceosome; RNA splicing, via 

transesterification reactions with bulged adenosine as 

nucleophile; RNA splicing, via transesterification reactions; 
mRNA processing; RNA splicing; RNA processing; mRNA 

metabolic process; rRNA processing; rRNA metabolic process; 

ncRNA processing; ncRNA metabolic process; translational 
elongation; translational termination; translation; ribosome 

biogenesis; gene expression 

Cellular metabolic process module 

cellular macromolecule biosynthetic process; cellular protein 

metabolic process; nucleic acid metabolic process; cellular 

macromolecule metabolic process; protein metabolic process; 
nucleobase, nucleoside, nucleotide and nucleic acid metabolic 

process; macromolecule metabolic process; cellular nitrogen 

compound metabolic process; nitrogen compound metabolic 
process; primary metabolic process; cellular metabolic process; 

metabolic process 

Viral reproduction module 

viral transcription; viral genome expression; viral infectious 

cycle; cellular process involved in reproduction; viral 

reproductive process; viral reproduction 

Single-multicellular organism process module 

endocrine pancreas development; pancreas development; 

endocrine system development; sensory perception of 
chemical stimulus; sensory perception of smell; sensory 

perception; neurological system process; system process; 

multicellular organismal process 

down-regulated cancer PB genes was identified as significant 
by DE genes for CD4+ T cells. As these 72 functional 
categories were all enriched for the DE genes between 
myeloid-origin and lymphoid-origin cells and rarely enriched 
for the DE genes between cancer and normal CD4+ T cells, we 
suggested the possibility that the functional categories 
identified in cancer PB gene expression profiles were not 
reflective of the blood cell-intrinsic expression changes but the 
the changes in proportions of myeloid-origin and lymphoid-
origin cells. Therefore, when interpreting the functional 
categories enriched for PB cancer DE genes, simply 
interpreting the biological processes enriched by DE genes 
identified from cancer PB to have connection to cancer directly 
might be improper. 

A schematic overview of the research designs is 
represented in Fig.2. 

 

Fig. 2. Schematic overview of the research designs. 

IV. DISCUSSION 

The functional enrichment analysis is often applied after 
identifying differentially expressed genes for cancer in human 
peripheral blood, for which the expression signals are mainly 
derived from leukocytes. However, as revealed in this paper, 
the functional categories consistently identified by different 
cancer PB DE genes were all disturbed by the DE genes 
between myeloid-origin and lymphoid-origin cells rather than 
the DE genes identified for the CD4+ T cells, indicating that 
these functional categories observed in PB were more likely to 
reflect the changes in blood cell populations. Therefore, the 
interpretation of enriched functional categories should not 
focus on leukocyte-specific gene expression alterations as 
significant functional categories observed in PB are probably 
disturbed by changes in the cell proportion. 

We also showed that the consistent DE genes detected from 
colorectal and lung cancer PB datasets had the same directions 
of regulation as in myeloid-origin compared to lymphoid-
origin cells, indicating the expression patterns of genes in 
cancer PB were more likely to reflect the shifts in cell 
populations of myeloid-origin and lymphoid-origin cells. 
Notably, similar population shifts in blood cells have also been 
observed in many inflammation-associated disease [21]. As has 
been discussed by many researchers, age, body mass, sex, 
smoking, drinking and inflammatory status could influence 
gene expression in blood [22]. Promising translational 
biomarkers developed from blood samples should be stable to 
the biological variations. Therefore, the applicable blood 
biomarkers for cancer should be able to distinguish cancer 
from inflammation related disease samples especially those 
inflammation diseases occurred in the same organ, and stable 
to biological variations, which deserve further investigation. 
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