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Abstract—Detecting aberrant DNA methylation as diagnostic 

or prognostic biomarkers for cancer has been a topic of 

considerable interest recently. However, current classifiers based 

on absolute methylation values detected from a cohort of samples 

are typically difficult to be transferable to other cohorts of 

samples. Here, we employed a modified rank-based method to 

extract pairs of CpG sites with reversal relative DNA methylation 

levels in disease samples to those in normal controls for five 

cancer types respectively. The reversal pairs showed excellent 

prediction performance with the accuracy above 95% for each 

type of cancer. Furthermore, the reversal pairs identified for a 

cancer type could distinguish samples with different subtypes 

and different malignant stages including early stage of this 

cancer from normal controls and were also specific to this cancer. 

In conclusion, the reversal pairs detected by the rank-based 

method are accurate and transferable to independent cohorts of 

samples, which are also applicable to early cancer diagnosis. 

They could also be used to detect common molecular alterations 

in cancer, which can shed light on the other follow-up studies. 
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I.  INTRODUCTION 

Aberrant DNA methylation in cancer, including global 
hypomethylation and local hypermethylation of certain genes, 
is one of the common forms of molecular alterations in 
carcinogenesis [1]. It has been recognized that DNA-based 
molecular biomarkers, such as DNA methylation, are readily 
amplifiable and easily transferable from a research laboratory 

setting into routine diagnostics in a clinical trials [2]. 

Therefore, many researchers have tried to detect aberrant DNA 
methylation as diagnostic or prognostic biomarkers for various 
types of cancer in the past few years [2-4]. However, the 
transferability of many detected biomarkers usually lack of 
validation in independent datasets. On the other hand, 
classifiers constructed by using machine learning methods, 
such as support vector machine (SVM) [5] and artificial neural 
networks [6], are difficult to interpret biological meaning 
according to the rules of classification and hardly transferable 
to independent experiments. Thus, it is necessary to find a way 
to extract the methylation patterns with readily interpretable 
rules that can accurately discriminate tumor and normal 

samples from methylation profiles. The relative expression-
based method for finding disease biomarkers entirely based on 
pairs of genes with relative expression values in disease 
samples reversal to those in the controls. Comparing with other 
machine learning methods, this parameter-free method can 
avoid data over-fitting and classifiers obtained by this method 
are biologically interpretable, transferable, and invariable to 
any monotonic transformation of the data [7-8]. It has been 
used in array-based gene expression successfully. However, 
whether this relative ordering of genes can be applied to 
analyze DNA methylation data has not yet been evaluated. 

Thus, in this study, based on DNA methylation profiles 
collected from TCGA (the Cancer Genome Atlas, http://tcga-
data.nci.nih.gov/tcga) database, we employed the rank-based 
methods to detect the relative methylation level reversal pairs 
(R-pairs) between normal and tumor tissue samples as 
candidate marker pairs. Then, we identified the most 
discriminatory R-pairs by considering the top CpG sites with 
highest appearance frequencies in all candidate marker pairs. 
For simplicity, we only focused on the top 11 R-pairs (FR-pairs) 
involved 11 CpG sites with the highest appearance frequencies 
in all candidate marker pairs. The FR-pairs identified for each 
cancer type performed well in testing sets for the same cancer 
types and also in validation sets from other independent 
experiments. Moreover, they also performed well in 
distinguishing samples with different subtypes and different 
malignant degrees for the same cancer types from normal 
controls. Validation on DNA methylation profiles from 
different cancer types showed that the FR-pairs were specific to 
cancer type. 

II. MATERIAL AND METHODS 

A. Datasets 

The DNA methylation profiles analyzed in this study were 
downloaded from the Gene Expression Omnibus (GEO) [9] 
and TCGA database. Detailed dataset information was 
described in Table I. All profiles were generated using the 
Human Methylation27 Bead Array (San Diego, CA, USA), 
targeting 27578 CpG sites located in promoter regions of 
unique 14495 genes. For the datasets collected from TCGA, 
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TABLE I.  METHYLATION DATASETS USED IN THIS STUDY 

Cancer Type Abbreviation 
Sample Size 

Data Source 
Normal Tumor 

Lung 
adenocarcinoma 

LUAD 24 127 TCGA 

Kidney renal clear 

cell carcinom 
KIRC 199 219 TCGA 

Colon 

adenocarcinoma 
COAD 37 167 TCGA 

Stomach 
adenocarcinoma 

STAD 57 80 TCGA 

Breast invasive 

carcinoma 
BRCA 27 315 TCGA 

Lung squamous 

cell carcinoma 
LUSC 27 133 TCGA 

Kidney renal 
papillary cell 

carcinoma 

KIRP 5 16 TCGA 

colorectal cancer CRC44 22 22 GEO(GSE17648) 

gastric cancer GAC75 32 43 GEO(GSE25869) 

Breast cancer BRC248 12 236 GEO(GSE20713) 

 

only level 2 data were used, which included methylated signal 
intensity (M) and unmethylated signal intensity (U) for each 
probe. For each CpG site, the methylation level, denoted as a 

beta-value (


), was calculated as below [10]: 
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Each of the five cancer datasets, namely lung 
adenocarcinoma (LUAD), kidney renal clear cell carcinoma 
(KIRC), colon adenocarcinoma (COAD), stomach 
adenocarcinoma (STAD) and breast invasive carcinoma 
(BRCA), was divided into two subsets according to the batch 
ID provided by the TCGA database: the batch comprising of 
normal and cancer samples with the largest normal and cancer 
sample sizes as training set and the remaining batches as 
testing set (Table SI). Apart from these five cancer datasets, the 
remaining datasets used as validation sets. 

B. Detection of R-pairs 

For each training dataset for each of the five cancer types, 
we determined the relative methylation level reversal pair (R-
pair) based on the TSP method [7]. For a given dataset, the 
methylation profiles can be represented as a matrix A with 
dimension NM  , where M represents the number of CpG sites 

and N represents the number of profiles. A profile either 
belongs to class1 (normal samples) or class2 (tumor samples) 

and could be denoted as  Mi  ,...,...,1 , where i  

represent the methylation level for CpG site i. If the 
methylation levels of two CpG sites, k and j, satisfied that the 

probability of 
jk   in class1 significantly differed from 

that in class2, these two CpG sites can be considered as R-pair. 

Suppose there are N1 samples in class1 and N2 samples in 

class2 (N1+N2=N). For a R-pair (k, j), if jk    was 

observed in a samples in class1 and b samples in class2, then 

the difference in probability of jk   between class1 and 

class2 for Pair (k, j) can be calculated by (2): 
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For each Pair (k, j), another score was used to measure the 

average rank difference ( avgR ) between CpG site k and site 

j from class1 to class2, which was calculated by (3): 
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where N1 and N2 represent the number of profiles in class1 

and class2, respectively. knR , , knR , , imR , , jmR ,  represent the 

rank of site k (or j) in the n-th and m-th profile of class1 and 
class2 respectively. 

C.  Selection of R-pairs as markers 

In the process of selecting marker R-pairs for each type of 
cancer, we first selected the K CpG sites with the highest 
appearance frequencies in all R-pairs. Then, for each of the K 
CpG sites, a CpG site was selected and paired to obtain a R-
pair according to the following rules: for a CpG site j in K CpG 
sites, a site i was selected if the Pair (i, j) had the maximum 

avgR  score among all possible pairs composed of site j. If 

site i was in K CpG sites or had already been selected by other 
CpG sites in K CpG sites, then deleted Pair (i, j) from all 
possible pairs and selected the site according to the rule again. 

D.  Prediction rules 

For a given methylation profile X , we can predict its class 

label by the following rules: first, for each selected marker R-

pairs (i, j), if  2)1( classsPclassP ijij  , then the class label 

of X can be assigned as (4) 
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else if  2)1( classsPclassP ijij  , the class label of X can be 

assigned as (5) 
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where ix and jx  represent the methylation level of CpG site i 

and CpG site j, respectively. For k R-pairs, if more R-pairs vote 

class1 than class2, then classified the profile X to class1, 

otherwise, classified this profile to class2. The specificity, 

sensitivity and accuracy defined as below were used to assess 

the prediction performance. 
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Where TP, TN, FP and FN indicate the number of true positive, 

true negative, false positive and false negative predictions, 

respectively. 

III. RESULT 

A.  Selection R-pairs for five cancer types 

For each training set for COAD, BRCA, KIRC, LUAD and 

STAD, we detected R-pairs with P  > 95% for STAD (only 

one R-pair was obtained with P at 100%) and 100% for the 
other four cancer types respectively, resulting in 803395, 4674, 
802, 10873 and 89 R-pairs, respectively. We found that, in 
each training dataset of five cancer types, the methylation 
levels of CpG sites involved in R-pairs were significantly 
higher than the methylation levels of CpG sites excluded in R-
pairs (all p<=0.01, Wilcoxon ranksum test [11]; supplementary 
Fig.S1). The R-pairs involving the CpG sites with high 
appearance frequency pairs might be more suitable to be 
marker pairs. For example, as shown in Fig.1, the appearance 
frequencies of CpG sites involved in the R-pairs identified for 
COAD significantly correlated with the average differences of 
methylation levels between normal and tumor samples 

(Pearson coefficient: r=0.7574 and p<1.0×10-16). Thus, when 

we selected the top scoring pairs, which were composed of 
CpG sites with the highest appearance frequencies in all R-
pairs (See method). For simplicity, the top 11 R-pairs (referred 
to as FR-pairs) involving 11 CpG sites with the highest 
appearance frequencies were selected as biomarkers for each 
cancer type. Then, the FR-pairs were tested on the testing set 
for each cancer type using majority vote rules. As shown in 
Fig.2a, the smallest percentage of correct classification was 
above 95%. Comparing with the top 11 R-pairs selected by the 

method of kTSP only according to P  and avgR scores 

(Fig.2b), the FR-pairs had better prediction performance. Then, 
we compared the performance of the R-pairs to the 
performance of classifier constructed by traditional classify 
algorithms including k-nearest neighbors (KNN) and SVM. 
The classifier was constructed based on the top 100 most 
significantly methylated CpG sites between normal and tumor 
samples identified for each training dataset. Table SII showed 

that the performance of FR-pairs was better than the 
performance of KNN classifier and were comparable to the 
performance of SVM classifier on testing datasets (Table SI). 
Although the KNN and SVM classifier has good classification 
performance in distinguishing tumor and normal samples from 
the same data source (training sets and testing sets were all 
from TCGA ) respectively, they may have worse transferability 
comparing to the R-pairs. The results indicated that FR-pairs 
could serve as effective signatures to distinguish cancer from 
normal samples. 

B. Validation of FR-pairs  

The FR-pairs identified for COAD could discriminate 
tumor samples from normal controls in dataset CRC44, which 
was from a different study, with a classification accuracy of 
100%. Similarly, we also found that the FR-pairs identified for 
STAD and BRCA can discriminate the tumor samples in 
GAS75 and BRC248 from normal controls respectively with 
an accuracy more than 90% (Fig.3a). These results indicated 
that the R-pairs were insensitive to data source and FR-pairs 
might be transferable to different experimental datasets. 

 

Fig. 1. Correlation between the appearance frequencies of CpG sites in R-

pairs and differences of average beta-values between normal and cancer 
samples. X axis represents the frequencies of CpG sites involved in all 

detected R-pairs and Y axis represents the average differences of beta-values 

between normal and cancer samples for CpG sites having the same frequency 
in R-pairs. 

 

Fig. 2. Comparison of prediction performance between FR-pairs and R-pairs 

selected by k-TSP. a. The prediction performance of FR-pairs; b. The 
prediction performance of R-pairs selected by kTSP. 

2014 The 8th International Conference on Systems Biology (ISB)
978-1-4799-7294-4/14/$31.00 ©2014 IEEE

103 Qingdao, China, October 24–27, 2014



 

Fig. 3. Performance of R-pairs in independent datasets. a. The prediction 
performance of FR-pairs; b. The predication performance of R-pairs selected 

by kTSP. 

Additionally, as shown in Fig.3b, the prediction performance 
of FR-pairs was better than R-pairs selected by kTSP in each 
cancer dataset. 

The FR-pairs identified for a cancer type also performed 
well for different subtypes of the same cancer. For example, 
the FR-pairs selected for LUAD could also accurately predict 
the samples in Lung squamous cell carcinoma (LUSC), which 
is subtype of the non-small-cell lung carcinoma (Fig.3a), with 
the accuracy almost approaching 100%. For the validation 
dataset KIRP, which was composed of five normal samples and 
16 kidney renal papillary cell carcinoma samples, only one 
normal sample was misclassified by FR-pairs obtained from 
KIRC. The results showed that the FR-pairs might grasp the 
common alterations of DNA methylation in different subtypes 
of the same cancer originating from different parts of the same 
tissue (LUAD and LUSC), or from different cell types (KIRC 
and KIRP). 

The FR-pairs identified for a cancer type could discriminate 
samples of different degrees of malignancy for the same cancer 
type from normal controls. The BRC248 dataset includes 118 
samples with the degrees of malignancy from stage 1 to stage 3 
and 12 normal samples, which also includes 118 samples with 
four subtypes of breast cancer. The FR-pairs detected for 
BRCA showed a classification accuracy above 98% for all 248 
samples (Fig.3a). The result validated that the FR-pairs could 
grasp common alterations of DNA methylation in different 
subtypes of the same cancer and also indicated that DNA 
methylation alterations might emerged in an early stage of 
cancer [12-14]. These results implied the FR-pairs might sever 
as biomarkers for early cancer diagnosis. 

 

Fig. 4. Performance of FR-pairs in different types of cancer 

 

Fig. 5. The classification performance of multiple R-pairs detected from 

STAD by vote majority rule  

Notably, the identified FR-pairs were specific to each 
cancer type. When using the FR-pairs identified for KIRC to 
classify the other four cancer type (STAD, COAD, LUAD, 
BRCA), the highest specificity is less than 20%. Similar results 
were observed for FR-pairs selected for each of the other four 
cancer types (Fig.4). These results indicated that DNA 
methylation alterations might have cancer specificity. 

IV. DISCUSSION 

In this study, relative methylation level reverse pairs were 

detected from five cancer types respectively based on a simple 

rank based method. Especially, for each cancer type, the FR-

pairs selected from the corresponding R-pairs performed well 

on discriminating normal and tumor samples. However, not all 

R-pairs were effective in classification. For instance, The R-

pair (cg14242042, cg14012294), detected from the training set 

of COAD with only 24 samples, had poor classification 

performance in test dataset with specificity of 19%. Several 

factors could affect the performance. The small sample size in 

training set might lead to the identification of only a fraction of 

DNA methylation alterations in the general population. As 

sample size increases, such a R-pair might not be detected due 

to a low score of P . The susceptibility of DNA methylation 

to environment, diet and aging  might be another factor [15-16]. 

Additionally, other various biological and technical factors can 

also influence the relative order of two CpG sites. In particular, 

it has been reported that samples coming from different batches 

in datasets collected from TCGA might have batch effects[17]. 

Fortunately, using multiple R-pairs rather than a single pair 

may eliminate the influence caused by these factors. As shown 

in Fig.5, as the number of marker pairs increased the prediction 

performance increased. Specifically, when using more than 9 

R-pairs detected from STAD, the accuracy approached 100%. 

The FR-pairs could be biomarkers for cancer diagnosis as 

they could grasp the biological difference between normal and 

tumor samples. For example, the FR-pairs obtained from 

COAD involved 22 unique genes, which were all statistically 

significant (Wilcoxon rank sum test [11], with false discovery 

rate (FDR) [18] less than 0.05) differential methylated between 

normal and tumor samples. The methylation levels of CpG 

sites in column 1 of Table II were significantly up-regulated 

while in column 3 of Table II were significantly down-

regulated when comparing tumor samples with normal samples. 
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TABLE II.  FR-PAIRS IN COAD 

Probe ID1 Gene symbol1 ProbeID2 Gene symbol2 

cg15087147 LRRC4 cg26189983 TNFRSF1B 
cg14242042 SOX5 cg14012294 BTF3 

cg05714219 GALNT14 cg06627364 MGC4677 

cg12874092 VIM cg16120811 WEE1 
cg04034767 GRASP cg05445326 TM4SF19 

cg07748540 PDGFD cg25903497 TMBIM1 

cg17872757 FLI1 cg06462291 NT5DC3 
cg24446548 TWIST1 cg07903860 DCLRE1C 

cg08190044 ATP8B2 cg08696192 TNS4 

cg07570142 MOXD1 cg14547335 ATP2B2 
cg05436658 PRKCB1 cg18289156 FLJ37357 

Of the 11 CpG sites involved in FR-pairs (column 1 of Table 

II), six sites were annotated to genes (LRRC4, SOX5, VIM, 

FLI1, TVIST1 and PRKCB1) that have been reported to be 

hypermethylated in colon cancer and already considered as 

candidate biomarkers by other studies respectively [19-24]. As 

DNA methylation is sensitive to environmental influence, diet 

and aging and many other factors [15-16], different 

experiments may find different aberrant methylated CpG sites. 

For example, all CpG sites listed in Table II were found to be 

differentially methylated in COAD training dataset. However, 

three of them were not significantly differentially methylated in 

CRC44 dataset. When considering the relative methylation 

levels, we found that the P of the three FR-pairs each 

involving one of the three CpG sites were 0.772，0.818 and 

0.909 in CRC44, indicating that these three CpG sites could be 

putative biomarkers in CRC44 dataset from the point of view 

of relative methylation levels. For another example, the 

specificity of KNN and SVM classifier constructed from 

BRCA on validation set BRC248, which were collected from 

GEO, were only 0.533 and 0.615 respectively. In contrast, the 

specificity of FR-pairs on BRC248 was 1, suggesting that the 

R-pairs may have higher transferable ability. This result 

indicated that it could be more stable to identify candidate 

biomarkers by considering relative methylation levels of two 

CpG sites than considering the individual CpG sites. 

We have shown that the FR-pairs could capture the 

common alterations in different subtypes of the same cancer 

when compared with normal samples and had cancer 

specificity. In fact, different alterations in different subtypes of 

the same cancer types could also be detected by the rank-based 

methods. For instance, 841 R-pairs that could be detected 

between 127 LUAD and 133 LUSC tumor samples with cutoff 

of P  at 0.8, indicating the relative methylation levels of CpG 

sites involved in each of these R-pairs were reversal in at least 

80% of LUSC tumor samples comparing to LUAD tumor 

samples. Similar result was also observed in KIRC and KIRP, 

where 28024 R-pairs were detected from 235 tumor samples 

composed of 219 KIRC and 16 KIRP samples, In the same 

way, we integrated the training set of five cancer types (Table 

SI) as a new training dataset to detect the common DNA 

methylation alteration patterns in different cancer types 

comparing with normal samples, for which 128 R-pairs were 

detected with P  > 0.8. Then, the new testing set, which 

involving 201 normal samples and 724 tumor samples, were 

classified by the top 11 of the 128 detected R-pairs with an 

accuracy of 97.5%. The result indicated that R-pairs can not 

only serve as biomarkers for cancer diagnosis but also detect 

common molecular alterations in cancer, which can shed light 

on the other follow-up studies such as drug target identification 

and mechanism of carcinogenesis. 
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