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Abstract—pathway analysis plays an important role in 
exploring underlying connections between genomic data and 
complex diseases. In this paper, we propose a gene link–based 
method for identification of differentially expressed gene 
pathways. By viewing gene links in a pathway as a Markov chain, 
the proposed method first develops a gene link Markov chain 
model (MCM) and devises a Markov chain model-based 
classification rule to measure the biological importance of a gene 
link. Then, the expression difference of a pathway is estimated 
based on all the gene links in the pathway using the gene link 
MCM. The use of gene links, instead of individual genes, allows 
for exploring pathway topology that is crucial to pathway activity 
in cells. Results on two real-world gene expression data sets 
demonstrate that the effectiveness and efficiency of the proposed 
method in identifying differential gene pathways. 

Keywords—Pathway analysis; Markov chain Model; Gene link; 
Cancer clssification 

I.  INTRODUCTION  
Molecular processes are responsible for the manifestation 

or development of caner or other diseases [1, 2]. So, it is 
crucial to connect molecular processes to cancerous state of 
cells for deciphering tumorigenesis [3]. Over the past decades, 
a tremendous amount of high-throughput biological data 
(HTBD), including deep sequencing data and microarray data, 
have been generated and accumulated. To mine cancer-related 
biological knowledge, a number of computational methods 
have been developed to analyze the genomic data. Many of 
them aimed to identify differentially expressed genes (DEG) 
between different conditions, for example, the approaches 
based on univariate or multivariate statistics [4-8]. However, 
these methods fail to take advantage of prior biological 
knowledge available in online databases, such as Gene 
Ontology (GO) or Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [9, 10], thus making the results less 
reproducible and biologically interpretable [11-13]. 
Biologically, genes co-function together in cells. Prior 
knowledge about gene networks, e.g., gene pathways, can 

benefit analyzing HTBD in a biologically meaningful way. 
Pathway analysis allows investigators to identify differential 
expressed pathways and are more explanatory than a list of 
differently expressed genes [14].  

Although a number of pathway analysis methods have 
been developed, most of them equally treat genes in a pathway 
and ignore the structure information embedded in the pathway 
networks. Behind these methods, one of important 
philosophies commonly followed is counting differentially 
expressed genes and estimating the significance of a pathway 
against a list of differentially expressed genes using statistical 
hypothesis test methods, e.g., Fisher’s exact test [15, 16]. 
Obviously, such kind of methods need to pre-define a list of 
DEGs and as a result, the performance heavily depends on the 
value of the cutoff parameter that is chosen for the selection of 
DEGs. Subramanian et al [17] creatively proposed a pathway-
level statistic, GSEA, to overcome the shortcoming. The idea 
behind GSEA has been followed by many pathway analysis 
methods. Such pathway-level methods generally employed 
three main steps: 1) Calculating the association of each gene's 
expression pattern with phenotype by t-statistics or correlation 
measures; 2) Mapping pathway genes and computing 
pathway-level enrichment evidence scores based on the 
association scores of the pathway genes; 3) Estimating 
the significance of each pathway based on empirical 
distribution of the statistic or a permutation test. Because these 
methods do not consider the pathway topology, they are not 
perfect and especially, they will produce a same result for 
pathways that have a same gene set but different topological 
structures [18].  

Recent studies showed that incorporating pathway 
topology can lead to better performance of pathway analysis. 
Pathway topological structure is basically composed of 
directed gene links. Some methods have been proposed to 
incorporate topological information into gene-level statistics 
for testing the significance of pathways. For example, 
Rahnenfuhrer et al [19] developed ScorePAGE by considering 
the similarity (e.g., correlation, covariance, etc.) between 
genes in a pathway. Gao and Wang [20] proposed to 
incorporate second-order information of gene expression to 
formulate a pathway connectivity index (PCI) of pathway 
activity. The TAPPA method was motivated by the molecular 
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connectivity concept in chemoinformatics. Gene connectivity 
over pairs of genes in a pathway was summarized to formulate 
the PCI statistic. TAPPA finally estimated the significance of 
association between a pathway and a phenotype based on PCI 
using Mann-Whitney test. Another representative method is 
the Bayesian Pathway Analysis (BPA) method recently 
proposed in [21, 22]. In BPA, a biological pathway was 
modeled as a Bayesian network (BN) after merging repeating 
entries and deleting cyclicity. BPA preserves gene 
dependencies entailed by the original pathway. The resulted 
BN, as a graphical representation of gene interactions rendered 
by the given pathway, was dealt with using non-informal, 
uniform belief priors. BPA can quantify the degree to which 
observed experimental data fit a given BN using Bayesian 
Dirichlet equivalent (BDe) score and estimate the statistical 
significance of pathways by testing it against randomization 
via bootstrapping.  

Considering that pathway is in nature a set of gene links 
that represent various gene associations (binding, inhibition, 
activation, etc.), we propose to estimate the expression 
difference of a pathway based on gene links for pathway 
analysis. Biologically, gene links are directed and reflect 
cause-and-effect or time-dependent processes, and can 
dynamically change along with time and biological conditions. 
Inspired by this, we employed random process theory, Markov 
chain model, to model gene links for pathway analysis. Briefly, 
we model a gene link as a Markov chain, by viewing genes to 
be time tags, to make inference of the activity of pathway gene 
links in some cellular state. As integral parts of a pathway, 
gene links can contain subtle but consistent changes in 
pathway activity. To estimate the significance of a pathway, a 
permutation test is also devised based on random gene pairs. 
We evaluated the method on two publicly available gene 
expression data sets, liver cancer data [23] and ALL data [24]. 

II. METHODS 

A. Markov chain-based modeling of gene link 

1) Markov chain model  
In statistics, a Markov chain is defined as a stochastic 

process with Markov property, in which next state depends 
only on the current state but is not related with any previous 
event on the time sequence [25]. Such a Markov chain can be 
mathematically modeled by Markov chain model (MCM). 
Generally, a MCM consists of three quantities, i.e., a state set, 
initial state distribution and state transition probability matrix. 
Given a MCM, one can estimate the occurring probability of 
an observed Markov chain. There are two types of Markov 
chain, stationary and non-stationary Markov chain. In 
stationary Markov chain, it assumes that the transition 
probability matrix is the same at any transition time, but not 
the case for non-stationary Markov chain. The division into 
stationary and non-stationary Markov chains only makes sense 
to Markov chains with 3 or more time tags. 

2) Gene link MCM 
By viewing gene sequence as a time sequence, we model 

gene links in a pathway as a Markov chain of length two, 

similar to that for gene chains in [26]. Given continuous gene 
expression values, we first use the biology-constrained 
discretization method [28] to discretize them into three states: 
down-regulated (-1), non-significantly regulated (0) and up-
regulated (1), which constitute the state set S={-1,0,1} for a 
gene link MCM.  

Now assume a gene link l with a starting gene g1 and an 
ending gene g2. Given a training set of size w, we estimate the 
initial state distribution of l, denoted by P0(x), by summarizing 
the proportion of each state x at the starting gene g1 over the 
training set, i.e., 
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where xk,1 represents the expression state of gene g1 in sample 
k and I is an indicator function yielding 1 if the condition is 
true and 0 otherwise. Let x and y represent two any states, 
where x,y∈S, respectively, the probability of the transition 
from x to y, denoted by P(y|x), can be estimated as follows:  
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where xk,1 and xk,2 are the states of genes g1 and g2 in the 
sample k. By varying x and y, we can obtain all 3×3=9 state 
transition probabilities and form a state transition probability 
matrix M [3×3] for the gene link MCM. 

Consider that a sample s with expression state values (x1, 
x2) for the two genes, g1 and g2. According to the Markov 
property, the likelihood P(s) that the sample comes from the 
gene link MCM can be estimated as a joint probability of the 
observed states xi, i=1, 2, i.e. , 

 1 2
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where P0(x1) and P(x2|x1) are the initial state probability of x1 
and the probability of the state x1 of gene g1 transiting to x2 of 
gene g2, respectively, both of which can be obtained by Eqs. 
(1)-(2) respectively. Fig.1 shows the schematic framework of 
the gene link MCM. 

3) Gene link MCM -based cancer classification 
Consider K classes labeled as C1, C2…CK respectively, and 

let MCMk represent the gene link MCM for class k by Eqs. (1)
-(2). Given a test sample, the probability Pk, k=1,2,…,K, that 
the sample comes from class k can be estimated by Eq.(3), and 
then the test sample can be classified to class c with the 
maximum occurring probability, i.e., 
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Fig. 1. Schematic illustration of the gene link MCM 

B. Classification power-based representation of gene links  
To overcome overfitting induced by small sample size of 

microarray data sets, we adopt 10-fold cross–validation (CV) 
to evaluate the classification performance of a gene link. In the 
10-fold cross-validation, the whole dataset is randomly 
divided into ten folds, and each fold is in turn as testing set 
and the rest as training set for learning a MCM classifier by 
Eq.(4). We repeat the CV procedure 20 times and average the 
resulted accuraciesas an overall performance of the gene link, 
denoted by ACC.  

To assess the statistical significance of an observed ACC, 
we devise the following permutation test to calculate a p-value: 
Randomly shuffling both the class labels of samples and the 
two genes of the link B=1000 times and calculating a 10-fold 
cross-validation accuracy based on MCM classifier for the 
permutated gene link. As a result, B permutated ACC (rACC) 
can be obtained. These rACCs represent the classification 
accuracies under null distribution. Based on the B rACCs, a p-
value for an observed ACC can be calculated as 

 
1
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B
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j
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where rACCj is the jth rACC. 

C. Gene links-based identfication of differential pathways 
To measure the differential expression of a pathway, we 

formulate a pathway-level statistic based on gene links. 
Assuming K gene links in a pathway, a pathway score (PS) 
can be defined as the mean of ACCs over these links, i.e., 
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The pathway score reflects the discriminative power of the 
whole pathways and can be taken as a pathway-level statistic 
for measuring the expression difference of the pathway. We 
then devise a permutation test to estimate the significance of 
an observed PS. We consider a null hypothesis that all the 
links within a pathway are non-discriminative. To simulate the 
null distribution, we randomly sample a same number (K) of 
gene pairs as that of gene links in the pathway to constitute a 
permutated pathway, and randomly shuffle the class labels of 
samples to calculate the PS for the permutated pathway by Eqs. 
(1)-(5). Assuming Z=1000 permutated pathways, the p-value 
for an observed pathway ps can be estimated as 
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where PSi, i=1, 2, ... Z, denotes the PS of the ith permutated 
pathway. 

III. RESULTS  

A. Datasets 
To evaluate the proposed method, we collected two 

benchmark gene expression data sets: liver cancer dataset [23] 
and ALL dataset [24]. In the liver cancer data, the samples are 
divided into two groups: one consisting of patients suffering 
from early intrahepatic recurrence (n=20, REC) and the other 
patients free from recurrence (n=40, NREC). Each sample 
consists of the expression levels of ~7129 genes. The ALL 
dataset characterizes acute lymphocytic leukemia (ALL) cells 
associated with known genotypic abnormalities in adult 
patients, and contains 37 observations from one experimental 
condition (n1=37, BCR; presence of BCR/ABL gene 
rearrangement) and 42 from another experimental condition 
(n2=42, NEG; absence of rearrangement). In the ALL data set, 
each sample consists of the expression levels of ~11556 genes. 
Table I gives the descriptions of the two data sets. To apply 
the proposed gene link MCM, we first used the biology-
constrained discretization method (BCD) [28] to discretize the 
expression levels of genes into one of three regulatory states, 
down-regulated (-1), non-significantly regulated (0) and up-
regulated (1). 

TABLE I.  DESCRIPTIONS OF THE TWO DATASETS USED  

Dataset #Gene #Sample 
Class 1 Class 2 Total 

ALL ~11556 37(BCR) 42(NEG) 79 
Liver cancer ~7129 20(REC) 40(NREC ) 60 

 

Pathway information was collected from the KEGG 
database [http://www.kegg.jp/kegg/pathway.html]. A total 
number of 220 KEGG pathways were considered in the 
experiment. To apply the proposed method, we first 
decomposed each pathway into a set of gene links. Given a 
pathway, not all genes in it will be present in a data set. After 
manual examination, only 213 of the 220 pathways were 
found to have more than one gene link present in the liver 
cancer dataset and 218 pathways in the ALL dataset. Only 
these pathways were used in the analyses for the two datasets.  
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B. Gene links signficantly classify cancer  
For the 213 pathways, there are totally 15717 gene links 

present in the liver cancer data. We first calculated the 10-fold 
CV accuracies of these gene links based on gene link MCM 
classifier and estimated the significance by the permutation 
test in Eq.(5). Fig. 2 shows the cumulative probability 
distribution (CPD) of the p-values for the pathway gene links. 
For comparison, we randomly sampled a same number (15717) 
of gene pairs from the total genes. With randomly shuffled 
class labels, the ACCs of these random gene pairs were 
calculated and then their p-values. Ideally, random 
classification accuracies follow a normal distribution around 
0.5, and the CPD curve of p-values will approach the line y=x. 
From Fig. 2, it can be found that the observed CPD for the 
gene links is furthest away from the line y=x, showing that the 
pathway gene links tend to be more discriminative than by 
chance. The classification accuracies of the pathway links are 
significantly higher (p-value < 2.2e-16, according to t-test) 
than those of the random gene pairs. Similar results (24348 
pathway gene links, p-value < 2.2e-16 by t-test) were also 
observed on the ALL data, as shown in Fig. 2, confirming the 
discriminative power of pathway gene links.  

 

Fig. 2. The cumulative probability density (CPD) curve of the p-values of 
gene links in liver cancer dataset and ALL dataset. 

C. Identifying differentially expressed pathways based on 
gene links 
We next identified differentially expressed pathways for 

the liver cancer and the ALL data based on gene links. 

1) Identification of liver cancer recurrence-related 
pathways  

For the liver cancer data, totally 66 pathways were called 
significantly differentially expressed between the two liver 
cancer classes by our gene link method at an ad hoc p-value 
cutoff of 0.05. In contrast, at the same value of p-value cutoff, 
four previous methods, Global test [31, 32], WW test [33],  
LR[34] and TAPPA[20], identified very few significantly 

differentially expressed pathways, 9, 11, 8 and 36 for Global 
test, WW test, LR and TAPPA respectively, as listed in Table 
II. We further compared the CPD curves of p-values among 
our method and the four previous methods, as shown in Fig. 3, 
showing the stronger power of our method in identifying 
differentially expressed pathways. 

TABLE II.  NUMBERS OF SIGNIFICANTLY DIFFERENTIALLY EXPRESSED 
PATHWAYS (P-VALUE<0.05) BY OUR METHOD AND FOUR PREVIOUS METHODS  

Method Liver cancer data ALL data 

Our method 66 102 

Global test 9 136 

WW test 11 86 

LR 8 21 

TAPPA 36 12 

a

b

P-value

P-value

 

Fig. 3. Comparison of CPD curve of p-values among the four methods on the 
liver cancer (a) and ALL(b) data sets. 

Among the significant pathways identified by our methods, 
most were previously reported to be related to liver cancer, for 
example, p53 signaling pathway (p-value=0.012), 
Transcriptional misregulation in cancer (p-value=0.003) and 
Hepatitis B (p-value=0). These pathways, however, were not 
called to be significantly differentially expressed by the four 
previous methods. p53 signaling pathway consists of 68 genes. 
Of the 68 genes, 38 are present in the liver cancer data, which 
constitute 55 gene links. Fig. 4(a) shows the distribution of the 
classification accuracies of the 55 gene links against that by 
chance, indicating that the gene links tend to be more 
discriminative. Similar results were obtained for the 
Transcriptional misregulation in cancer and Hepatitis B 
pathways, as shown in Fig.4 (b-c). 
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ACC ACC ACC  

Fig. 4. Distributions of classification accuracies (ACC) of observed in p53 signaling pathway (a), Transcriptional misregulation in cancer  (b) and Hepatitis B (c) 
against by chance. 

472

7157

1026

 

Fig. 5. Distributions of significant links in P53 pathway. Genes involved in significant links are highlighted in red. 

Biologically, gene links that significantly classify the two 
liver classes tend to be important to the recurrence of liver 
cancer and potentially play crucial roles in pathway 
topological structure. We then overlaid the pathway gene links 
that were identified to be significantly discriminative (p-
value<0.05) onto the KEGG pathway map, as shown in Fig. 5 
for P53 pathway. From Fig. 5, it can be found that most of the 
significant links (10/11) involve p53 gene, which is in 
agreement with the importance of P53 in tumorigenesis. 
Especially, we can see that these significant links are closely 
associated with cancer-related responses, for example, 
“Apoptosis” that causes apoptosis and cell death of cells and 
“inhibition of angiogenesis and metastasis” , a cellular 
response that is closely related to cancer recurrence [35]. The 
11 significant gene links constitute several paths of length 3 or 

more genes. Take one of the paths (highlighted in red lines in 
the figure) as example.  We took the three genes (Entrez IDs 
472, 7157 and 1026) involved in the path and examined the 
distributions of their expression states in each of the two 
classes of liver cancer, as shown in Fig. 6. In Fig.6, “U”, “N”, 
and “U” represent three gene expression states, down-
regulated (-1), non-significantly regulated (0) and up-regulated 
(1), respectively, and the height of the letters represents the 
probability of the corresponding state occurring. This figure 
suggests the activity difference of the path in the two liver 
cancer subtypes. 

2) Identification of BCR/ABL gene rearrangement -
related pathways for the ALL data 

2014 The 8th International Conference on Systems Biology (ISB)
978-1-4799-7294-4/14/$31.00 ©2014 IEEE

100 Qingdao, China, October 24–27, 2014



 
Fig. 6. Distributions of the expression state of the three genes with Entrez IDs 472, 7157 and 1026 in the two class of liver cancer. 

TABLE III.  IDENTIFICATION RESULTS (√) OF THE NINE PATHWAYS INCLUDING BCR AND/OR ABL1 BY DIFFERENT METHODS ( 0.05P value− < )

PATHWAY Our method Global 
test 

WW 
test LR TAPPA clipper BPA SPIA GSEA 

ErbB signaling pathway          
Cell cycle √ √ √ √  √ √   
Axon guidance √ √ √ √  √    
Neurotrophin signaling pathway √ √ √ √  √    
Pathogenic Escherichia coli infection √ √ √   √  √ √ 
Shigellosis √ √    √    
Pathways in cancer √ √ √      √ 
Chronic myeloid leukemia √ √ √   √    
Viral myocarditis √ √ √ √  √  √  

 

For the ALL data, our methods and the four previous 
methods, Global test, WW test, LR and TAPPA, called 102, 
136, 86, 21 and 12 significantly expressed pathways at a p-
value cutoff of 0.05, respectively, as listed in Table II. It can 
be seen that the previous method, TAPPA, found very few 
differentially expressed pathways while Global test identified 
a very large number (136) of differentially expressed 
pathways. In contrast to these, our methods obtained a 
moderate result (102), which is close to the result of WW test 
(83). Fig.2 compares the CPDs of p-values among our method 
and the four previous methods for ALL dataset, confirming 
the competitive discovery power of the gene link method. 

Given the presence of the BCR/ABL chimera, it is 
expected that pathways including BCR and/or ABL1 will be 
impacted biologically. Among the total 218 pathways present 
in the ALL data, there are 9 pathways found to be BCR and/or 
ABL1-involved. Recently, Martini et al.[36] reported the 
identification results by Clipper [36], GSEA[17], SPIA[37] 
and BPA[38]. With a relaxed   p-value cutoff of 0.1, GSEA 
and SPIA identified 2 out of the 9 pathways and only one for 
BPA [38]. More surprisingly, none of the 9 pathways was 
identified by TAPPA. In contrast to these methods, our 
method as well as the global test method identified almost all 

the 9 related pathways (8), as shown in Table III, confirming 
the competitive power of our method in identifying 
differentially expressed pathways. What is worth of 
mentioning is that the global test method totally called far 
more (136) significant pathways (p-value<0.05) than that (102) 
by our method, as shown in Table II, which suggests that our 
method led to less false positives than those by the global test 
method. 

IV. CONCLUSIONS 
We have proposed a gene link-based approach for 

identifying differential pathways in microarray data analysis. 
The method takes advantage of gene links within a pathway to 
extract pathway topological information. To measure the 
importance of gene links, we modeled gene link using Markov 
chain model and then devised a gene link MCM classifier. 
Based on the discriminative performance of gene links, we 
then formulated a new statistic PS for measuring differential 
expression of a pathway, represented as the average accuracy 
over all the gene links in the pathway. The significance of 
differential expression of pathways is estimated using a 
permutation test. Experimental results on two real-world data 
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sets, liver cancer and ALL data sets, demonstrated the 
effectiveness and efficiency of the proposed method.  

We would like to note that the proposed method could 
suffer from the small sample problem inherent in microarray 
data and thus the learned gene link model be overfitted. In 
future, we will evaluate the method on simulation data sets 
and apply the method to more microarray or RNA-seq data 
sets for extensive evaluation.  
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