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Abstract—Modeling genetic regulatory networks is an
important issue in systems biology. Various models and
mathematical formalisms have been proposed in the literature
to solve the capture problem. The main purpose in this paper is
to show that the transition matrix generated under semi-tensor
product approach (Here we call it the probability structure
matrix for simplicity) and the traditional approach (Transition
probability matrix) are similar to each other. And we shall
discuss three important problems in Probabilistic Boolean
Networks (PBNs): the dynamic of a PBN, the steady-state
probability distribution and the inverse problem. Numerical
examples are given to show the validity of our theory. We shall
give a brief introduction to semi-tensor and its application.
After that we shall focus on the main results: to show the
similarity of these two matrices. Since the semi-tensor approach
gives a new way for interpreting a BN and therefore a
PBN, we expect that advanced algorithms can be developed if
one can describe the PBN through semi-tensor product approach.

Keywords: Boolean Networks (BNs), Semi-tensor Product Ap-
proach, Inverse Problem, Probabilistic Boolean Networks (PBNs),
Similar Matrices, Steady-state Distribution.

I. INTRODUCTION

Modeling genetic regulatory networks is one of the im-
portant topics in systems biology [7], [11]. A number of
models and mathematical formalisms have been proposed to
explain the genetic intersections, including linear models [19],
Bayesian networks [16] and its extensions, differential equa-
tions model [14], Boolean Networks (BNs) and its extension
Probabilistic Boolean Networks (PBNs) [17], [18]. BN and
PBN models are some of the most attractive models. BN
was first introduced by Kauffman [12], [13]. In a BN, the
expression states of the gene are categorized into levels, either
on (1) or off (0). The dynamics of a BN can be viewed as
a process that each gene is governed by a function (called
Boolean function). BN is called a deterministic model since
the target gene only depends on the initial state and the set
of Boolean functions. And a BN will eventually enter into
an attractor cycle, whose length could be either 1 (singleton
attractor) or more than 1 (periodic attractor). Finding the
attractor cycles and their features are important topics for a
BN. The attractor cycles in a BN may reveal some cancer
cells or abnormality in a cell. Thus finding the attractor cycles
and their features are of important topics in BN. Other research
problems and developments related to BNs can be found in

[1], [2], [10], [12], [13].
Shmulevich [17] pointed out that the holistic behavior of

the network should be studied because it is believed that
genes are not independent of each other. Based on a couple of
reasons (e.g. the limitation that BN is a deterministic model,
BN may only reveal part of the information while generating
to the next state, the desire for an open system and so on),
a stochastic version of BNs, namely, Probabilistic Boolean
Networks (PBNs) was proposed [17], [18]. It is based on the
appealing rule-based property of BN, but it also incorporates
with stochastic features. PBN owns a couple of advantages
over a BN, for example, it can cope with the uncertainty in the
data and the Boolean functions due to its stochastic nature. The
proportion of steady-state probabilistic distribution provides a
holistic picture of the network. It can also reveal whether the
genes are interacting with each other, and how they interact.

Cheng et al. [3], [4], [5] proposed an algebraic approach
called the semi-tensor product approach. And they successfully
applied their theory to BN problems and BN control problems,
see for instance [6]. Based on Cheng’s works, Yang and Li
also applied semi-tensor approach to PBN control problem-
s [22][23], however, they did not discuss much about the
theoretical support of applying semi-tensor product to PBN
control problems. In the semi-tensor product approach theory,
a mapping is defined from the gene expression state to the
column of identity matrix I2, where “true” equals to the first
column and “false” equals to the second column. Therefore
there is no logical functions and logical expressions in each
iteration step. Then, they define a kind of operation called
semi-tensor product, which is based on Kronecker product and
primitive product of matrices. The semi-tensor product shares
all the appealing properties with the primitive matrix product.
This can be easily shown under its definition. Hence BN can be
transformed into an algebraic form by multiplying all the BN
equations together. The most salient limitation of the semi-
tensor approach is it will take much effort in transforming
a BN into that form. But the flaws do not detract from the
jade’s essential beauty. Semi-tensor approach is a powerful
mathematical method and it also provides a new way for
dealing with genetic regulatory networks.

The main contribution of this paper is that we proved the
probability transition matrix and probability structure matrix
are similar matrices. Thus, semi-tensor product theory is
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applicable to PBN problems. For a given PBN, the transition
probability matrix generated from the two ways (the tradi-
tional one and using the semi-tensor technique) are different.
Actually, the transition matrix of a BN generated by the semi-
tensor product approach is called a structure matrix [5]. So
we call the probability transition matrix of a PBN generated
from the semi-tensor product approach probability structure
matrix. Here we try to find the relationship between them. We
can show that they are similar matrices, which is one of the
main results in this paper. Based on the similarity property of
these two matrices, we discuss three important problems in
studying a PBN: (i) the dynamics of a PBN, (ii) the steady-
state probability distribution and (iii) the inverse problem of
constructing a PBN.

The remainder of this paper is structured as follows. Section
2 gives a review on some important concepts of BNs and
PBNs. Section 3 presents about the main results on semi-tensor
product for PBNs, and we show that the two matrices are
similar. We propose three important problems in studying a
PBN in Section 4 and discuss their relationships in these two
approaches. The final section concludes the paper.

II. PRELIMINARIES

A. Boolean Networks and Probabilistic Boolean Networks

1) Boolean Networks (BNs): BN G(V, F ) is a special case
of a sequential dynamic system [15], consisting of a set of
binary nodes V (also called Boolean variables) such that each
of which has a Boolean function assigned to it. Suppose there
are n genes in the BN, F is the set of the Boolean functions
where

F = {f1, f2, . . . , fn}, fi : {0, 1}n → {0, 1}.

And V is the set of all the vertices, V = {v1, v2, . . . , vn}.
The value of vi represents the state of gene i, either 0 (on) or
1 (off). The dynamics of the BN can be expressed as

vi(t + 1) = fi(v1(t), v2(t), . . . , vn(t)) = fi(v(t)).

Here v(t) is called Gene Activity Profile (GAP). Since we
know that vi ∈ {0, 1}, the value of v(t) can be taken from

S = {00 . . . 0︸ ︷︷ ︸
n

, 00 . . . 1︸ ︷︷ ︸
n

, . . . , 11 . . . 1︸ ︷︷ ︸
n

}.

The size of set S is 2n.
2) Probabilistic Boolean Networks (PBNs): BN is a deter-

ministic model, the only randomness comes from its initial
state. However, in a biological system, noise and randomness
are usually unavoidable, and there always exists noise in
experimental data, so a stochastic model is more appropriate.
The concept and idea of a Probabilistic Boolean Network
(PBN) are introduced in order to capture the stochastic nature
of the biological system. A PBN is an open model where the
data and the Boolean functions can be changed in different
cases. The PBN model shares similar rules with a BN except
that more than a BN function is assigned to each gene.
Suppose li Boolean functions are assigned to gene vi, denoted

by f1
i , f2

i , . . . , f li
i . And the probability of choosing the jth

Boolean function is cj
i . This implies that

li∑

j=1

cj
i = 1, 0 < cj

i < 1, for i = 1, 2, . . . , n.

If we choose the jith Boolean function for gene vi, then the
BN can be expressed as BNj1j2...jn , where ji ∈ {1, 2, . . . , li}.
It can be seen that there are totally N =

∏n
i=1 li BNs.

And we assume that it is independent to choose the Boolean
function for each gene, so we have the probability of choosing
BNj1j2...jn given by

P{f1 = f j1
1 , f2 = f j2

2 , . . . , fn = f jn
n } =

n∏

i=1

cji

i = qj1j2...jn .

We use Aj1j2...,jn to denote the transition probability matrix
for BNj1j2...jn . And we use the compact form of j1j2 . . . jn,
then the BNs can be denoted by BN1, BN2, . . . , BNN . The
probability of choosing the jth BN is qj and the transition
probability matrix for the jth BN is Aj , j ∈ {1, 2, . . . , N}.
Then the probability transition matrix for the PBN is given by
A =

∑N
j=1 qjAj . Since

P{V(t + 1) = a|V(t) = b}
=

∑N
j=1{V(t + 1) = a|V(t) = b|the jth network is chosen}qj .

Example 1: This is an example of a PBN and its BNs.
The truth table of the PBN is given by

State f1
1 f1

2 f2
1 f2

2

1 00 0 0 1 1
2 01 1 0 0 1
3 10 0 1 0 1
4 11 1 1 0 0
ci
j 0.4 0.6 0.1 0.9

Based on the truth table, we have four BNs and they are
listed as follows:

A1 =




0 0 1 0
1 0 0 0
0 1 0 1
0 0 0 0


 A2 =




0 0 0 0
1 0 1 0
0 0 0 1
0 1 0 0




A3 =




0 1 0 0
1 0 0 0
0 0 1 1
0 0 0 0


 A4 =




0 0 0 0
1 1 0 0
0 0 0 1
0 0 1 0


 .

And we have q1 = c1
1c

2
1 = 0.04, q2 = c1

1c
2
2 = 0.36, q3 =

c1
2c

2
1 = 0.06, q4 = c1

2c
2
2 = 0.54, so the transition probability

matrix A is given by

A =
4∑

i=1

qiAi =




0 0.06 0.04 0
1 0.54 0.36 0
0 0.04 0.06 1
0 0.36 0.54 0


 .

2014 The 8th International Conference on Systems Biology (ISB)
978-1-4799-7294-4/14/$31.00 ©2014 IEEE

86 Qingdao, China, October 24–27, 2014



B. Semi-tensor product

The semi-tensor product is defined in the following.
Definition 1: (Cheng et al. [5]) Given an m × n matrix A

and a p × q matrix B, the semi-tensor product of A and B is
given by

A n B = (A ⊗ Il/n)(B ⊗ Il/p)

where l is the least common multiple of n and p. And for any
matrix M and N

M ⊗ N =




m11N, m12N, . . . , m1sN
m21N, m22N, . . . , m2sN

...
...

...
...

mt1N, mt2N, . . . , mtsN




The size of matrix M is t × s.
By deleting the largest common factor of n and p, the

size of the semi-tensor product matrix can be determined. For
example, if the size of A is m × ax, the size of B is ay × q,
and a is the largest common factor of ax and ay, then the
size of A n B is my × xq. The proof can be easily derived
from the definition. The following two definitions are usually
adopted in semi-tensor product theory.

Definition 2: (Cheng et al. [5]) δj
n was defined as the jth

column of matrix In.
This is the definition of logical matrix.
Definition 3: (Cheng et al. [5]) A matrix L ∈ Mn×m is

called a logical matrix if each column of L is in the form of
δj
n, j ∈ {1, 2, . . . , n}.

It is obvious that the transition probability matrix of any
BN is a logical matrix. Cheng et al. [5] proposed a mapping
from {0, 1} to set {δ1

2 , δ2
2} in the semi-tensor approach, then

they can forbid using logical expressions in the coming steps.
The mapping is defined as follows:

T ∼ 1 ∼
[

1
0

]
and F ∼ 0 ∼

[
0
1

]
.

After giving the most important concepts in semi-tensor theo-
ry, we have one of the most important theorems in semi-tensor
product theory.

Theorem 1: (Cheng et al. [5]) Given a logical function
f(p1, p2, . . . , pr), there exist a unique 2×2r matrix Mf , such
that

f(p1, p2, . . . , pr) = Mfp1p2 . . . pr.

Moreover, Mf is a logical function.
The following example shows us how to express the logical

function into the algebraic form. Before the example, some of
the most important matrices are given as follow:

Structure matrix logical function algebraic form
Mc = δ2[1, 2, 2, 2] f(p, q) = p ∧ q f(p, q) = Mcpq
Md = δ2[1, 1, 1, 2] f(p, q) = p ∨ q f(p, q) = Mdpq
Mn = δ2[2, 1] f(p) = ¬p f(p) = Mnp
Mr = δ4[1, 4] f(p) = p2 f(p) = Mrp
W[2] = δ4[1, 3, 2, 4] f(p, q) = qp f(p, q) = W[2]pq

Example 2: Consider the logical function

f(p, q, r) = (p ∧ ¬q) ∨ (r ∧ p).

We shall rewrite it in the algebraic form and compute the
structure matrix Mf . Here f can be expressed as follow:

f(p, q, r) = (p ∧ ¬q) ∨ (r ∧ p)
= MdMcpMnqMcrp.
= MdMc(I2 ⊗ Mn)pqMcrp
= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)pqrp
= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)pW[2,4]pqr
= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)(I2 ⊗ W[2,4])p

2qr
= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)(I2 ⊗ W[2,4])Mrpqr
:= Mfpqr

.

Then, we have

Mf = MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)(I2 ⊗ W[2,4])Mr

= δ2[1 2 1 1 2 2 2 2].

III. METHODS

In this section, we shall introduce an important matrix Tn,
which is defined as follows:

Tn = δ2n [2n, 2n − 1, . . . , 1].

Proposition 1: We have T 2
n = I2n

Proof: For any matrix A, we denote Aj the jth column
of A. If A′ = A × T then A′ can be obtained from this way:
A′

j = An−j , where n denotes the total columns in A. Thus
obviously we have T 2 = I2n .

Given the definition of Tn, we can give the main theorem
in this paper in the following. Assume there are n genes in
the PBN, we can use T for Tn for simplicity.

Theorem 2: If we denote A the transition probability ma-
trix of a PBN, and Asemi denote the probability structure ma-
trix, then we have Asemi = TAT , where T is defined above.
Since we know that T 2 = I2n , we also have A = TAsemiT .
This means that A and Asemi are similar matrices.

Proof: First of all, we show that it is true for any BN.
Suppose we have

A =
N∑

i=1

qiA
i

qi denote the probability choosing the ith BN. And if for any
i,

Ai
semi = TAiT

holds, then A = TAsemiT is satisfied.
We need to prove that for each BN, Ai

semi = TAiT holds.
We can infer from the definition of Ai and Ai

semi that their
size are the same, namely, 2n × 2n. We denote the BN state
at time t by V(t), and the BN state at time t obtained from
the semi-tensor approach by Vsemi(t). In order to show the
equality, we have to find the relationship between V(t) and
Vsemi(t). In the semi-tensor product, there is a mapping from
{0, 1} to {δ1

2 , δ2
2}, where 0 ∼ δ2

2 , 1 ∼ δ1
2 . And we know that

if there are n genes, then there are totally 2n gene states. In
the construction of Ai, aij denote whether the BN state j
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can be transferred to state i, where state 1 to state 2n equals
to 00 . . . 0︸ ︷︷ ︸

2n

, 00 . . . 1︸ ︷︷ ︸
n

, . . . , 11 . . . 1︸ ︷︷ ︸
n

, respectively. However, in the

semi-tensor product, the dynamic of a BN can be expressed as
Vsemi(t + 1) = AsemiVsemi(t). Similar to A, Asemi is also
a logical matrix. Thus Asemiδ

j
2n equals to the jth column of

Asemi. In the semi-tensor product, state 1 to state 2n equal
to 11 . . . 1︸ ︷︷ ︸

n

, 11 . . . 0︸ ︷︷ ︸
n

, . . . , 00 . . . 0︸ ︷︷ ︸
n

. Hence Ai
semi = TAiT is

proved.
The following example shows how our main theorem works.
Example 3: Consider the same PBN in Example 1, we try

to solve the structure matrix and apply the above theorem to
it. As for the semi-tensor approach, we need to solve out the
logical equation for each BN first, it is easy to find out the
logical equation for each BN, which is given by,

f1 f2

BN1 q ¬(p ∨ q)
BN2 q ¬(p ∧ q)
BN3 p ¬(p ∧ q)
BN4 p ¬(p ∨ q)

Here p and q are logical variables. Next step we need to figure
out Ai

semi, i ∈ {1, 2, 3, 4}. Take BN1 as an example, we have

f(p, q) = q n Mn(Mdpq)
= (I2 ⊗ Mn)(I2 ⊗ Md)qpq
= (I2 ⊗ Mn)(I2 ⊗ Md)W[2]pq2

= (I2 ⊗ Mn)(I2 ⊗ Md)W[2](I2 ⊗ Mr)pq

The structure matrix equals to δ4[2, 4, 2, 3]. And T2 =
δ4[4, 3, 2, 1], we can easily confirm that A1

semi = T2A
1T2,

similarly, we can prove A = T2AsemiT2.

IV. THE THREE PROBLEMS

A. Dynamics of a PBN

Suppose there are n genes and li, i ∈ {1, 2, . . . , n} Boolean
functions are assigned for gene vi. So we have total N =∏n

i=1 li Boolean network, and qi is the probability of choosing
the ith BN. The dynamic of the PBN can be expressed as




x1(t) =





f1
1 (x1(t), x2(t), . . . , xn(t)) with probabilityp1

1

f2
1 (x1(t), x2(t), . . . , xn(t)) with probabilityp2

1
...

...
f l1
1 (x1(t), x2(t), . . . , xn(t)) with probabilitypl1

1

x2(t) =





f1
2 (x1(t, x2(t), . . . , xn(t))) with probabilityp1

2

f2
2 (x1(t), x2(t), . . . , xn(t)) with probabilityp2

2
...

...
f l2
2 (x1(t), x2(t), . . . , xn(t)) with probabilitypl2

2
...

...

xn(t) =





f1
n(x1(t, x2(t), . . . , xn(t))) with probabilityp1

n

f2
1 (x1(t), x2(t), . . . , xn(t)) with probabilityp2

n
...

...
f ln

n (x1(t), x2(t), . . . , xn(t)) with probabilitypln
n

Here xi(t) denotes the ith gene state at time t and f j
i is the

jth Boolean function for gene i as we state in the introduction
part, we have

n∑

i=1

li∑

j=1

pj
i = 1.

We know that the dynamic of the PBN can be expressed as
V(t + 1) = AV(t), and according to Theorem 2, we have
V(t + 1) = TAsemiTV(t), it is obvious that TV(t) =
Vsemi(t) (In a BN, V(t) is in the form of δj

2n , where n is the
total number of genes and j means it is the jth states from
00 . . . 0︸ ︷︷ ︸

n

to 11 . . . 1︸ ︷︷ ︸
n

).

Lemma 1: The dynamic of PBN using probability structure
matrix can be expressed as

Vsemi(t + 1) = AsemiVsemi(t).

B. Steady State Analysis

It is known that there is a limitation of using BN to describe
the real biological system. A PBN based on the fundamental
idea of a BN can better capture the uncertainty characteristic
of the biological system. And it has been found a PBN model
is a stochastic process with the Markov property. Stationary
distribution is an important factor in Markov Chain. Semi-
tensor approach provides a new view for describing the PBN,
therefore there may arise a lot of ways dealing with the steady
state distribution problems based on the semi-tensor product
approach. In this subsection, we shall find the relationship
between the steady-state distribution with which is found
based on the semi-tensor approach. A stationary distribution
is defined as follows:

Definition 4: For a time-homogeneous Markov chain,
which means that the Markov chain can be described by
a single, time-independent matrix P . Then the stationary
distribution π = (π1, π2, . . . , πn) exists if the solution of the
equation Pπ = π subject to

∑n
j=1 πj = 1 exists.

We remark that if the steady-state probability distribution
of a PBN exists then it must be the stationary probability
distribution but not vice versa. Thus if we denote π as the
stationary distribution and πsemi as the stationary distribution
regarding to probability structure matrix. It is natural that we
can define πsemi as follows:

Definition 5: Noted that the PBN with Asemi as its prob-
ability transition matrix is a Markov chain, so we define
πsemi = (π1

semi, π
2
semi, . . . , π

n
semi)

T as the stationary distri-
bution, which can be given by

πsemi = Asemiπsemi

subject to
∑n

i=1 πi
semi = 1. Here Asemi is an n × n matrix.

Then we know that π = Aπ, which means π = TAsemiTπ,
similarly, we can obtain π = Tπsemi.
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Example 4: The transition probability matrix and proba-
bility structure matrix are given, respectively, by

A =




0.00 0.14 0.06 0.00
1.00 0.56 0.24 0.00
0.00 0.06 0.14 1.00
0.00 0.24 0.56 0.00




and

Asemi =




0.00 0.56 0.24 0.00
1.00 0.14 0.06 0.00
0.00 0.24 0.56 1.00
0.00 0.06 0.14 0.00


 .

By solving the equations:

Aπ = π and Asemiπsemi = πsemi

we have

π = (0.0667, 0.3333, 0.3333, 0.2667)T

and

πsemi = (0.2667, 0.3333, 0.3333, 0.0667)T

And it is obvious that

π = T2πsemi

.

C. The Inverse Problem

The inverse problem is to find a appropriate PBN from a
prescribed transition matrix [8], [9], [21]. Suppose A is the
given transition probability matrix. Suppose there are li non-
zero elements in each column, then we have

∏n
i=1 li feasible

BNs at most, they are labeled as BN1, BN2, . . . , BNm,
where m = Πn

i=1li. And the transition matrix assigned to BNi

is Ai. Thus the inverse problem can be expressed in the form
of finding the appropriate set of qj minimize the following
function:

f(q1, q2, . . . , qm) =

∥∥∥∥∥
m∑

i=1

Aiqi − A

∥∥∥∥∥

2

2

subject to
∑m

i=1 qi = 1.
Similarly, we can define the inverse problem of constructing

a PBN by semi-tensor product approach.
Definition 6: Given the probability structure

matrix as Asemi, we try to find an appropriate
qsemi = (q1

semi, q
2
semi, . . .) and Ai

semi according to qi
semi,

such that
∑

i qi
semiA

i
semi = Asemi subject to

∑
i qi

semi = 1.
According to the previous definition of qi

semi, it can be
easily obtained that qi

semi = qi, which means that all the
algorithms solving the inverse problem can be applied to the
PBN regarding to a given probability structure matrix Asemi.

Example 5: We construct the transition probability matrix
and the probability structure matrix as follows:

A =




0.15 0.30 0.00 0.23
0.85 0.00 0.50 0.00
0.00 0.70 0.50 0.00
0.00 0.00 0.00 0.77




Asemi =




0.77 0.00 0.00 0.00
0.00 0.50 0.70 0.00
0.00 0.50 0.00 0.85
0.23 0.00 0.30 0.15




And we use the projection based gradient method to compute
the inverse problem [20]. Thus the problem becomes a least
squares problem:

min
q

∥Uq − p∥2
2

s.t. ∥q∥1 = 1
and

min
qsemi

∥Usemiqsemi − psemi∥2
2

s.t. ∥qsemi∥1 = 1.

Here ∥qsemi∥1 means the L1 norm of qsemi and the elements
of q and qsemi are nonnegative. Here p = F (A) and U =
[F (A1), F (A2), . . . , F (AN )], where for any matrix B,

F (B) = (b11, b12, . . . , b1n, b21, b22, . . . , b2n, . . . , bn1, bn2, . . . , bnn)T

bij is the (i, j)th element in B and the same definition holds
for Usemi and psemi. From the given A and Asemi, the value
of U,Usemi, p, psemi are listed as

U =




1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




Usemi =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0




p = [0.15, 0.85, 0, 0, 0.3, 0, 0.7, 0, 0, 0.5, 0.5, 0, 0.23, 0, 0, 0.77]T

psemi = [0.77, 0, 0, 0.23, 0, 0.5, 0.5, 0, 0, 0.7, 0, 0.3, 0, 0, 0.85, 0.15]T

Using the projection-based gradient algorithm, we have
q = qsemi = [0.1506, 0, 0, 0, 0, 0, 0, 0.0203, 0.0394,

0.0039, 0.0857, 0.0222, 0.2674, 0.0329, 0.3776]T

The graph of the distributions of q and qsemi are shown in
the following two figures. We can infer from the graphs that
they are exactly same.
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Fig. 1. The Distribution of q
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Fig. 2. The Distribution of qsemi

V. CONCLUSIONS

This paper studies PBNs by using semi-tensor approach. We
show the relationship between the probability transition matrix
and probability structure matrix. Various of algorithms have
been developed to solve the BN problems through semi-tensor
approach. This gives a broader fields of vision to dealing with
the PBN problems. As we have shown in previous sections,
the PBN built from semi-tensor approach and the original one
are “ equivalent”, by “equivalent” here we means they can
be transformed to each other under all conditions and they
share many same properties. The reason is because A and
Asemi are similar matrices. Thus all the theories, algorithms
for the original PBN can be used for the PBN generalized from
semi-tensor approach. And the time complexity and sample
complexity for solving the PBN generated from semi-tensor
approach is at least no worse than that of the original PBN.
The theories for BN generated from semi-tensor approach can
be applied to the original BN transition matrix. For example,
the theory about singleton attractor. It also provides evidence
that the semi-tensor theory and the original theory about BN
(or PBN) are equivalent.
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