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Abstract—The interactions among different genes, proteins and
other small molecules are becoming more and more significant
and have been studied intensively nowadays. One general way
that helps people understand these interactions is to analyze
networks constructed from genes/proteins. In particular, module
structure as a common property of most biological networks
has drawn much attention of researchers from different fields.
In most cases, biological networks can be corrupted by noise
in the data and the corruption may cause mis-identification
of module structure. Besides, some structure may be destroyed
when improper experimental settings are built up. Thus module
structure may be unstable when one single network is employed.
In this paper, we consider employing multiple networks for
consistent module detection in order to reduce the effect of
noise and experimental setting. Instead of considering different
networks separately, our idea is to combine multiple networks
together by building them into tensor structure data. Then given
any node as prior label information, tensor-based Markov chains
are constructed iteratively for identification of the modules shared
by the multiple networks. In addition, the proposed tensor-based
Markov chain algorithm is capable of simultaneously evaluating
the contribution from each network. It would be useful to
measure the consistency of modules in the multiple networks.
In the experiments, we test our method on two groups of gene
co-expression networks from human beings. We also validate the
modules identified by the proposed method.

I. INTRODUCTION

Genes/proteins function inference from complex biological
systems has become a very important problem. In the past few
years, it has been studied intensively by people from multiple
fields. Among a large number of diverse research tasks for
genes/proteins, one important aspect is to figure out the com-
plex relations between genes/proteins. Biological networks
representing the co-expression, regulation, interaction and so
on seem to have become a general tool for computational
genes/proteins relation analysis. More specifically, the network
is constructed by making use of genes (or proteins) as nodes
while the edges as connections. By analyzing such genes (or
proteins) network, it is possible for researchers to identify and
interpret relations between genes (or proteins) such that some
important phenomena in a complex biological systems can be
inferred correspondingly, see [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. Among a large number of approaches, one substantial
way in network analysis is to explore a group of similar
nodes which are closely related with each other. These nodes

combining together form a densely connected subgraph which
is usually called module. The module structure is common in
biological networks and it is very useful especially in the study
on function of genes and proteins in some complex biological
systems. For instance, the large size of genes (or proteins)
network can be reduced by dividing the network into different
modules and thus much easier to handle. Once a module is
identified, we may infer the function of unknown genes by
other genes which we know well since the genes/proteins in
the same module are more likely to play similar roles. In the
literature, there are a lot of works accomplished for identifying
the functional module for a single graph [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20].

However, biological networks constructed by real data are
often corrupted by noise occurring in data: some edges which
should exist are removed due to the noise while in other place,
some extra edges are introduced into the networks. If so,
the modules are possibly to be mis-identified. Moreover, the
selection of different thresholding values during the process
of constructing networks may introduce the inconsistency of
module structure. One intuitive idea to reduce the effect of
both noise and parameters is integrating multiple networks
composed of the same set of nodes, see [21], [22], [23], [24],
[25], [26].

In this paper, we consider the module identification problem
based on multiple networks at the same time. Our main idea is
to formulate multiple networks into order three tensor which is
actually a three dimensional data array. Note that each network
is usually expressed by matrix which can be also treated as
two dimensional data array. Then by aligning each network
as a slice, it is natural to integrate them into a cubic like
tensor. Following the structure of networks, two directions
of the tensor data are based on genes while the rest one
dimension corresponds to different networks. Therefore, tensor
data is capable of preserving all the information in the multiple
networks. Then, our goal is to identify the module structure
embedded in tensor-based multiple networks. Our numerical
algorithm is mainly motivated by [27] in which the authors
formulate a Markov chain by normalizing the adjacency matrix
among objects and iteratively learn a label indicator of objects
for multi-instance multi-label learning (MIML) tasks. We
remark that each column of the label indicator is guaranteed
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to be a probability distribution vector. It is also possible
to formulate module identification task in the classification
point of view: by considering each node as an object in
classification problem, we are seeking for nodes similar to
each other as a module in a broader network. Thus, we may
also determine the module structures by labeling the nodes.
The main difficulty lies in is that instead of formulating the
problem under the matrix framework, we target at algorithm
that can handle the tensor data. To overcome this difficulty, a
novel two-stage iterative scheme is proposed. As preparation
for the algorithm, two probability transition tensors should
be generated. One of them should be normalized along the
direction corresponding to nodes while the other is normalized
with respect to different networks. Then in the first stage,
we may multiply two probability transition tensors by the
initial guess of label indicator vector such that two probability
transition matrices are generated with one dimension of them
corresponding to nodes and the other referring to multiple
networks. Then in the second stage, by fixing these two
matrices, we are able to form two Markov chains: one is to
determine the transition probabilities from multiple networks
to nodes incorporating with prior information and the other
computes the transition probabilities from nodes to different
networks. After convergence is achieved in the second stage,
we may make use of the converged label indicator for module
to update the two transition probability matrices. Repeating the
two-stage process until global steady state is reached, we may
identify the module structure in the label indicator and also, we
are able to tell the contributions of different networks as well
as the consistency of the modules across multiple networks.
Later we illustrate the effect of the proposed tensor-based
module identification method by the experimental results on
two different gene data sets. One is co-expression networks
constructed from three cancers and the other is from different
tissues of morbidly obese patients. It can be seen from
the results that our proposed method can identify the valid
consistent module structures in multiple networks.

The rest of this paper is organized as follows: in section
two, details of the proposed methodology will be introduced.
Then, we will report the experimental results by employing
the proposed method in section 3. Finally, in section 4, some
concluding remarks will be given.

II. PROPOSED METHOD

Before we introduce proposed method, some basic notations
based on tensor multiplication will be given. Then we will
briefly review a Markov chain based multi-instance multi-label
learning algorithm (Markov-MIML) [27], which inspires us
to tackle the module identification problem by formulating
Markov chains. After that we will present our proposed
tensor-based Markov chain method for module identification
in multiple networks.

A. Preliminary notations

Here we introduce some preliminary notations which will
be used later in this paper. First, let A indicates tensor

data while A and a are utilized to represent matrix and
vector, respectively. An order m tensor is expressed by A ∈
Rn1×n2×···×nm and Ai1,i2,··· ,im are employed to represent the
element at (i1, i2, · · · , im) of tensor A. On the other hand,
[A]i,j indicates the element at (i, j) position of matrix A
and [a]i represents the i-th element of vector a. In addition,
we introduce the mode multiplication between tensor and
matrix: for p = 1, 2, · · · ,m, let B ∈ Rnp×q , the mode-p
multiplication of A and B is written as

C = A ×p B.

where C ∈ Rn1×···×np−1×q×np+1×···×nm and

Ci1,i2,··· ,im =

np∑

j=1

Ai1,··· ,ip−1,j,ip+1,··· ,im [B]j,ip .

Note that here ip = 1, 2, · · · , q. Similarly, mode multiplication
can be also performed between tensor and vector. For b ∈
Rnp ,

D = A ×p b

where D ∈ Rn1×···np−1×np+1×···nm . Moreover,

Di1,··· ,ip−1,ip+1,··· ,im =

np∑

j=1

Ai1,··· ,ip−1,j,ip+1,··· ,im [b]j .

B. Markov-MIML algorithm

Markov-MIML algorithm is designed to tackle the so called
multi-instance multi-label problem: a kind of classification
problem in which each object is described by several different
instances and can simultaneously belong to more than 1
class. In the Markov-MIML algorithm [27], the first step is
to construct the adjacency matrix among instances and then
transfer the affinity information from instance level to object
level. Assume S is the similarity matrix among objects which
can be also treated as nearest neighbors affinity for all the
objects. Then by normalizing each column sum of S to be
one, a transition probability matrix M is obtained. Then the
Markov-MIML iterative algorithm is given in (1):

X(t + 1) = (1 − α)MX(t) + αP, t = 0, 1, 2, · · · , (1)

where P contains label information of training objects and α
is a parameter to balance the label information from neighbors
and the given label training data P. X(t) is the label-indicator
at the t-th iteration. The convergence analysis given in [27]
demonstrates that the iterate X(t) converges to a limiting vec-
tor X̂ which can be used for MIML testing object prediction.
In [27], it has been shown this algorithm is very effective.

The Markov-MIML method can be also applied to bio-
logical network analysis. When replacing the affinity matrix
among objects by co-expression adjacency matrix in biological
network, we may extract the module structure embedded
in an individual network by incorporating the prior label
information. However, due to the concern that corruption of
noise may affect the result in single network analysis, we are
more interested in considering the module identification task
for multiple networks. Together, these two reasons motivate us
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to propose tensor-based Markov chain method from multiple
networks analysis.

C. Tensor-based module identification method

In this subsection, we will introduce the proposed tensor-
based module identification method. Assume we have a num-
ber of n2 co-expression networks constructed by the same set
of n1 nodes which can be genes, proteins and some other small
molecules. Note that any individual network can be expressed
by n1-by-n1 adjacency matrix Ak (k = 1, 2, · · · , n2) . Then
we may utilize order 3 tensor A ∈ Rn1×n1×n2 to express the
multiple networks. More precisely, the tensor data is generated
by setting the i, j element of k-th network to i, j position of
k-th layer in the tensor A: Ai,j,k = [Ak]i,j . Note that our idea
is to use Markov chains to extract consistent module structure
embedded in the multiple networks, the transition probability
tensors are required to be constructed. In fact, by normalizing
A along different directions, we generate normalized tensors
A(1) and A(2) as transition probability tensors:

n1∑

i=1

A(1)
i,j,k = 1,

n2∑

k=1

A(2)
i,j,k = 1,

Note that one dimension we chosen corresponds to nodes
while the other one refers to multiple networks. In addition,
incorporating with some prior information, we can one step
further formulate the problem by high order Markov Chains:

x = (1 − α)A(1) ×2 x ×3 y + αp; (2)
y = A(2) ×1 x ×2 x. (3)

Here, our aim is to seek for x and y satisfying (2) and (3)
when x identifies the nodes that belong to the same module
as the prior nodes while y offers evaluations of contribu-
tions from different networks to the module. We remark that
proposed tensor based model is unsupervised, such that no
label information of the prior nodes is required. In addition,
any node (or nodes) in networks can be selected as prior,
for instance, if a set of nodes S = {s1, s2, s3, · · · , sl} ⊂
1, 2, · · · n1 are chosen to be prior in the Markov chains,
then set [p]S = 1/l and all the other entries to be zero.
The resulting x will identify the modules containing nodes
in set S. One step further, if all the module structures are
required to be detected, we may go through all the nodes in
the multiple networks to be prior information. More precisely,
denote In1 ∈ Rn1×n2 as the identical matrix, we are able to
extract all the modules embedded in the networks by setting p
to be each column of In1 one by one. Moreover, α ∈ [0, 1] here
is set to balance the contribution between multiple networks
and prior information.

In order to reach the global steady state of system in (2)(3),
we propose a two stage iterative scheme. More precisely, when
we fix M1 = A(1) ×2 x and M2 = (A(2) ×2 x)T We may
rewrite (2)(3) into the following system:

Algorithm 2.1:

Input: A(1), A(2),x(0),y(0),p, α and tolerance ε
Output: x∗ and y∗

Procedure
1. Set t = 1;
2. Compute M1(t − 1) = A(1) ×2 x(t − 1);M2(t − 1) =
(A(2) ×2 x(t − 1))T ;
3. Set k = 0,x0 = x(t − 1),y0 = y(t − 1);
4. Compute xk = (1 − α)M1(t − 1)yk−1 + αp, and
yk = M1(t − 1)xk;
5. If ∥xk − xk−1∥ < ε and ∥yk − yk−1∥ < ε, set x(t) = xk,
y(t) = yk;
Otherwise set k = k + 1 and goto Step 4.
6. If ∥x(t) − x(t − 1)∥ < ε and ∥y(t) − y(t − 1)∥ < ε, set
x∗ = x(t), y∗ = y(t);
Otherwise set t = t + 1 and goto Step 2.

x = (1 − α)M1y + αp; (4)
y = M2x. (5)

M1 and M2 are two transition probability matrices, thus
(4) and (5) give two standard Markov chains which can be
solved iteratively according to following recursive formulas:

xk+1 = (1 − α)M1yk + αp; (6)
yk+1 = M2xk. (7)

Once (6), (7) converge with results x̂ and ŷ, it is possible
to update the probability transition matrices by:

M̂1 = A(1) ×2 x̂; M̂2 = (A(2) ×2 x̂)T .

Replacing M1,M2 in (6) and (7) by M̂1, M̂2, we are
allowed to once again update x,y accordingly. Then by
repeating the above process until convergence, the nonlinear
systems in (2), (3) can be solved eventually. Note that once
the initial guess of x, y and p are given by probability
distribution vectors, the converging results are also guaranteed
to be probability distribution vectors.

Now, we are ready to present the proposed algorithm, see
Algorithm 2.1, for solving x and y in (2)(3).

Based on the resulting probability distribution vectors x∗

and y∗, we are able to identify the common module struc-
ture across multiple networks by two simple steps. The
first step is to identify the module structure by observing
x∗: a module should be constructed by the group of nodes
{q1, q2, · · · , qr} ⊆ {1, 2, · · · , n1} which receive higher values
compared with the others. The reason is simply that nodes
receiving higher probabilities should be more closely related
with the prior points compared with others and the subgraph
constructed by these closely related nodes is exactly the
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module structure we need to detect. In order to see the way
of tracking these nodes which form module, we make use
of Table III in Section III as an illustration: we first sort
the entry values of x∗ in decreasing order and it’s easy to
see the 7 nodes with highest values receive at least 0.0769
when the others receive at most 7.2×10−18. Thus we may
conclude that the first 7 nodes listed in Table III receive
much higher values compared with others and they might
be considered to construct a module structure. In the second
step, we employ y∗ to decide if the module structure is
consistent among the multiple networks. Each entry of y∗

represents the contribution score of each networks to the
module structure. If the module structure observed in the
first step is common across all the considered networks, the
corresponding contribution scores should be more or less the
same with each other. For instance, the contribution scores
of 3 networks are exactly same with each other in Table IV
which indicates that the module structure is highly consistent
across the 3 networks. On the other hand, if the entry values
in y∗ are extremely unbalance, the module structure detected
may be inconsistent across multiple networks. In Table VIII,
the contribution scores of the first two networks are less than
5×10−3 while score of the 3rd one is larger than 0.99. This
fact tells us that the module structure in the first 2 networks
are not clear while the 3rd network takes the dominant place
for module structure, such that we may conclude the module
structure is not common across the 3 networks.

Moreover, we provide the computational complexity of the
proposed algorithm listed in Algorithm 2.1. In the first stage
of each iteration, we are required to compute M1 and M2

with complexity of O(n2
1n2). Then, during the second stage,

it takes O(n1n2) to update x and y at each step. Suppose
that for fixed M1 and M2, it requires k = Iter1 steps for
both x and y to converge and we further assume that when t
reaches the number of Iter2, the whole algorithm converges.
The total computational cost of Algorithm 2.1 should be
O(Iter2 ∗ (n2

1n2 + Iter1 ∗ (n1n2))).

III. EXPERIMENTAL RESULTS

We mainly focus on the performance on identifying com-
mon module of the proposed algorithm in this section. Both
synthetic data and real data are considered in order to show the
efficiency as well as the effectiveness of the proposed tensor
based method. Although there are methods proposed to address
the common module identification problem [30], [31], they are
developed under the assumption that the underlying modules
(clusters) are the same across different networks (data sets). In
our considered networks, this assumption does not hold. We
only report the experimental results of our proposed tensor
based Markov Chain algorithm.

A. Module identification on synthetic data

In this subsection, we illustrate the efficiency as well as
the effectiveness of the proposed algorithm by conducting
experiments on synthetic data. As we have mentioned before,
the proposed tensor based algorithm is capable of handling

TABLE I
THE 11 LARGEST VALUES IN x RESPECT TO THE VERTICES FOR

SYNTHETIC NETWORKS

Vertex Value of x
1 0.5085
10 0.0374
4 0.0354
2 0.0318
8 0.0315
7 0.0306
5 0.0304
3 0.0295
6 0.0276
9 0.0274
73 0.0078

TABLE II
CONTRIBUTION SCORES IN y FOR SYNTHETIC DATA.

Networks 1-st 2-nd 3-rd 4-th 5-th
Value of y 0.2192 0.2225 0.1046 0.2231 0.2306

any number of multiple networks simultaneously. In this case,
We implement proposed method 5 different synthetic networks
corresponding to a same set of 100 vertices. In each network,
the subgraph formed by 10 vertices are more densely con-
nected compared with the others. Thus, when considering the
multiple networks together, this subgraph should be exactly the
common module structure which proposed algorithm targets
on. Practically, we set the subgraph constructed by the first
10 vertices to be complete graph for all the networks except
the third one. In the third networks, we try to add noise to
the networks by removing some of the edges in the subgraph
of the first 10 vertices (see Fig. 1) such that we can test if
the proposed algorithm is capable of addressing the noised
networks successfully. For the rest vertices the networks, we
randomly put edges to connect vertices and finally, the average
degree of each vertex in networks achieves around 18.

In the experiment, we set α = 0.5 and employ the first
vertex as prior information. The running time of the algorithm
is around 0.02 second. Fig. 2 gives the value of x generated by
performing the proposed algorithm on the synthetic networks.
Obviously, the values received by first 10 vertices in x are
larger than the others. More specifically, in TABLE I we
list the largest 11 entries of resulting x. We may also check
the contribution of each network by checking value of each
entry in y, see TABLE II. Recover that the third network is
corrupted by noise. It is easy to find out that the contribution
score of the third network comes out to be the smallest while
the contribution of the others is almost on the same level.
Base on the these observations, we may draw the conclusion
that proposed algorithm not only identifies common module
embedding in multiple networks correctly, but also addresses
the noised networks successfully.

B. Module identification on three cancer gene co-expression
networks

In this subsection, we report the experimental results con-
ducted on three gene data sets downloaded from The Cancer
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Subgraph of frist 10 vertices in third network of synthetic data
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Fig. 1. The subgraph formed by first 10 vertices in the 3-rd network synthetic
data.
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Fig. 2. Value of x with the 1-st vertex as prior for synthetic data.

Genome Atlas (TCGA). The three cancers are ovarian cancer
(OV), glioblastoma multiforme (GBM), and lung squamous
cell carcinoma (LUSC), respectively. All the data are generated
with Affymetrix HT HG-U133A by Broad Institute. There
are 558 OV samples, 594 GBM samples, and 134 LUSC
samples in total 22277 different genes. For each cancer, we
compute the variance of all the genes across the samples. In the
experiments, we only select 1500 genes with largest variance
for each cancer. Combining all 3 cancers, we actually select
the number of 2756 different genes for further study.

The next step, for each of the three cancers, we calculate
the Pearson correlation coefficients across all the genes and
construct the affinity matrices by taking the hard thresholding.
More precisely, if the Pearson correlation coefficient of two
genes is greater than some pre-defined value, we assign an
edge to link them up; otherwise, there should be no edge
between them. Practically, we set thresholding 0.65, 0.60,
0.52 for OV, LUSC and GBM respectively such that all there
networks have approximately scale free property. Moreover,
the average degree of each gene across all 3 networks is
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Fig. 3. Value of x with gene AFFX-r2-Ec-bioB-M at as prior information
for example 1 in the three gene co-expression networks of cancers.

about 18. Then, by removing the common genes in 3 cancer
networks that have no connection to any other genes, we
finally construct three networks for number of 2297 common
genes.

We apply our proposed tensor-based Markov chain method
to the networks to identify the module structures. With d-
ifferent nodes being selected as prior information, we are
able to generate a probability distribution vector in which
the nodes similar to them receive clearly much higher value
than the others. Note that the parameter α is tuned based
on seeking for an obvious jump between them. Moreover,
another probability distribution vector y is also generated to
measure the contribution of different networks. Based on y,
we may also check the consistency of the modules across
multiple networks. When the difference in contribution scores
of multiple networks are relatively small, we may conclude
that module structure is consistent. Otherwise, the module
structure may only appear in some of the networks. Thus, we
may identify the consistent modules based on both converged
x and y. In order to illustrate the effectiveness of the proposed
method more clearly, we state and discuss several examples
in the following part.

1) Example 1: We select the control probe AFFX-r2-Ec-
bioB-M as prior information p in this example. When we
set α to be 0.5, our algorithm converges within about 19.8
seconds and the resulting x can be seen in the Fig. 3. The
gene receiving largest value is AFFX-r2-Ec-bioB-M itself.
In addition, it is clear to find out in the figure that some
genes receive larger values compared with the others. To
make it easier to check, we sort x in descending order and
list the largest 8 values in TABLE III with the gene IDs
accordingly. Obviously, a jump can be found between the
value of gene AFFX-BioDn-5-at (0.0769) and gene 201348-at
(7.2426 ×10−18) and the first 7 genes receives much higher
value than the others.

Moreover, we also concern about the converged y which is
the contribution scores of multiple cancers as listed in TABLE
IV. We may see for this example, the contribution of each
cancer is on the same level. We get back to check the networks
and find that the subgraphs constructed by the 7 identified
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TABLE III
THE 8 LARGEST VALUES IN x WITH THEIR GENE IDS FOR EXAMPLE 1 IN

THE THREE GENE CO-EXPRESSION NETWORKS OF CANCERS.

Gene IDS Value of x
AFFX-r2-Ec-bioB-M-at 0.5386
AFFX-BioB-5-at 0.0769
AFFX-BioB-M-at 0.0769
AFFX-BioC-3-at 0.0769
AFFX-BioC-5-at 0.0769
AFFX-BioDn-5-at 0.0769
AFFX-r2-Ec-bioB-M-at 0.0769
201348-at 7.2426 ×10−18

TABLE IV
CONTRIBUTION SCORES IN y OF THREE CANCERS FOR EXAMPLE 1.

Cancers CBM LUSC OV
Value of y 0.3333 0.3333 0.3333
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Fig. 4. Value of x with gene 202708-s-at as prior information for example
2 in the three gene co-expression networks of cancers.

genes are all complete graphs (thus exactly the same with
each other). Hence it is reasonable that the contribution scores
of the 3 networks are the same. In addition, the complete
subgraphs extracted also explain the reason why all the other
nodes identified receive the same score in x.

Based on the results in TABLE III and TABLE IV,
we may conclude that AFFX-r2-Ec-bioB-M-at, AFFX-BioB-
5-at, AFFX-BioB-M-at, AFFX-BioC-3-at, AFFX-BioC-5-at,
AFFX-BioDn-5-at and AFFX-r2-Ec-bioB-M-at should form a
consistent module across networks of three cancers. Biolog-
ically, these nodes selected in this module are all known to
be control probes which should be closely related with each
other. This evidence supports that the module identified is
meaningful, which validates the effectiveness of the proposed
algorithm.

2) Example 2: In this example, we employ the gene
202708-s-at as prior information. α here is again set to be
0.5 and the computational time is around 20.0 seconds. In
Fig. 4, we plot the converged x to make it clear to see.

Obviously, several genes which should be closely related
with gene 202708-s-at receive much higher values compared
with the others. Similarly, we sort converged x in descending
order and list the largest 15 values with their gene IDs

Gene IDS Value of x
202708-s-at 0.5364
210387-at-at 0.0511
209398-at 0.0457
214290-s-at 0.0457
215071-s-at 0.0457
214455-at 0.0456
218280-x-at 0.0446
206110-at 0.0446
208579-x-at 0.0368
208180-s-at 0.0367
214469-at 0.0360
209911-x-at 0.0312
206640-x-at 1.3683 ×10−17

207086-x-at 1.3683 ×10−17

207663-x-at 1.3683 ×10−17

TABLE V
THE 15 LARGEST VALUES IN x WITH THEIR GENE IDS FOR EXAMPLE 2 IN

THE THREE GENE CO-EXPRESSION NETWORKS OF CANCERS.

TABLE VI
CONTRIBUTION SCORES IN y OF THREE CANCERS FOR EXAMPLE 2.

Cancers CBM LUSC OV
Value of y 0.6008 0.3672 0.0320

respectively in TABLE V. We may see a gap appears between
value 0.0312 of gene 209911-x-at and 1.3683 ×10−17 of gene
206640-x-at.

Consider the converged results of y in TABLE VI. We
may see different from the previous example, the contribution
scores of three cancers are different.

In order to figure out the reason, we check the subgraphs
formulated by identified nodes in all the three networks see
Fig. 5.

We may see that vertices are closely related with each other
in GBM and LUSC cancer networks while the subgraph in OV
cancer does not contrain as many edges as which in GBM and
LUSC networks. It turns out that the proposed algorithm as-
signs 0.6008 as contribution score to the GBM cancer network
and 0.3672 to LUSC cancer network while OV cancer network
only receives 0.0320. We do the enrichment analysis for Gene
Ontology (GO, biological process) and KEGG pathways for
this identified module. All the genes in this module belong to
histone cluster 1 or histone cluster 2. 10 of the twelve genes in
the module enrich 12 GO terms and they cover all the genes
belonging to these GO terms among all the genes we consider.
In TABLE VII, the related functions of these 12 GO terms
can be found with P-value less than 10−11. In addition, 8 in
the 12 genes in this module enrich the pathway: hsa05322:
Systemic lupus erythematosus. According to [28], [29], this
pathway is related to several cancers such as liver cancers, lung
cancers and kidney cancers. It is interesting that genes in this
module identified in considered cancers networks also enrich
this pathway. Based on the previous discussions, we may draw
the conclusion that the module discovered by the proposed
algorithm is meaningful in biological study. Therefore, we
may also claim that the edges are preserved well in GBM
and LUSC cancer networks while corrupted in the OV cancer
network.
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Fig. 5. Subgraphs constructed by 12 genes selected for example 2 in the three gene co-expression networks of cancers, left: subgraph in GBM cancer netowrk;
middle: subgraph in LUCS cancer network; right: subgraph in OV cancer network.

Enriched GO terms % P-value
GO:006334 nucleosome assembly 100 8.83×10−21

GO:0031497 chromatin assembly 100 1.21×10−20

GO:0065004 protein-DNA complex assembly 100 1.88×10−20

GO:0034728 nucleosome organization 100 2.31×10−20

GO:0006323 DNA packaging 100 1.98×10−19

GO:0006333 chromatin assembly or disassembly 100 4.25×10−19

GO:0034622 cellular macromolecular complex assembly 100 1.96×10−15

GO:0034621 cellular macromolecular complex subunit organization 100 5.62×10−15

GO:0006325 chromatin organization 100 9.46×10−15

GO:0051276 chromosome organization 100 9.11×10−14

GO:0065003 macromolecular complex assembly 100 1.59×10−12

GO:0043933 macromolecular complex subunit organization 100 2.88×10−12

TABLE VII
GENE ONTOLOGY ENRICHMENT OF THE MODULE IDENTIFIED FOR EXAMPLE 2 IN THE THREE GENE CO-EXPRESSION NETWORKS OF CANCERS.
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Fig. 6. Value of x with gene 200606-at as prior information for example 3
in the three gene co-expression networks of cancers.

3) Example 3: In this example, we consider the case that
gene 200606-at is employed as prior. Similar to the previous
examples, we set α = 0.5 and run the algorithm on multiple
networks of three cancers. The time cost of the algorithm is
around 20.4 seconds and the converged x can be found in
Fig. 6. We explore that there are in total 8 genes receiving
much larger values than the others. When considering y, which
indicates the contribution of each network in TABLE VIII,

TABLE VIII
CONTRIBUTION SCORES IN y OF THREE CANCERS FOR EXAMPLE 3.

Cancers CBM LUSC OV
Value of y 0.0009 0.0030 0.9961

we may find the contribution scores of both GBM and LUSC
cancer are very small. Then we check the networks of all three
cancers and discover that the subgraphs in both GMB and
LUSC contain no edge, see Fig. 7. Thus the module structure
is not consistent in both GMB and LUSC cancers. Then edges
appearing in subgraph of OV cancer networks are considered
to be mis-linked due to the noise or parameter effect.

C. Module identification from co-expression network of differ-
ent tissues of morbidly obese patients

In this part we present conducted experiments and results on
co-expression network constructed by gene expression profile
of liver (LIV), ometal (OME) and subcutaneous (SUBC)
tissues for morbidly obese patients (GEO Accession number:
GSE24294). There are in total 459 subjects with data across
all three tissues and all the data are measured on the number
of 40638 probes. We select the genes covered by more than
one probe and employ the mean value as expression of that
gene. Moreover, the genes with greater than 10% missing
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Fig. 7. Subgraphs constructed by 12 genes selected for example 3 in the three gene co-expression networks of cancers, left: subgraph in GBM cancer netowrk;
middle: subgraph in LUCS cancer network; right: subgraph in OV cancer network.

observations are excluded, and we use mean of available
data to express other missing values. Among the rest 17282
common genes, we select 1800 with largest variance across
samples for each tissue and thus, we construct three gene
networks which evolve the number of 2637 genes. Then we
perform hard thresholding at 0.5 on multiple networks of all
three tissues. Similar to the previous experiments, we remove
the nodes which do not connect with any other nodes in the
network and finally, each network consists of 1873 common
genes.

By formulating the multiple networks into tensor data, we
are able to employ the proposed method to handle the module
identification problem. For the same purpose as previous
experiments, we select a satisfied α which brings clear gap
between values received by genes in x. To validate the
proposed method, we present some examples to clarify the
effect and efficiency of the proposed tensor based method.

1) Example 1: In this example, we select gene SAA1 as
prior information to run the proposed algorithm. The parameter
α is set to be 0.5 and it takes around 13.7 seconds for our
method to converge. The resulting x is plotted in Fig. 8.
Obviously, some of the genes receive much higher values than
the others.

It can be seen more clearly in TABLE IX that the first 4
genes listed in the table receive much larger scores (at least
0.1035 received by SAA2) than the others (at most only 0.0192
for CPR). Moreover, we also report evaluation on contribution
of multiple networks in TABLE X.

According to the converged y, the differences on contri-
bution of multiple networks are not very significant which
indicate that the module structure is quite consistent across
three networks of different tissues. This module of 4 genes
enriches 2 GO terms: GO:000695 acute-phase response
and GO:0002526 acute inflammatory response with P-value
2.39×10−8 and 3.69×10−7 respectively. SAA is a well known
protein in inflammation-associated reactive amyloidosis (AA-
type). These facts indicate this module identified by the
proposed method is reasonable biologically.
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Fig. 8. Value of x with gene SAA1 as prior information for example 1 in
the three gene co-expression networks of different tissues of morbidly obese
patients.

TABLE IX
THE 5 LARGEST VALUES IN x WITH THEIR GENE IDS FOR EXAMPLE 1 IN
THE THREE GENE CO-EXPRESSION NETWORKS OF DIFFERENT TISSUES OF

MORBIDLY OBESE PATIENTS.

Gene IDS Value of x
SAA1 0.5706
SAA4P 0.1162
SAA3 0.1149
SAA2 0.1035
CPR 0.0192

TABLE X
CONTRIBUTION SCORES OF THREE TISSUES IN y FOR EXAMPLE 1

Cancers LIV OME SUBC
Value of y 0.4014 0.3091 0.2895

2) Example 2: In this example, we would like to use multi-
ple nodes as prior information to test the effect of the proposed
algorithm. More specifically, we select ALAS2 and HBA1 as
prior information in p, and perform the proposed tensor-based
Markov chain algorithm with α = 0.5. Computational time
for the algorithm is 12.5 seconds and the converged x can be
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Fig. 9. Value of x with gene ALAS2 and HBA1 as prior information for
example 2 in the three gene co-expression networks of different tissues of
morbidly obese patients.

TABLE XI
THE 12 LARGEST VALUES IN x WITH THEIR GENE IDS FOR EXAMPLE 2 IN
THE THREE GENE CO-EXPRESSION NETWORKS OF DIFFERENT TISSUES OF

MORBIDLY OBESE PATIENTS.

Gene IDS Value of x
HBA1 0.2817
ALAS2 0.2723
TRIM58 0.0755
HBA2 0.0703
GPR144 0.0690
HBB 0.0592
HBG2 0.0454
CA1 0.0366
BHD 0.0361
HBG1 0.0228
HEMGN 7.084×10−3

RHAG 7.084×10−3

TABLE XII
CONTRIBUTION SCORES OF THREE TISSUES IN y FOR EXAMPLE 2.

Cancers LIV OME SUBC
Value of y 0.4120 0.3622 0.2258

found in Fig. 9.
Moreover, it is listed in TABLE XI that first 10 genes with

largest value in x receive at least 0.0228 when the value
of others is at most 7.084×10−3. We check the contribution
scores of networks in TABLE XII. The result indicates that the
contribution scores received by LIV and OME networks are a
little higher than SUBC. Still, it could tell that the module
constructed by the chosen nodes is quite consistent across
multiple networks.

This module enriches the GO:0015671 oxygen transport
with P-value 3.58×10−11 and GO:0015669 gas transport with
P-value 1.53×10−10 in the GO enrichment analysis. Among
the considered genes in three tissues, half number of genes
which carry out the function of oxygen transport and gas
transport are located in this module.

In conclusion, our proposed method is capable of identifying
the module structure both efficiently and effectively. Moreover,
it also allows the users to check the contributions of different
networks in y. In the above experiments, both data sets contain

three different networks while under our formulation, we can
handle any number of multiple networks. Remark that the
noise level in different networks can be also evaluated by
examining the values in y. If contribution scores of only a few
networks are apparently distinct with the others, we may infer
them as being noised severely or taking improper thresholding
values. These results can be more convincible when more
networks are involved in the tensor data.

IV. CONCLUSION

In this paper, we propose a novel tensor-based method
for identification of module structures. The main idea of
the proposed algorithm is to construct two Markov chains
and iteratively update both label indicator x and contribution
indicator y until global steady state is reached. Then by
considering converged x and y we may tell the consistent
module embedded in multiple networks. In order to illustrate
the efficiency and effectiveness of proposed algorithm, we
conduct experiments on two gene data sets. The results support
that proposed algorithm is capable of identifying modules in
multiple networks.
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