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Abstract—In this paper, we investigate a class of virus 
dynamics model with intracellular delay and nonlinear infection 
rate of saturated functional response. The basic reproduction 
number 0R for the viral infection is derived, and the global 

dynamics behavior are completely determined by 0R . By constr-

ucting suitable Lyapunov functional and using LaSalle invariant 
principle for the delay differential equations, we find when 

0 1R  , the infection-free equilibrium is globally asymptotically 

stable, and when 0 1R  , the infection equilibrium is also globally 

asymptotically stable . 

Keywords—intracelluar delay; Lyapunov functional; LaSalle 
invariant principle; Global stabiliy 

I.  INTRODUCTION  

Hepatitis B virus (HBV) infection is a significant public 
health problem which may lead to chronic liver disease, 
cirrhosis, and hepatocellular carcinoma (HCC). It is reported 
that some 2 billion people have been infected with the virus, 
with 5 million new cases every year, which means a major 
challenge to global public health [1-2]. Currently, about 350 
million people worldwide live with chronic HBV infection [3].  

Mathematical models are often used to interpret 
experimental and clinical results of (anti-) HIV, HBV and HCV 
infections [4, 5, 6, 7, 8]. A basic viral infection model [5, 7] has 
been widely used for investigating the dynamics behavior of 
infections agents such as HBV, Hepatitis C virus (HCV), 
which has the following forms: 
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where ,x y and v are numbers of uninfected(susceptible) liver 
cells, infected liver cells and free virus, respectively. And 
uninfected cells are produced at a constant rate  , die at a 
density-dependent rate dx , and become infected with a rate 

xv ; infected cells are produced at rate xv  and die at a 
density-dependent rate ay ; free virus particles are released 
from infected cells at a rate ky and die at a rate v .  

In the model (1.1), the basic infection reproductive number 
of model is 0 /R k ad  , which has been pointed 
unreasonable when used for HBV infection model [9].  Paper 
[9] used standard incidence / ( )vx x y  to take the place of 
the bilinear mass action incidences vx in model (1.1) and the 
corresponding basic infection reproductive number 

0 /R k a   is more reasonable.  However, Yu Ji [10] 
pointed that at the beginning of the infection, the amount of 
virus is relatively small compared with uninfected cells, and 
the infection rate should be direct proportional to the viral load 
which can be represented as v . Then, along with the rapid 
increase of viral load and the decrease of uninfected cells, the 
infection will reach saturated state, and the infection rate 

/ ( )xv x v   should be reasonable.  The model given by Yu Ji 
[10] has following form: 
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The above model has the same basic infection reproductive 
number of 0 /R k a  as the model in paper [9], which 
shows the saturated infection rate / ( )xv x v   can also be used 
for HBV infection.  

On the other hand, as shown in paper [11, 12], we should 
take into account the latently infected cells (such cells contain 
the virus but are not producing it) and the actively infected 
cells (such cells are producing the virus). So the time delays 
can not be ignored in virus infection models. Based on standard 
incidence, Stephen A. Gourley, Yang Kuang and John D. 
Nagy [13] gave a delay virus infection model as following, 
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where ( )x t represents the number of uninfected cells, ( )y t  
represents the number of infected cells, ( )e t represents the 
number of latently infected cells, and ( )v t  represents the 
number of free virions.  is the time for the latently infected 
cells  to become productive. 

Yang Kuang [13] didn’t give full analysis of (1.3) and only 
prove the global asymptotically stability of the infection-free 
equilibrium and the infection equilibrium of the following 
simplified the model [14]: 
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Based on above discussions, in this paper, we set up a new 
HBV infection delay model with saturated infection rate 

/ ( )xv x v  : 
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where ( ), ( )x t z t and ( )v t represent the number of uninfected 
cells, infected cells and free virus, respectively. ( )y t  represents 
the number of the latently infected cells,  In the model (1.3) 
and  (1.4), the death rate of uninfected cells and the latently 
infected cells are supposed to be the same, but in our model 
(1.5), we needn’t the suppose, which is more reasonable. 

This paper is organized as follows. In the Section II, we 
derive the basic reproduction number 0R and give the infection-
free equilibrium and the infection equilibrium. In section III, 
we prove that the solution of system (1.5) is non-negative and 
bounded. The global stability analysis of the infection-free 
equilibrium and the infection equilibrium are given in Section 
IV. This paper ends with a brief conclusion in Section V. 

II. BASIC REPRODUCTIVE NUMBER AND 

EQUILIBRIUM 

Similar to paper [14], a direct computation shows that the 
basic reproductive number of model (1.5) is 0 /pR e k ab  . 
Obviously, it is irrelative to / d  which is desirable. The 
model (1.5) has an infection-free equilibrium 

0 0( ,0,0,0),E x which 0 = /x d . If 0 1R  , an infection 

equilibrium 1 ( , , , )E x y z v     exists, where 
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III. NON-NEGATIVITY AND BOUNDEDNESS OF 

SOULUTIONS 

Let 4([ ,0]; )C C R  be the Banach space of continuous 

functions from [ ,0] to 4R  equipped with the sup-norm. The 
initial condition of (1.5) is given as 

1 2 3 4( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),x y z v               [ ,0]   , 

where 1 2 3 4( , , , )T C      such that ( ) 0( 0i       ）for 
1,2,3,4)i  . 

Proposition2.1. Let ( ( ), ( ), ( ), ( ))Tx t y t z t v t be any solution of 
system (1.5), then under the nonnegative initial conditions, all 
solutions ( ( ), ( ), ( ), ( ))Tx t y t z t v t are non-negative on [0, )  and 
bounded. 

Proof.  If ( )x t were to lose its non-negativity on some local 
existence interval [0, ]T for some constant 0T  , there would 
be a time at 1 0t  such that 1( ) 0x t  . By the first equation of 

(1.5) we have 1( ) 0.x t    That means ( ) 0x t  for 

1 1( , ),t t t   where  is an arbitrarily small positive constant. 
This leads to a contradiction. It follows that ( )x t is always 
positive. Further, from the third and forth equation in (1.5), we 
have 
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Then, it is easy to see that ( )z t  and ( )v t  are non-negative on 
[0, ]T . 

From the second equation of system (1.5), we know that 
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Therefore, we get that ( )e t is non-negative. 

Adding the first three equations of (1.5), we get 
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ultimately bounded. 

IV. GLOBAL ASYMPTOTIC STABILITY  

In this section, we shall investigate the global asymptotic 
stability of system (1.5) by Lyapunov functional approach. It 
is seen that for the stability purpose, only the first, third and 
forth equation of system (1.5) need to be considered. 

Theorem 4.1. If 0 1R  , the infection-free equilibrium 

point 0E is global asymptotically stable. 

Proof. Consider the following Lyapunov functional 
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forth equation of (1.5), we obtain 0y z  , so   0M E . 

Then we get the global asymptotical stability of by the LaSalle 
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(1.5), we obtain 0v  . Then from the second and third 
equation of (1.5), we also obtain 0y z  , then  it is easy to 

know the largest invariant set of is 0E , so by LaSelle 

invariance principle, we can know 0 1R  can also ensure the 

globally asymptotical stability of 0E . 
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By calculating the time derivative of  0 ( , , , )L x y z v  along 
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( ) ( ) ( ) ( ) ( ) ( )
[ 1 ln ]

( ) ( ) ( ) ( )
px t v t x v x t v t x t v t

e az
x v x t v t x t v x t v

 
 

 


   

    
  

    
 

( ) ( ) ( ) ( ) ( )
ln [ 1 ln ] ln

( ) ( ) ( ) ( )
p p px t v t z t v z t v z t v

e az e az e az
x t v z v t z v t z v t

  
  

  
   


    


 

( ) ( ) ( ) ( ) ( )
[ 1 ]

( ) ( ) ( )
p v t v t x t v x t v t

e az
v v x t v t x t v





  

 
    

 
 

( ) ( ) ( ) ( )
ln

( ) ( ) ( ) ( )
p x t v t x t v t

e az
x t v t x t v t

  
 

   


  
 

2( ( ) ) ( )
( )

( )( ) ( )
pdv x t x x x t v

e az g
x t x v x t x v


   


   

  
 

 
 

( ) ( )
( )

( ) ( ) ( )
p z x t v t x v

e az g
z t x v x t v t

  
 

  


 

  


  
 

( ) ( ) ( )
( ) ( )

( ) ( )
p pz t v x t v t

e az g e az g
z v t x t v

 


 
 


 


 

2( )( ( ) )

( ( ) ( ))( ( ) )

pe az x t v t v

v x t v t x t v

  

 




 
 

Since for all 0, ( ) 0x g x   and 
2( ( ) )

0
( )( )

dv x t x

x t x v

 

 

 



, so we 

know that 1( ) 0L t  . From above, we obtain 1( ) 0L t   if and 

only if , ,x x z z v v     . Let M be the largest compact 

invariant set in ( ( ), ( ), ( ), ( )x t y t z t v t  1 ( ) 0L t  , then from 

the second equation, we obtain y y . So M is just the 

singleton 1E . By the LaSalle invariance principle, we conclude 

that the infected equilibrium 1E of system (1.5) is globally 
asymptotically stable. 

V. SUMMARY AND DISCUSSIONS 

In this paper, we consider a new model with intracellular 
delay and nonlinear infection rate of saturated functional 
response. By constructing suitable Lyapunov functions and 
using LaSalle invariance principle, we have proven that the 
infection-free equilibrium is global asymptotic stable when 

0 1R  . And if 0 1R  , there exists an infection equilibrium and 
we also get its global asymptotic stability by constructing 
Lyapunov functional . 
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