
Global analysis of a delay virus dynamics model    

with Beddington-DeAngelis incidence rate and CTL 

immune response    
 

Lisha Liang  

School of Mathematics and Physics 

University of Science and Technology Beijing, 

Beijing, China 

13269558953@163.com 

Yongmei Su 

School of Mathematics and Physics 

University of Science and Technology Beijing, 

Beijing, China 

suym71@163.com

 

 
Abstract—In this paper, an HIV-1 infection model with 

Beddington-DeAngelis infection rate and CTL immune response 

is investaged. We derive the basic reproduction number 
0R for 

the viral infection model. By constructing suitable Lyapunov 

functionals and using LaSalle invariant principle for the delay 

differential equations, we find when 0 1R  , the infection-free 

equilibrium is globally asymptotically stable. And if the CTL 

immune reproductive number 
1 1R  , the immune-free equilib-

rium and the endemic equilibrium are globally asymptotically 

stable. 

Keywords—Beddington-DeAngelis; CTL immune response； 
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I.  INTRODUCTION  

In recent years, the dynamics of HIV-1 infection model  
have been studied due to such models can be helpful in the 
control of endemic diseases and provide insights into the 
dynamics of viral load [1-8]. The analysis of these dynamic 
behaviors may play a significant role in the development of a 
better understanding of diseases and various drug therapy strat-
egies against them. 

A basic viral infection model [9] has been widely used for 
investigating the dynamics of virus infections, which has the 
following forms: 

                                 

x dx xv

y xv ay

v ky uv

 



  


 
  

                           (1.1) 

where susceptible cells ( )x t are produced at a constant rate  , 

die  at a density-dependent rate dx , and become infected with 

a rate xv ; infected cells ( )y t are produced at a rate xv and 

die at a rate ay ; free virus particles ( )v t are released from 

infected cells at a rate ky and die at a rate uv . 

In reality, Cytotoxic T Lymphocytes (CTL) immune 
response is universal and necessary to eliminate or control the 

disease after the infection. Indeed, it is believed that CTL cells 
are the main host immune factor that determines virus load [10]. 
Therefore, the dynamics of virus infection with CTL response 
has recently drawn much attention of researchers in the related 
areas [11-16], paper [22] gave the following immune model 
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                         (1.2)                                                 

where infected cells ( )y t  are killed at a rate pyz by the CTL     

immune response and the virus-specific CTL cells proliferated 
at a rate cyz by contact with infected cells, and die at a rate 

bz .The variables and other parameters have same biological 

meanings as in the model (1.1). 

Besides the bilinear incidence  rate vx used in model (1.1) 

and (1.2),   the Beddington-DeAngelis functional reasponse 

1

xv

mx nv



 
 was often used for virus infection model [17,18]. 

Xia Wang [23] and Youde Tao construct the following model: 
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                       (1.3) 

where , , ,x y v z , have the same biological meanings as in the 

model (1.2).  

Recently, it has been realized that time delay should be 
taken into consideration [19-21]. Because there may be a lag 
between the time for target cells to be contacted by the virus 
particles and the time for the contacted cells to become actively 
affected. That is, the contacting virions need time to enter cells. 
Then G. Huang, W. Ma [23] propose the following model:
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where the state variable and constant have same meaning as 
model (1.3), and  represents the time delay. 

Based on above discussion, we propose the following 
model: 
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   (1.5) 

where the state variable and constant have same meaning as 
model (1.4).         

This paper is organized as follows. In Section II, we will 
give basic reproductive number and two equilibriums. Then we 
prove that the three equilibriums are globally asymptotically 
stable in section III. At last, this paper ends with a brief 
conclusion in Section IV. 

 

II.   BASIC REPRODUCTIVE NUMBER  

AND EQUILIBRIUM 

A direct computation shows that the basic reproductive 

number of model (1.5) is 0 / ( )aR e k au d m    . It shows  

there exists an infection-free equilibrium 0 0( ,0,0,0),E x and 

0 /x d .  

If 0 1R  , in the absence of an immune response, there 

exists an immune-free equilibrium 1 1 1 1( , , ,0)E x y v ,where  
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Note that 0 1R  means ak aume    which can make 

1 0,x   so 1y  and 1v  can also be positive with 0 1R  . 

As pointed in [24], if we assume that immune responses 

can potentially develop, the conditions 
1cy b , we introduce 

an immune response reproduction number 
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When 
1 1R  , there exists an endemic equilibrium 

2 2 2 2 2( , , , )E x y v z ,  where 
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  is equivalent to 2( )ae c dx ab      

>0 which can be proved by ( ( ))ac k e au d m       > 

( ( ))ab a k ndk aume     that is 
1 1R  . 

III.  STABILITY OF EQUILIBRIUMS 

 

Theorem 3.1. If
0 1R  , the infection-free equilibrium 

point
0E is global asymptotically stable for any delay 0.   

Proof. Choosing Lyapunov function 
0( )W t as follows             
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where 0 /x d . We calculating the derivative of 0( )W t along 

the positive solutions of the system (1.5) , and note that 

0dx  , we obtain 
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Obviously, when 
0 1R  , we have

0( , , , ) 0W x y z v  for all 

, , , 0x y z v  . Therefore, the infection-free equilibrium 
0E  is 

stable. 0( , , , ) 0W x y z v   if and only if 
0, 0x x z  0v  . Let M 

be the largest invariant set of  4( , , , ) :x y z v R 0 0W  , then 

from the second equation of (1.5), we obtain 0y  , which 

shows  0M E , so we get the global asymptotical stability of   

0E by  LaSalle invariance principle. If 
0 1R  , we obtain 

0( , , , ) 0W x y z v  if  and only if 
0, 0x x z  , Let M be the 

largest invariant set of 4( , , , ) :x y z v R 0 0W  , then from the 

second and third equations, we obtain 0y v  , so by LaSelle 

invariance principle, we can know 0 1R  can also ensure the 

globally asymptotical stability of 0E . 

Theorem 3.2. If 
1 1R  , the immune-free equilibrium 

point 
1E is global asymptotically stable.  

 Proof.    Define a Lyapunov function 1W  as follows 
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where ( ) 1 lng x x x   . We calculating the derivative of 1W  

along the positive solutions of the system (1.5) . 

1 1 1
1

1 1

1 ( )
( ) [ ( ) ( )] [ ( ) ( )]

1 ( )

a mx t nv x y
W t e x t x t y t y t

mx nv x t y

  
   

 
           

1 ( ) ( )
[ ( ) ( )] ( )

1 ( ) ( )

aa v p x t v t
v t v t z t e

k v c mx t nv t

    
 

            

1

( ) ( ) ( ) ( )
ln

1 ( ) ( ) 1 ( ) ( )

a x t v t x t v t
e ay

mx t nv t mx t nv t

     

   

    
 

       

1 ( ) ( )

( ) ( )

mx t v t

x t v t

 
 

1 1

1 1

1 ( ) ( ) ( )
[1 ][ ( ) ]

1 ( ) 1 ( ) ( )

a mx t nv x x t v t
e dx t

mx nv x t mx t nv t

 
  

   
   

 

    

1

1

( ) ( )
(1 )[ ( ) ( ) ( )]

1 ( ) ( )

(1 )[ ( ) ( )] [ ( ) ( ) ( )]

ay x t v t
e ay t py t z t

y mx t nv t

a v p
ky t uv t cy t z t bz t

k v c

   

 

  
   

   

    

 

    
( ) ( ) ( ) ( )

1 ( ) ( ) 1 ( ) ( )

a ax t v t x t v t
e e

mx t nv t mx t nv t

    

 

   
 

     
 

   1

( ) ( ) 1 ( ) ( )
ln

1 ( ) ( ) ( ) ( )

x t v t mx t nv t
ay

mx t nv t x t v t

 

 

   


   
 

Note that  

         1 1

adx e ay    

         1 1
1

1 11

ax v
e ay

mx nv




 
 

          1

1

u y

k v
  

2

1 1
1

1 1

( ( ) ) (1 )
( )

( )(1 )

ade x t x nv
W t

x t mx nv

  
 

 
  

1

( ) ( ) 1 ( ) ( )
ln

1 ( ) ( ) ( ) ( )

x t v t mx t nv t
ay

mx t nv t x t v t

 

 

   


   
  

          1 1 1
1

1 1

1 ( ) ( ) ( )
[3

( ) 1 ( ) 1 ( ) ( )

x mx t nv y x t v t
ay

x t mx nv y t mx t nv t

 

 

   
  

     
           

1 1 1 1
1

1 1 1 1 1

1 ( ) ( ) ( ) 1 ( )
] [ ]

( ) 1 ( ) ( )

mx nv v y t v t v t mx t nv
ay

x v v t y v v mx t nv t

   
   

 

1( )( )
b

pz t y
c

   

2

1 1 1 1
1

1 1 1 1

( ( ) ) (1 ) 1 ( )
[ 1

( )(1 ) ( ) 1

ade x t x nv x mx t nv
ay

x t mx nv x t mx nv

    
   

   
 

   

1 1 1 1 1
1

1 1 1 1

1 ( ) ( ) ( ) 1
ln ] (

( ) 1 ( ) 1 ( ) ( )

x mx t nv y x t v t mx nv
ay

x t mx nv y t mx t nv t x v

 

 

     
 

     

 

1 1 1 1
1

1 1 1

( ) ( ) 1 ( )
1 ln ] [ 1

( ) 1 ( ) ( ) ( )

y x t v t mx nv v y t
ay

y t mx t nv t x v v t y

 

 

   
   

   

1
1

1 1 1

( ) 1 ( ) ( ) 1 ( ) ( )
ln ] [ 1 ln ]

( ) 1 ( ) 1 ( )

v y t mx t nv t mx t nv t
ay

v t y mx t nv mx t nv

   
   

   

1
1

1 1 1

( ) ( ) 1 ( ) 1 ( ) ( )
[ 1 ]

1 ( ) ( ) 1 ( )

v t v t mx t nv mx t nv t
ay

v v mx t nv t mx t nv

   
    

   
     

        1( )( )
b

pz t y
c

   

2014 The 8th International Conference on Systems Biology (ISB)
978-1-4799-7294-4/14/$31.00 ©2014 IEEE

20 Qingdao, China, October 24–27, 2014



2

1 1 1 1
1

1 1 1 1

( ( ) ) (1 ) 1 ( )
( )

( )(1 ) ( ) 1

ade x t x nv x mx t nv
ay g

x t mx nv x t mx nv

    
  

   
 

   

1 1 1
1

1 1

1
1 1

1 1

( ) ( ) 1
( )

( ) 1 ( ) ( )

( ) 1 ( ) ( )
( ) ( )

( ) 1 ( )

y x t v t mx nv
ay g

y t mx t nv t x v

v y t mx t nv t
ay g ay g

v t y mx t nv

 

 

   


   

 
 

 

 

   
2

1
1

1 1

(1 ( ))( ( ) )
( ) ( 1)

(1 ( ) )(1 ( ) ( ))

n mx t v t v b
pz t R

v mx t nv mx t nv t c

 
  

   
 

Since ( ) 0g x  for all 0x  , if 
1 1R  , then 

1( , , , ) 0W x y v z  . 

And 
1( , , , )W x y v z =0 if and only if 

1 1 1, , , 0x x y y v v z    , so 

1E  is globally asymptotically stable. When 
1 1R  , we have 

1( , , , )W x y v z =0 if and only if 
1 1 1, , ,x x y y v v   from the 

second equation of (1.5), it is easy to know the largest 

invariant set of  4( , , , ) :x y z v R 1 0W  is 
1E , so by LaSelle 

invariance principle, we can know 
1 1R  can also ensure the 

globally asymptotical stability of 1E . 

Theorem 3.3.  The endemic equilibrium point 2E is 

global asymptotically stable. 

Proof.   We construct a Lyapunov function as follows 
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where ( ) 1 ln , 0g x x x x    . By calculating the derivative of 

2(W , , , )x y v z along the positive solutions of the system (1.5) 
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Since ( ) 0g x  for all 0x  , we have that 

2( , , , ) 0W x y z v  for all , , , 0x y z v  . Therefore, the endemic 

equilibrium 2E  is stable.  2( , , , )W x y v z =0 if and only if 
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2 2 2, ,x x y y v v   . Let M be the largest invariant set 

of  4( , , , ) :x y z v R 2 0W  , then  from the forth equation of 

(1.5), we obtain 
2z z , by LaSelle invariance principle, the 

endemic equilibrium 
2E  is also globally asymptotically stable. 

IV          CONCLUSIONS  

      In this paper, based on Beddington-DeAngelis infection 
rate and CTL immune response, we have discussed a virus 
infection model with time delay. The stable analysis of the 

given model is carried out. While 
0 1R  , the infection-free 

equilibrium 
0E

 
is  globally asymptotically stable for any 0.    

By constructing suitable Lyapunov
 
function and using LaSalle 

invariance principle, we have that when 
1 1R  , the immune-

free equilibrium 
1E  is also  globally asymptotically stable, 

when 
1 1R  , we also prove the global stability of the endemic 

equilibrium 
2E .  
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