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Abstract—In this paper, an HIV-1 infection model with
Beddington-DeAngelis infection rate and CTL immune response
is investaged. We derive the basic reproduction number R, for
the viral infection model. By constructing suitable Lyapunov
functionals and using LaSalle invariant principle for the delay
differential equations, we find when R, <1, the infection-free
equilibrium is globally asymptotically stable. And if the CTL
immune reproductive number R <1, the immune-free equilib-

rium and the endemic equilibrium are globally asymptotically
stable.

Keywords—Beddington-DeAngelis; CTL immune response ;
Lyapunov functional; LaSalle invariant principle;Global stabiliy

l. INTRODUCTION

In recent years, the dynamics of HIV-1 infection model
have been studied due to such models can be helpful in the
control of endemic diseases and provide insights into the
dynamics of viral load [1-8]. The analysis of these dynamic
behaviors may play a significant role in the development of a
better understanding of diseases and various drug therapy strat-
egies against them.

A basic viral infection model [9] has been widely used for
investigating the dynamics of virus infections, which has the
following forms:

X=A—-dx—fxv

y=pxv—ay

v =Ky —uv
where susceptible cells x(t) are produced at a constant rate 1,

die at a density-dependent rate dx, and become infected with
a rate Bxv; infected cells y(t) are produced at a rate Sxvand

die at a rate ay; free virus particles v(t) are released from
infected cells at a rate ky and die at a rate uv .

(1.1)

In reality, Cytotoxic T Lymphocytes (CTL) immune
response is universal and necessary to eliminate or control the
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disease after the infection. Indeed, it is believed that CTL cells
are the main host immune factor that determines virus load [10].
Therefore, the dynamics of virus infection with CTL response
has recently drawn much attention of researchers in the related
areas [11-16], paper [22] gave the following immune model

X=A—dx— pvx
y = pvx—ay — pyz
V=Kky—uv
z=cyz-bz
where infected cells y(t) are killed at a rate pyz by the CTL
immune response and the virus-specific CTL cells proliferated
at a rate cyz by contact with infected cells, and die at a rate
bz .The variables and other parameters have same biological
meanings as in the model (1.1).

(1.2)

Besides the bilinear incidence rate Svx used in model (1.1)
and (1.2), the Beddington-DeAngelis functional reasponse
pxv

——— was often used for virus infection model [17,18].
1+ mx+nv

Xia Wang [23] and Youde Tao construct the following model:

X:ﬂ_dx_ﬂ
1+ mx+nv

. XV

y= '87—3)’— pyz

1+ mx+nv

v=ky—uv

Z=cyz—bz

where x,y,v,z, have the same biological meanings as in the

model (1.2).

Recently, it has been realized that time delay should be
taken into consideration [19-21]. Because there may be a lag
between the time for target cells to be contacted by the virus
particles and the time for the contacted cells to become actively
affected. That is, the contacting virions need time to enter cells.
Then G. Huang, W. Ma [23] propose the following model:

(1.3)
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Bx®Vv(t)
1+ ax(t) +bv(t)
V() e At -7)v(t-7)

1+ax(t—7)+bv(t—1)
V'(t) = ky(t) —uv(t)

X (t) = A — dx(t) -

-pyt) (1.4)

where the state variable and constant have same meaning as
model (1.3), and 7 represents the time delay.

Based on above discussion, we propose the following
model:

X(t) = A —dx(t) - _ Xy
1+ mx(t) + nv(t)

- px(t-z)u(t-7)
+mx(t—7)+nv(t-7)

v(t) =ky(t) —uv(t)

2(t) =cy(t)z(t) —bz(t)

where the state variable and constant have same meaning as

model (1.4).

This paper is organized as follows. In Section I, we will
give basic reproductive number and two equilibriums. Then we
prove that the three equilibriums are globally asymptotically
stable in section Ill. At last, this paper ends with a brief
conclusion in Section V.

—ay(t)-py®z(t) (1.5)

Il. BASIC REPRODUCTIVE NUMBER
AND EQUILIBRIUM

A direct computation shows that the basic reproductive
number of model (1.5) is R,=e™* gk /au(d +mA) . It shows
there exists an infection-free equilibrium E, =(x,,0,0,0), and
Xo=Ald.

If R,>1, in the absence of an immune response, there
exists an immune-free equilibrium E, =(x,,y,,v;,0) ,where

_aue™ +nik
k3 + ndk —aume®

)

akpe1-1)
R0

= a(kg +ndk —aume®™)’

1

Ak pe (1-—

) B ( RO)
au(k B +ndk —aume®)’

Vi

Note that R,>1 means kg >aume* which can make
X, >0, so y, and v; can also be positive with R, >1.

As pointed in [24], if we assume that immune responses
can potentially develop, the conditions cy, >b, we introduce
an immune response reproduction number

R _Cy, _CcAkpBe™ —Jau(d + mi)
b b a(kp+ndk —aume®)

When R >1 ,
EZZ(szyzvvzqzz), Where

there exists an endemic equilibrium

L O+ 6% + 4dmucakb(n +1)
2 2mduc ’
(6 =mAiuc — Skb — duc — dnkb)

- e *c(A—dx,)—ab

Vo=—o, 2

uc pb
e c(A—dx,)—ab
,=——"— 2 —
pb
>0 which can be proved by c(1kBe ™ —Aau(d +ma)) >
b(a(kp +ndk —aume®)) thatis R >1.

>0is equivalent to e*c(1—dx,) —ab

I1l. STABILITY OF EQUILIBRIUMS

Theorem 3.1. If R;<1, the infection-free equilibrium
point E, is global asymptotically stable for any delay z>0.

Proof. Choosing Lyapunov function W,(t) as follows

Wy (1) = ——[x() = %, — %, In XD ey )+ 2u(t)

1+mx, Xo k
Px(t-6)(t-6)

1+mx(t—6)+nv(t—-06)

where x, =A1/d . We calculating the derivative of W,(t) along

the positive solutions of the system (1.5) , and note that

A =dx,, we obtain

ar P ¢
+e Ez(t) +I0

Cy— L %o ar @ a P
W, (t) = Trmx, 1 x(t)]x(t) +e¥y(t)+e . v(t)+e c 2(t)
pxve) - Bxt-7)v(t-7)
1+ mx(@)+nv(t) 1+mx(t—7)+nv(t—7)
S T T . OLIO M
1+mx, x(t) 1+ mx(t) + nv(t)

Lxt—7)v(t—7)

1+mx(t—z)+nv(t—7)
e E[ky(t) —uv(t)]+e* g[cy(t)z(t) —bz(t)]
Ax)v(t) Pt —7)v(t—1)

1+ mx(t) + nv(t) 1+ mx(t—z)+nv(t—17)

+e (e —ay(t)— py(t)z(t)
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__d(x%—x()° T Br)v(t)
x(t)@+ mx,) @+ mxy )@+ mx(t) + nv(t))
1 BV () JONO)

1+ mx, 1+ mx(t) +nv(t) 1+ mx(t)+nv(t)

e* ﬂv(t) —e* bb z(t)
k c

_d(=x(®)°  1+mx(t)  Axv(t)
CoX(@A+mx)  1+mx, 1+mx(t)+nv(t)’
—e™ a:(_uv(t) e¥ — p z(t)

_ 4% - x(t)° +ﬂxv(t) By pbz(t)
X()@+mx,)  1+mx,

_d(x - X(t))
X))@+ mxo)

Obviously, when R,<1, we have W,(x,y,z,v)<0 for all
X Y¥,z,v>0. Therefore, the infection-free equilibrium E, is
stable. W,(x,y,z,v)=0 if and only if x=x,z=0v=0. Let M
be the largest invariant set of {(x, y,z,v)eR!: WO:O} , then
from the second equation of (1.5), we obtain y=0, which
shows M ={E,}, so we get the global asymptotical stability of
E, by LaSalle invariance principle. If R,=1, we obtain
W,(x,y,z,v)=0if and only if x=x,,z=0, Let M be the
largest invariant set of{(x, y,z,v)eR!: W, =0}, then from the
second and third equations, we obtain y=v=0, so by LaSelle
invariance principle, we can know R,=1can also ensure the
globally asymptotical stability of E, .

(R ~)v(t)— eafp 2(t)

Theorem 3.2. If R <1, the immune-free equilibrium
point E, is global asymptotically stable.

Proof. Define a Lyapunov function W, as follows

O R e UM VORI

4 1+mx +nv, @

+E[v(t)—v1—vllnv(t)]+ 2(t)
e Bx(t—O)v(t—6)
ay,(L+mx(t—-0) +nv(t - 6)

+ay, [ o )do
where g(x)=x-1-Inx. We calculating the derivative of W,
along the positive solutions of the system (1.5) .

Wi (1) = e x(t) - X EMN X gy - 2 % 5(0)
1+ mx1+nv x(t)

[v(t) (v

Pxt-7)v(t-7) Xt—7)v(t-17)

—ar

— +ay,In
1+ mx(t—7z)+nv(t—7) 1+ mx(t—7z)+nv(t—7)
1+ mx(t) + v(t)
x(t)v(t)
eI 11+ mx(t) +nv, x X 0= dx(t) — BX()v(t)
+mx, +nv, X(t) 1+ mx(t) + nv(t)

Axt-7)v(t-1)

1+mx(t—7)+nv(t—7)

+(1—%)[e-“ —ay(t)— py®)z(t)]

+§(1—%)[ky(t)—uv(t)]+§[cy(t)z<t>—bz(t)]

ae PXOVE) e PX(t-T)V(t-7)
1+ mx(t) + nv(t) 1+mx(t—z)+nv(t—7)
vav.In X(t—7)v(t—7) 1+ mx(t) +nv(t)
(=)~ vt—7)  x(v(D)
Note that
A=dx +e*ay,
PR _ gy
1+ mx +ny,
u_y
k A
Wi (t) = de™ (x(t) — x,)°(L+nv,)
X)X+ mx, +nv,)
cav.In Xt—7)v(t-1) 1+ mx(t) + nv(t)
Ty mx(t—7)+nv(t—7)  X(t)v(t)
ray[3- X% lemx(®)+ny, oy Xt —-7)v(t-7)

X@t) 1+mx +nv;  yt)1+mx(t—7)+nv(t—7)
A y(t)] ay[- m+ﬂ 1+ mx(t) + nv,

v(t) A v, v, 1+mx(t) +nv(t)

1+mx +nv,
XV
+pz(t)(y, - )
c

_de™(x(t)- %) (L+nv,) a ¥ Lemx() +nv, i
O X(M)@A+mx +ny,) Y X(t) 1+mx, +nv,

X 1+ mx(t)+nv,

1+mx +ny,

M) - ay, (L X(t—7)v(t—7)
X(t) 1+mx +nv, yt) 1+ mx(t—7z)+nv(t—7) X,V

R X(t—7)v(t-1) 1+mx1+nv1]
y(t) 1+ mx(t—7)+nv(t—7) X,V
i v, y(t)] _ [1+ mx(t) +nv(t)
v(t) v, 1+ mx(t) +nv,
v(t) v(t) 1+ mx(t) + nv,

1—- 2
v, v, 1+mx(t) +nv(t)

ay [ yo
v(t) v,
1+ mx(t) + nv(t)
1+ mx(t) +nv,
N 1+ mx(t) + nv(t)
1+ mx(t) +nv,

1

+ay,[-

P2y, —%)
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_ O ) %
B x(t)(1+ mx, +Nv,) %9 X(t) 1+mx, +nv,
Xt —7)v(t—7) 1+ mx, +nv, L)
y(t) 1+mx(t—7z)+nv(t—7) X,\Vy
IONE 1+ mx(t) + nv(t)
Wil (E ) - 1+ mx(t) +ny,

n(L-+mx(t))(v(t) -V, b
Tuas mi(t) " n\(/l)))((lf r:wx(t1))+ vy PO RAD

Since g(x)>0for all x>0, if R <1, then W,(x,y,v,2)<0.
And W,(x,y,v,z) =0 if and only if x=x,y=y,,v=V,z=0, S0
E, is globally asymptotically stable. When R =1, we have
W,(x,y,v,z) =0 if and only if x=x,y=y,v=V, from the
second equation of (1.5), it is easy to know the largest
invariant set of {(x, y,z,v)eRf:V\'II:O} is E,, so by LaSelle
invariance principle, we can know R, =1can also ensure the
globally asymptotical stability of E, .

X 1+ mx(t) +nv,

- ylg(

Theorem 3.3. The endemic equilibrium point E, is
global asymptotically stable.

Proof. We construct a Lyapunov function as follows

ar x® 1+ mé +nv, X t
W= DX -, - [ T X 00] [y -y, -y, )
2 2 2

v(t)]+ [z(t) -2,—-2,In—= Z(t)
e ﬂx(t —-0)(t-0)
(ay, + py,z,)(1+mx(t — ) +nv(t — 6)

+w[v(t)—v2—vzln

+@y, + py,2,)[ o

where g(x)=x—-1-Inx,x>0. By calculating the derivative of
W, ( x,y,v,z) along the positive solutions of the system (1.5)

1+ mx(t) +nv, X, A
m X®) XO1+[y(®) - Y(t)]

— v - V(t)]+ [Z(t)——Z(t)]

2(0)
o By .

Pt —7)v(t—1)
1+ mx(t) + nv(t) 1+mx(t—7)+nv(t—7)

W, (1) = e [x(t) -

Lat pz

x(t—7)v(t—7) 1+ mx(t) + nv(t)

+(@y, + py,2,)In

1+mx(t—7z)+nv(t—7) x(t)v(t)
e 1l+ mx(t) +nv, X, X 101 dx(t) Bx)v(t)
+mx, +nv, X(t) 1+ mx(t) + nv(t)

+( y2 )[ —ar ,BX(t—T)V(t—Z’)
y(t) I+ mx(t—-7)+nv(t—7)

—ay —py(t)z(t)]

a+ pz, Vo

ORI

P ey tyz(t) - be(t)]
¢ z(t)

e PX(OV() —ar

+e —-e
1+ mx(t) + nv(t)

Pt —7)v(t-1)
1+mx(t—z)+nv(t—7)
X(t—7)v(t—7) 1+ mx(t) + nv(t)

+(@y, + py,2,)In

1+mx(t—7)+nv(t—7) x(t)v(t)
Note that,
A= dxz + ear(ay2 + pyzzz)
ﬂXZVZ ar
=e*(ay, + py,z
Trmx, v, (ay, + py,z,)
u_y,
k v,
y, =2
e
. e~ (14 nv, )(x, — X(t))?
Vi 1) = — 28— ()%, = X(0) +(ay2+pyzz2)[—¥+

X)L+ mx, +nv,)
v(t) 1+mx(t)+nv,
v, 1+mx(t)+nv(t)

2
1+ mx(t)+nv, x

3
1+ (ay, + py,z,)[ 1+ mx, +nv, X(t)

Vv, Y)Y, x(t—7)v(t-7) 1+mx, +nv,
vit) vy, y() X,V, 1+mx(t—7z)+nv(t—7)
X(t—7)v(t-1) 1+ mx(t) + nv(t)

a z,)In
(ay, + py,2z,) 1+ mx(t—z)+nv(t—7)

de ™ (L+nv,)(x, — X(t))?

= —(a
X)L+ mx, +nv,) (@ + py;2)l 1+mx, +nv, X(t)

1+ mx(t) +nv, X, Y, X(t—-7)v(t—7)
-In 1+ mXx, +nv, x(t)] (@ + vz y(t) XV,
1+mx, +nv, Y, X(t-7)v(t-7)
1+ mx(t) + n(t) y(t) X,V,

X(t)v(t)

1+mx@®)+nv, X,

1+ mx, +nv,
1+mx(t—7)+nv(t—7)

1+ mx(t) + nv(t)
—(a z -1-In
(ay, + py,z,)[ T3 () + v,

v, y(t)
(ay, + py,z,)9l oy ]
n(l+ mx(t))(v(t) -V,)?
v, (L+ MX() + NV (L) (L+ mx(t) +nv,)
de * (1+nv,)(x, — X(t))*

ST e ey et ezl

1+ mx(t) + nv(t)
1+ mx(t) +nv,

1+mx(t) +nv, X,
1+mx, +nv, x(t)

Xt -7)v(t—7) 1+mx,+nv,

—~(ay, + pY,2,) 0l

YO %, Lemx®+n()
) 1+ mx(t) + nv(t)
(ay, + py,2,)9[ 1+ mx(t) + nv,
) v, y()
(@, + P.2)0l 5

B n(+mx())(v(t) -v,)*
V, (14 mx(t) + nv(t)) @+ mx(t) + nv,)
Since g(x)>0 for all x>0 , we have that
W,(x,y,z,v) <0 for all x,y,z,v>0. Therefore, the endemic
equilibrium E, is stable.

W,(x,y,v,z) =0 if and only if
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X=X,y=Y,Vv=v, . Let M be the largest invariant set

of{(x, y,z,v)eR!:W, =0}, then from the forth equation of

(1.5), we obtain z=z,, by LaSelle invariance principle, the
endemic equilibrium E, is also globally asymptotically stable.

v CONCLUSIONS

In this paper, based on Beddington-DeAngelis infection
rate and CTL immune response, we have discussed a virus
infection model with time delay. The stable analysis of the
given model is carried out. While R, <1, the infection-free

equilibrium E, is globally asymptotically stable for any z>0.

By constructing suitable Lyapunov function and using LaSalle
invariance principle, we have that when R, <1, the immune-

free equilibrium E,; is also globally asymptotically stable,
when R >1, we also prove the global stability of the endemic
equilibrium E, .
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