
A Class-Information-based SNMF Method for 
Selecting Characteristic Genes 

Jin-Xing Liu 
School of 

Information Science 
and Engineering 

Qufu Normal 
University 

Rizhao, China 
Email: 

sdcavell@126.com 

Chun-Xia Ma 
School of 

Information Science 
and Engineering 

Qufu Normal 
University 

Rizhao, China 
Email: 

mcxia87@126.com 

Ying-Lian Gao 
Library of Qufu 

Normal University 
Qufu Normal 

University 
Rizhao, China 

Email: 
yinliangao@126.com 

Jian Liu 
School of 

Communication 
Qufu Normal 

University 
Rizhao, China 

Email:liujiansqjxt@1
26.com 

Chun-Hou Zheng 
 College of Electrical 

Engineering and 
Automation, Anhui 
University, Hefei, 

China 
E-mail: 

zhengch99@126.com 

Abstract—The significant advantage of sparse methods is to 
reduce the complicacy of genes expression data, which makes 
them easier to understand and interpret. In this paper, we 
propose a novel Class-information-based Sparse Non-negative 
Matrix Factorization (CISNMF) method which introduces the 
class information by the total scatter matrix. Firstly, the total 
scatter matrix is obtained via combining the between-class and 
within-class scatter matrices. Secondly, a new data matrix is 
constructed via singular values and left singular vectors which 
can be obtained via decomposing the total scatter matrix. Finally, 
we decompose the new data matrix by using sparse Non-negative 
Matrix Factorization and extract characteristic genes. In the end, 
results on gene expression data sets show that our method can 
extract more characteristic genes in response to abiotic stresses 
than conventional gene selection methods. 

Keywords—matrix factorization; scatter matrices; gene 
expression data; gene selection; abiotic stresses 

I.  INTRODUCTION 
Environmental abiotic stresses have caused many 

unfavorable effects on plant growth, such as heat, osmotic 
stress. In order to reduce the negative impact of these 
environmental conditions, plants have evolved a variety of 
strategies and they can able to cope with these environmental 
conditions, including salt, cold, osmotic stress, uv-b light, 
drought and so on [1]. The fundamental concept is that they 
have some interacting genes responding to each abiotic stress. 
Therefore, it is one of the utmost significant topics how to 
comprehend the abiotic stresses responses in plant science [2]. 

 Many conventional methods, such as RT-PCR [3] or 
Northern blotting [4, 5] have been used to study the genes 
responding to abiotic stresses. However, these methods have 
one defect that only a small part of genes can be studied at the 
same time. So, the microarray technology has been put 
forward to overcome this shortcoming. The technology makes 

it possible to monitor gene expression levels on a genomic 
scale [6]. With the booming of microarray technology, a large 
number of mathematical methods have been used to analyze 
gene expression data [7-16], such as, principal component 
analysis (PCA), independent component analysis (ICA) and 
singular value decomposition (SVD). In gene expression data 
analysis, PCA is an unsupervised method to search the useful 
eigenassay or eigengene [7]. ICA [10] is a useful extension of 
PCA. Huang et al. introduced a penalized discriminant method 
based on ICA for tumor classification [12]. Alter et al. put 
forward to use SVD for modeling and processing the gene 
expression data [17]. Although these methods have been 
widely used in gene expression data, they have some 
drawbacks. For example, they are not sparse, which makes it 
hard to interpret the expression data. Therefore, the 
corresponding sparse algorithms are proposed by researchers 
to overcome these drawbacks For example, Journée et al. 
proposed an SPCA method by using generalized power 
method [8]. Liu et al. proposed the Weighting Principal 
Components by Singular Values to extract characteristic genes 
[15]. In [14], Witten et al. proposed a penalized matrix 
decomposition, which was used to analyze plants gene 
expression data by Liu et al. [9, 18]. However, they have some 
common defects: They allow the negative component exists 
and need to standardize the original data. 

To seek a better solution, Lee and Seung firstly introduced 
Non-negative Matrix Factorization (NMF) method to 
decompose image matrix in [19]. NMF decomposes a non-
negative data matrix into two non-negative factors. Thereinto 
one matrix is called basis matrix, the other is defined as the 
coefficient matrix of the corresponding basis matrix. In 
addition, NMF usually involves some simple operations, so it 
has a lower computational cost. So far, many algorithms of 
NMF have been proposed [20, 21]. In addition, the 
corresponding sparse NMF algorithms have been proposed to 
give a reasonable sparse representation, such as sparse NMF 
[22], Fisher NMF [23] and Non-negative Matrix Factorization 
with Sparse Constraints (SNMF) [24]. NMF has been widely 
used in gene expression data analysis [25]. The sparse NMF 
and Fisher NMF have a common side-effect that the sparsity 
cannot be controlled. However, SNMF, which was first 
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introduced by Patrik O. Hoyer [24], can control the sparsity 
accurately. SNMF has been applied to images processing [26], 
genes selection [27, 28] and so on. In order to improve the 
analytical performance of gene expression data, we put 
forward a Class-Information-based Sparse Non-negative 
Matrix Factorization (CISNMF) method, which introduces the 
class information by using the total scatter matrix. The scheme 
of CISNMF is given as follows: Firstly, the total scatter matrix 
is obtained by combining the within-class and between-class 
scatter matrices; Secondly, we decompose the total scatter 
matrix by using singular value decomposition (SVD) and 
construct a new data matrix by singular values and left 
singular vectors; Thirdly, we decompose the new data matrix 
by a SNMF and extract the genes according to the sparse 
loading vectors. 

This paper is structured as follows. In section II, we 
describe the methodology of CISNMF. Section III provides 
experimental results and discussion. Section IV concludes the 
paper. 

II. METHODS 

A. The Mathematical Definition of Scatter Matrices 
On the basis of a similarity measure, the pending 

classification pattern set }{ 1 2, , , nx x x  

  is divided into c  
categories. The classified pattern denoted as 

( ) }{ ; 1, 2, , ; 1, 2, ,j
i jx j c i n= =

  . Three matrices are defined 

as: the within-class scatter matrix wJ , the between-class 
matrix bJ  and the total scatter matrix tJ . For all the samples 
of all classes, the three scatter matrices can be written as 
follows: 

1) The first is called within-class scatter matrix wJ  which 
is described as: 

 1 1
( )( ) ,

jnc
j j T

w i j i j
j i

- z - z
= =

= ∑∑J x x           (1) 

where
 

j
ix  is the i -th sample in class j ; jn is the number of 

sample in class j , jz is the mean of class j , c  is the number 
of classes. 

2) The next is called between-class scatter matrix bJ  
which is given by 

 ( )( )
1

c T

b j j j
j

n z - z z - z
=

= ∑J ,            (2) 

where z  is the mean of all classes. 

3) The goal of clustering makes the within class distance 
as small as possible, the distance between classes as bigger as 
possible. So, the total scatter matrix tJ  can be denoted by 

 t b wξ= −J J J ,             (3) 

where 0ξ ≥  is an adjustable parameter that stems from a 
trade-off between bJ  and wJ . 

The aim of clustering is: [ ] maxbTr ⇒J  or/and 

[ ] minwTr ⇒J  and the traces of scatter matrices could 
measure the between-class and within-class distances. They 
are written as follows: 

 
( ) ( )( )

1 1

1 2 .

jnc Tj j
w i j i j

j i

w w wk

Tr Tr z z

λ λ λ
= =

 
= − − 

  
= + + +

∑∑J x x



            (4) 
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1

1 2 .

c T

b j j j
j

b b bk

Tr Tr n z z z z

λ λ λ
=

 
= − − 

 
= + + +

∑J



            (5) 

Here, ( )wTr J  is used to measure the close degree of the 
samples within the classes. While ( )bTr J  is used to measure 
the degree of separation between the classes. Hence, the 
adjustable parameter ξ  in (3) can be written as follows [29]: 

 
( )
( )

b

w

Tr
Tr

ξ =
J
J

                          (6) 

B. Mathematical Definition of CISNMF 
In order to extract the characteristic genes effectively, we 

introduce a supervised learning method. The new data matrix 
is obtained by the total scatter matrix tJ . Then the new data 
matrix is decomposed into two non-negative entries by SNMF. 

Firstly, the scatter matrix tJ  is decomposed by using SVD. 
It can be written as follows: 

 ,T
t =J UΛV                           (7) 

where 1 2( , , , )rdiag= Λ Λ ΛΛ   is a diagonal matrix that 
consists of singular values and r  is the rank of tJ . U  and V  
are orthogonal feature vectors. 

Secondly, for reducing the computational complexity, we 
construct a new matrix, and the new data matrix is constructed 
as follows: 

 = .1/ 2Q UΛ                           (8) 
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Finally, L  is the transpose of Q , and L  is decomposed 
by using Sparse Non-negative Matrix Factorization (SNMF). 

 ~ ,L FP                           (9) 

where L  is an m n×  non-negative matrix, F  is an m k×  
non-negative matrix, P  is a k n×  non-negative  matrix and 

( )k min m,n< . 

The optimization problem can be described as the 
following: 

- ( - ( ) ) , , 0,22
ij ij

ij
minimize minimize= ∀ >∑F,P F,P

L FP L FP F P  (10) 

s. t. optional constraints: 

 ( ) , iisparseness ϕ= ∀F            (11) 

 ( ) , iisparseness γ= ∀P                          (12) 

where iF  is the i -th column of F , iP  is the i -th row of P . 

C. The Algorithm 
The details of the CISNMF algorithm are listed as follows: 

1) The total scatter matrix tJ  is obtained via (3). 

2) The U , Λ  and V  are obtained via decomposing tJ  
by SVD in (7). 

3) Construct a new data matrix Q  according to (8). 

4) Transpose Q  as L , and L  is decomposed into F  and 
P  by SNMF. 

5) Initialize F  and P  to random positive matrices. 

6) Iterate until convergence or reach the largest number of 
iteration. 

a) Sparse constraints on P , 

: ( )T
pδ= − −P P F FP L  

( ) ( ): /T T= ⊗F F LP FPP  

b) Sparse constraints on F , 

( ): T
fδ= − −F F FP L P  

( ) ( ): /T T= ⊗P P F L F FP  

In this algorithm, 0ξ ≥  is an adjustable parameter that 
stems from a trade-off between bJ  and wJ . The sparseness of 
F (ϕ ) and P ( γ ) are in the range between (0, 1). fδ  and pδ  
are small positive constants (stepsizes) and the two parameters 
need not be set by the user. 

D. Extracting Characteristic Genes by CISNMF 
In the research, our goal is to gain the characteristic genes 

responding to the abiotic stresses. Here, we transpose the gene 
expression data matrix Q  and defined it as L . Hence, 

= TL Q and the size of L  is m n× , rows represents the 
expression level of the n  genes in m  samples, each column 
of L  represents the expression level of a gene across all 
samples. So, the L  can be written as: ~L FP , where F  is an 
m k×  non-negative matrix, P  is a k n×  non-negative matrix 
and k min(m,n)< . 

The optimization problem is convex in F  and P  
separately and minimize the reconstruction error between L  
and FP . Various error functions have been testified in [30], 
and the squared error (Euclidean distance) function is given as 
follows: 

 
- = ( - ( ) ) , , 0.22

ji ji
ji

∀ >∑L FP L FP F P           (13) 

The sample expression profile jl
 
by (9) can be denoted as: 

 1
, .

k

j ji i
i

j 1,2, ,m
=

= =∑l f p 

          (14) 

Here jl  is a linear combination of the metasamples }{ ip  
and jl  is the row of L , jif  is the entry of F . Here, we can 
view the rows of F  as the encoding coefficients and the k  
rows of P  as basis vectors (metasamples). The data matrix L , 
coefficients matrix F  and basis matrix P  are shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
Fig. 1. The graph description of the matrix L  with the factors F  and P . 

In Fig. 1, jl  is the samples characteristics of the matrix L , 

ir  represents the feature vectors of L , jia
 
shows the 

expression level of the i -th gene in the j -th sample. ˆ
jl
 
is 

the j -th eigensamples of F , îr  is the column vector of F  and 
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indicates the i -th vector in k  genes of F . jl
 
and ir  refer to 

the j -th sample vector and i -th feature of P  which consists 
of n  genes in k  samples. In order to reduce the dimension of 
L , we choose part of the sample characteristics to replace L . 
Due to the matrix P  contains all genes and it is one subset of 
metasamples of L , the matrix P  is called the basis vectors. 
Hence, we can extract characteristic genes from the basis 
matrix P . So, jl

 
can be replaced by ip . By controlling the 

parameters of SNMF, the sparse matrix P  can be gained. So, 
the characteristic genes can be extracted from the non-zero 
entries in the matrix P . 

In the end, we summarize in getting characteristic genes 
via the CISNMF method as the following: 

• Gain the total scatter matrix tJ . 

• Decompose the scatter matrix tJ  by SVD. 

• Gain a new matrix Q  via executing the SVD, and 
transpose Q  into L . 

• Obtain the matrix P  according to SNMF. 

• Extract the characteristic genes via the non-zero entries 
in P . 

• Exploit the GO to check the extracted characteristic 
genes. 

III. RESULT AND DISCUSSION 
In this section, we will show the results of exploiting 

CISNMF method. In this section, the results on gene 
expression data sets are given. Our method will compared 
with SNMF [24], SPCA [8] and PMD [9] methods in this 
section. 

A. Data Source 
The gene expression data are download from the 

NASCArrays [http://affy.arabidopsis.info/], reference numbers 
are: NASCArrays-141, drought stress; NASCArrays-140, salt 
stress; NASCArrays-144, uv-b light stress; NASCArrays-138, 
cold stress; NASCArrays-146, heat stress; NASCArrays-139, 
osmotic stress; NASCArrays-137, control [31]. Here, each 
sample contains 22810 genes and the sample numbers of each 
stress are listed in Table I.  

TABLE I.  THE NUMBER OF EACH STRESS TYPE IN THE DATA SET 

The background light noise of these data can be adjusted 
by using the GC-RMA method which was proposed by Wu et 
al. [32]. The GC-RMA results are collected in a matrix to be 
further processing. In this paper, the two labels are selected by 
two data sets (except the control sets) to construct the matrix 

tJ . For drought set in root, we assign the drought samples to 
the first class and the other 11 samples as the second class. We 

use SNMF to process these data, and the extracted genes are 
verified by GO tools. 

B. Selection of the Parameters 
In [27, 28] the best results are obtained when the 

sparseness controlling parameter ϕ  is set to 0.5. So in our 
experiment, parameter ϕ  is set to 0.5 and the adjusted 
parameter γ  is controlled in range (0-1) [24]. For comparison, 
500 genes are selected by CISNMF, SNMF, PMD and SPCA 
methods. 

C. Gene Ontology (GO) Analysis 
Terms are the basic concept of Gene Ontology (GO). Each 

entry in GO has a unique digital label. The Gene Ontology 
term enrichment tool, including meaningful shared GO terms, 
can search those genes that may have in common [33]. The 
analysis of GO Term Finder is modular, which offers valuable 
information of high-throughput experiments in biological 
science field. In this research, our method will be evaluated by 
GO TermFinder, which is freely used at 
<http://go.princeton.edu/cgi-bin/GOTermFinder> [34]. The 
threshold parameters are set as listed below: minimum number 
of gene products is set to 2 and maximum p-value is set to 
0.01. 

TABLE II.  RESPONSE TO STIMULUS (GO: 0050896) IN ROOT SAMPLES 

stress CISNMF SNMF PMD SPCA 

type PV SF PV SF PV SF PV SF 

drought 1.36E-
84 

313*, 
62.7% 

2.39E-
88 

318, 
63.6% 

3.67E-
65 

287, 
57.4% 

1.39E-
66 

289, 
57.8% 

salt 1.39E-
79 

307, 
61.4% 

5.54E-
95 

326, 
65.2% 

1.19E-
84 

313, 
62.6% 

1.42E-
34 

237, 
47.4% 

uv-b 1.59E-
65 

288, 
57.6% 

3.81E-
64 

286, 
57.2% 

8.78E-
38 

243, 
48.6% 

9.56E-
22 

210, 
42.0% 

cold 9.18E-
84 

312, 
62.5% 

3.79E-
81 

309, 
61.8% 

5.06E-
68 

291, 
58.2% 

1.54E-
61 

281, 
56.4% 

heat 3.06E-
40 

248, 
49.6% 

3.71E-
21 

209, 
41.8% 

1.18E-
19 

205, 
41.0% 

1.23E-
17 

200, 
40.0% 

osmotic 4.59E-
89 

319, 
63.8% 

1.65E-
47 

260, 
52.1% 1.1E-26 221, 

44.2% 
1.49E-

34 
237, 

47.4% 
In this table, the background frequency of response to stimulus (GO: 0050896) in TAIR set is 21.8% 
(6619/30324). And in the sample frequency, 313* denotes having 313 genes to response to stimulus in 
the 500 selection genes. PV: p-value, and SF: sample frequency. 

In root sample, the response to stimulus (GO: 0050896) is 
listed in Table II. In TAIR set, the corresponding background 
frequency is 21.8% (6619/30324). In this experiment, 500 
genes are selected by CISNMF, SNMF, PMD and SPCA 
methods. Table II lists the p-value and sample frequency of 
various stresses. In our method, 313 genes for drought stress 
are extracted and the sample frequency is 62.7%, 307 genes 
for salt stress are extracted (61.4%), 288 genes for uv-b stress 
are extracted (57.6%), 312 genes for cold stress are extracted 
(62.5%), 248 genes for heat stress are extracted (49.6%), and 
319 genes for osmotic stress are extracted (63.8%). While in 
SNMF method, 318 genes for drought stress are extracted 
(63.6%), 326 genes for salt stress are extracted (65.2%), 286 
genes for uv-b stress are extracted (57.2%), 309 genes for cold 
stress are extracted (61.8%), 209 genes for heat stress are 
extracted (41.8%) and 260 genes for osmotic stress are 
extracted (52.1%). In Table II, only two of these stresses 

stress type drought salt uv-b cold heat osmotic control 

number 7 6 7 6 8 6 8 
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(drought stress and salt stress) that SNMF method is superior 
to our method. In other stresses, our method outperforms 
SNMF. Obviously, the bold fonts in Table II show that our 
method is far superior to PMD method and SPCA method. 
From Fig. 2, we can see that our method surpasses other 
methods. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The response to stimulus (GO: 0050896) in root samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The response to stimulus (GO: 0050896) in shoot samples. 

TABLE III.  RESPONSE TO STIMULUS (GO: 0050896) IN SHOOT SAMPLES 

stress CISNMF SNMF PMD SPCA 

type PV SF PV SF PV SF PV SF 
droug
ht 

3.46E-
99 

331, 
66.2% 

5.28E-
109 

342, 
68.4% 

8.09E-
77 

303, 
60.6% 

5.45E-
54 

270, 
54.0% 

salt 1.81E-
63 

285, 
57.0% 

2.01E-
52 

268, 
53.7% 

1.43E-
45 

256, 
51.2% 

9.59E-
49 

262, 
52.4% 

uv-b 1.01E-
92 

323, 
64.7% 

2.79E-
141 

375, 
75.0% 

6.4E-
128 

361, 
72.2% 

3.12E-
101 

332, 
66.4% 

cold 1.6E-82 311, 
62.2% 

1.04E-
82 

310, 
62.0% 

1.82E-
70 

294, 
58.8% 

3.54E-
60 

279, 
55.8% 

heat 1.34E-
76 

302, 
60.8% 

4.28E-
19 

204, 
40.8% 

3.69E-
26 

220, 
44.0% 

8.04E-
51 

265, 
53.0% 

osmot
ic 

4.72E-
103 

335, 
67.1% 

1.97E-
92 

323, 
64.6% 

3.67E-
70 

294, 
58.8% 2.3E-49 263, 

52.6% 

In shoot samples, the sample frequencies of response to 
stimulus (GO: 0050896) are shown in Fig. 3. It can be seen 
that only in drought stress and uv-b stress data points, SNMF 
method is superior to our method. In the four remaining data 
points, our method is better than SNMF method. The specific 
results are listed in Table III. In addition, in the six data sets, 
our method has priority over PMD method and SPCA method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The response to stress (GO: 0006950) in root samples. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 5. The response to stress (GO: 0006950) in shoot samples. 

Fig. 4 and 5 depict the corresponding sample frequency of 
response to stress (GO: 0006950) in root and shoot samples, 
respectively. As shown in Fig. 4, the salt stress point of SNMF 
method is higher than ours. In other data points, our method 
outperforms other methods. Fig. 5 shows that only in drought 
stress and uv-b stress data points, SNMF method gets ahead of 
our method. In the residuary data points, our method has an 
advantage over other methods. 

The numbers we select and p-value of response to stress 
(GO: 0006950) in root and shoot samples, respectively, are 
listed in Table IV and Table V. In TAIR set, the background 
frequency of response to stress is 13.3% (4028/30324). In 
Table IV, our method is superior to other four methods except 
the salt stress data set. SNMF method excels our method in the 
drought stress and uv-b stress data sets, and the detailed 
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contents are listed in Table V. In other data sets, our method 
outperforms other methods. 

TABLE IV.  RESPONSE TO STRESS (GO: 0006950) IN ROOT SAMPLES 

stress CISNMF SNMF PMD SPCA 

type PV SF PV SF PV SF PV SF 

drought 2.82E-94 260, 
52.1% 2.5E-92 258, 

51.6% 9.89E-64 222, 
44.4% 1.49E-70 231, 

46.2% 

salt 2.57E-81 245, 
49.0% 4.57E-94 260, 

52.0% 1.48E-82 246, 
49.2% 3.65E-34 177, 

35.4% 

uv-b 5.27E-52 206, 
41.2% 5.29E-50 203, 

40.6% 1.36E-27 165, 
33.0% 1.38E-21 153, 

30.6% 

cold 4.79E-79 242, 
48.5% 7E-79 242, 

48.4% 4.03E-72 233, 
46.6% 7.11E-65 223, 

44.8% 

heat 4.3E-44 194, 
38.8% 5.91E-29 168, 

33.6% 2.98E-30 170, 
34.0% 1.47E-21 153, 

30.6% 

osmotic 2.99E-81 245, 
49.0% 7.28E-49 201, 

40.3% 1.55E-24 159, 
31.8% 1.07E-29 169, 

33.8% 

TABLE V.  RESPONSE TO  STRESS (GO: 0006950) IN SHOOT SAMPLES 

stress CISNMF SNMF PMD SPCA 
type PV SF PV SF PV SF PV SF 
droug
ht 

4.03E-
93 

259, 
51.8% 

5.03E-
118 

286, 
57.2% 

2.43E-
83 

247, 
49.4% 

7.15E-
46 

196, 
39.2% 

salt 9.73E-
60 

217, 
43.4% 

1.66E-
51 

205, 
41.1% 

2.77E-
33 

175, 
35.0% 

3.66E-
29 

168, 
33.6% 

uv-b 1.84E-
100 

267, 
53.5% 

8.29E-
150 

317, 
63.4% 

9.65E-
128 

295, 
59.0% 

1.56E-
85 

249, 
49.8% 

cold 7.2E-77 239, 
48.0% 

3.96E-
64 

223, 
44.6% 

2.01E-
57 

213, 
42.6% 

3.48E-
61 

218, 
43.6% 

heat 2.12E-
65 

224,45.1
% 

8.05E-
26 

162, 
32.4% 

1.97E-
32 

174, 
34.8% 

1.34E-
39 

186, 
37.2% 

osmot
ic 

1.12E-
109 

277, 
55.5% 

4.94E-
94 

260, 
52.0% 1E-66 226, 

45.2% 
1.52E-
42 

191, 
38.2% 

TABLE VI.  RESPONSE TO WATER DEPRIVATION (GO: 0009414) IN ROOT 
SAMPLES 

To sum up, our method gets ahead of others. In order to 
further study, the drought stress data set responding to water 
deprivation (GO: 0009414) in root samples is analyzed in 
Table VI. The background frequency of response to water 
deprivation is 1.4%. This table lists the numbers of response to 
water deprivation and p-value by the four methods, Moreover, 
the neglected characteristic genes by other methods are listed 
in Table VII. The literatures of those characteristic genes and 
the authors of these literatures are noted in the Table. All these 
genes are relevant to drought stress, and some are relevant to 
cold or salt and / or osmotic stress. From Table VI, we can see 
that CISNMF method extracts more characteristic genes than 
other methods. 

TABLE VII.  REFERENCES ABOUT CHARACTERISTIC GENES RESPONSE TO 
WATER DEPRIVATION (GO: 0006950) IN ROOT SAMPLES 

Gene name Response to References 
At2g33380 Drought, cold Heyndrickx KS, et al. (2012) [35] 
At3g45140 Drought Bell, et al. (1993) [36] 
At4g34390 Drought Heyndrickx KS, et al. (2012) [35] 
At2g46680 Drought, cold Heyndrickx KS, et al. (2012) [35] 

At5g27520 Drought Heyndrickx KS, et al. (2012) [35] 
At2g42530 Drought Heyndrickx KS, et al. (2012) [35] 
At5g62470 Drought Seo, et al. (2009) [37] 
At4g26070 Drought Xing, et al. (2008) [38] 
At3g19970 Drought Heyndrickx KS, et al. (2012) [35] 
At5g54490 Drought Heyndrickx KS, et al. (2012) [35] 
At5g27420 Drought Heyndrickx KS, et al. (2012) [35] 
At3g63060 Drought, salt, osmotic Koops, et al. (2011) [39] 
At4g36990 Drought Heyndrickx KS, et al. (2012) [35] 
At4g21440 Drought Heyndrickx KS, et al. (2012) [35] 
At1g73480 Drought, cold Heyndrickx KS, et al. (2012) [35] 
At5g67340 Drought, cold Heyndrickx KS, et al. (2012) [35] 
At4g17500 Drought Heyndrickx KS, et al. (2012) [35] 
At2g41430 Drought Kiyosue, et al. (1994) [40] 
At3g52400 Drought, cold Heyndrickx KS, et al. (2012) [35] 
At4g05100 Drought Heyndrickx KS, et al. (2012) [35] 
At2g46270 Drought, salt Heyndrickx KS, et al. (2012) [35] 
At4g26080 Drought, cold Heyndrickx KS, et al. (2012) [35] 
At5g57050 Drought, cold Heyndrickx KS, et al. (2012) [35] 
At3g57530 Drought, cold Heyndrickx KS, et al. (2012) [35] 
At4g34710 Drought Heyndrickx KS, et al. (2012) [35] 

In a word, these experiments and analyses show our 
method can extract more genes than other methods. Therefore, 
our method has more advantages of extracting characteristic 
genes than other methods. 

IV. CONCLUSIONS 
A new method (CISNMF) is proposed to extract genes in 

this paper. CISNMF method introduces the classification 
information by scatter matrix, so it can get more 
comprehensible and interpretable results. The extracted 
characteristic genes are analyzed by GO tools. For gene 
expression data, CISNMF can extract more characteristic 
genes than other methods. The experiments demonstrate that 
our method is effective and suitable for selecting characteristic 
genes. 

In future, we will focus on the biological interpretation of 
the characteristic genes. 
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