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Abstract—Comprehensive detection and identification of copy 

number and LOH of chromosomal aberration is required to 

provide an accurate therapy of human cancer. As a cost-saving 

and high-throughput tool, SNP arrays facilitate analysis of 

chromosomal aberration throughout the whole genome. The 

performance of previous approaches has been limited to several 

critical issues such as normal cell contamination, aneuploidy and 

tumor heterogeneity. For these reasons we present a Hidden 

Markov Model (HMM) based approach called TH-HMM 

(Tumor Heterogeneity HMM), for simultaneous detection of copy 

number and LOH in heterogeneous tumor samples using data 

from Illumina SNP arrays. Through adopting an efficient EM 

algorithm, our method can correctly detect chromosomal 

aberration events in tumor subclones. Evaluation on simulated 

data series indicated that TH-HMM could accurately estimate 

both normal cell and subclone proportions, and finally recovery 

the aberration profiles for each clones.  

Keywords—chromosomal aberration; genotype; copy number; 

LOH; SNP arrray; heterogeneous tumor sample 

I.  INTRODUCTION  

Cancer genome consists of various kinds of chromosomal 

aberrations, such as copy number gain or loss, loss of 

heterozygosity (LOH). They are related with oncogenes, 

tumor suppressor and gene expression during the process of 

tumor cell revolution [1]. Three main de facto standard tools 

for whole genome detection of chromosomal aberrations in 

tumor are aCGH (array Comparative Genome Hybridization) 

[2], SNP arrays (Single nucleotide polymorphism genotyping 

microarrays) [3] and NGS (Next Generation Sequencing) [4]. 

Among these, SNP arrays facilitate analysis of DNA copy 

number alterations (CNAs) and LOH throughout the whole 

genome by providing a cost-saving and high-throughput 

platform [5]. There are two measurements employed in SNP 

arrays called Log R Ratio (LRR) and B Allele Frequency 

(BAF). LRR is the log-normalized intensity ratio and 

represents for copy number intensity. BAF is a measure of 

normalized allelic intensity ratio of two alleles (A and B). 

These allele-specific measurements are widely adopted in the 

Illumina platform and hold the promise to tackle aberration 

events in tumor samples. It is notable that raw data from 

another SNP arrays based platform Affymetrix can also be 

transferred into the LRR and BAF signals through 

transformation and normalization [6]. 

Interpretation of chromosomal aberrations is complicated 

by several factors in real tumor samples, such as normal cell 

contamination, aneuploidy, and tumor heterogeneity [7]. 

Clinical tumor samples are usually contaminated with 

genetically normal cells, thereby complicating genomic 

analysis since the observed signal will be a combined value 

from both tumor and normal cells [5]. Aneuploidy occurs 

during cell division when chromosomes do not separate 

properly between the two cells resulting extra or missing 

chromosomes in the cell, leading to the LRR baseline shift [7]. 

Tumor heterogeneity can be explained by subsequent copy 

number alterations taking on several times during tumor 

progression due to the associated innate genetic and epigenetic 

instability of cancer cells [8]. As a consequence, multiple 

subclones arise and may have unique biologic characteristics 

including alterations in oncogenes and tumor suppressor genes. 

Among all these factors, tumor heterogeneity implies the 

biologic reasons for the natural history of neoplasms, and 

leads to drug resistance resulted in a diminution cure rate in 

clinic [9]. However, most of exiting methods are unable to 

address aforementioned critical issues synthetically because 

the issues interact with each other and cannot be settled 

separately. 

Various approaches have been proposed to handle 

genomic aberrations using SNP arrays, such as GAP [5], 

ASCAT [6] and GPHMM [6]. However, they are not 

specifically designed to detect tumor heterogeneity thus will 

result in failure in accurately indicating potential multiple 

cancer cells [6]. As the “state-of the art” approach, OncoSNP 

is designed to model the contributions from aneuploidy, 

normal cell contamination and tumor heterogeneity at the 

same time [10]. However, a major drawback of OncoSNP is 

that it cannot accurately estimate normal cell proportion. 

Instead it is done by grid searching from 0 to 1 with step size 

of 0.1 for the optimal value, which will lead to poor 

performance if normal cell proportion cannot be accurately 

determined by this way. Another weakness of OncoSNP is 

that it processes consecutive SNPs independently and assigns 
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different kinds of subclones for them, which is computational 

intensive and prone to overfitting problem [10].  

Motivated by the need to systematically investigate the 

effects of tumor heterogeneity in cancer samples as well as 

aneuploidy and normal cell contamination, in this paper we 

introduce a novel method, named Tumor Heterogeneity HMM 

(TH-HMM), which utilizes a parameterized Hidden Markov 

Model (HMM) and an efficient EM algorithm [11]. TH-HMM 

provides a comprehensive statistical framework to describe 

SNP arrays signals from heterogeneity tumor samples. In 

order to validate our approach, we generated a series of 

simulated heterogeneous tumor samples. After comprehensive 

analysis of the estimated results and compared to GPHMM 

and OncoSNP, we demonstrate TH-HMM is efficient in 

addressing heterogeneous tumor samples. 

II. METHODS 

A. Hidden states of TH-HMM 

All copy number aberration events are described using a 
pair of tumor and normal genotypes [9]. For example, let A and 
B be the two alleles of each SNP locus, then the one copy 
amplification of either allele can be denoted by four genotype 
pairs associated with possible normal genotypes: (AAA, AA), 
(BBB, BB), (AAB, AB), (ABB, AB). Totally 21 states are 
defined in TH-HMM with copy number up to 7, as shown in 
TABLE I. 

B. HMM framework and EM algorithm 

TH-HMM adopts a reasonable assumption that tumor 
sample can be confounded by two kinds of cancer subclones 
with different aberration patterns, thus leading to three 
combinational cases for specific regions: chromosome segment 
with aberration only in subclone1 (t = 1); chromosome segment 
with aberration only in subclone2 (t = 2) and chromosomal 
segment with the same aberration in both tumor subclones (t = 
3). We use a linear model to compute the weighted average 
copy number      and the weighted BAF value        as the 

following equations: 

  

                                          (1) 

                                              (2) 

                                                (3) 

where    is the proportion of tumor cells with the 
corresponding chromosomal aberration in case t.    and    are 
proportions of subclone1 and subclone2. For example, in case 3, 
tumor aberration appears on both tumor clones, thus the 
proportion of aberrant tumor cells equals to the sum of    and 
  .    and     denote normal copy number and tumor copy 

number.      and     are theoretical mean BAF of normal and 

tumor cells. 

We assume that LRR and BAF signals are normally 
distributed with standard deviation of    and  , respectively 
[12]. Thus, the emission probability density function of LRR 

and BAF in     SNP under    case can be formulated 
according to empirical formulas proposed in [13]:  
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where     represents LRR baseline shift, and h denotes the 

coefficient of GC content (   .  

EM algorithm is employed to estimate optimal parameters 

(o,  ,   ,   ,    and   ) by finding maximum overall 

likelihood in our statistical framework. In the E step, for LRR 

we first calculate the partial log likelihood expectation using 

formula (6).  
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where     
       represents the posterior probability of the     

SNP in state c in case t [11]. C denotes the total number of 

hidden states. We process BAF signals in the similar way as 

LRR signals. 
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TABLE I.  HIDDEN STATES OF TH-HMM MODEL 

State CN Description (Tumor genotype, normal genotype) 

0 N/A Fluctuation effect (N/A, AA), (N/A, BB), (N/A, AB) 

1 0 Deletion of two copies (N/A, AA), (N/A, BB), (N/A, AB) 

2 1 Deletion of one copy (A,AA), (B,BB), (A,AB), (B,AB) 

3 2 Normal (AA,AA), (BB,BB), (AB,AB) 

4 2 Copy neutral with LOH (AA,AA), (AA,AB), (BB,BB), 

(BB,AB) 

5 3 Three copies with 
duplication of one allele 

(AAA,AA), (BBB,BB), (AAB,AB), 

(ABB,AB) 

6 3 Three copies with LOH (AAA,AA), (AAA,AB), (BBB,BB), 

(BBB,AB) 

7 4 Four copies with 
duplication of one allele 

(AAAA,AA), (BBBB,BB), 

(AAAB,AB), (ABBB,AB) 

8 4 Four copies with 
duplication of both alleles 

(AAAA,AA), (BBBB,BB), 

(AABB,AB) 

9 4 Four copies with LOH (AAAA,AA), (BBBB,BB), 

 (AAAA,AB), (BBBB,AB) 

10 5 Five copies with 
duplication of one allele 

(AAAAA,AA), (BBBBB,BB), 

(AAAAB,AB), (ABBBB,AB) 

11 5 Five copies with 
duplication of both alleles 

(AAAAA,AA), (BBBBB,BB), 

(AAABB,AB), (AABBB,AB) 

12 5 Five copies with LOH (AAAAA,AA), (BBBBB,BB), 

(AAAAA,AB), (BBBBB,AB) 

13 6 Six copies with balanced 
duplication of both alleles  

(AAAAAA,AA), (BBBBBB,BB), 

(AAABBB,AB), (AAABBB,AB) 

14 6 Six copies with 
duplication of both alleles  

(AAAAAA,AA), (BBBBBB,BB), 

(AAAABB,AB), (AABBBB,AB) 

15 6 Six copies with 
duplication of one alleles 

(AAAAAA,AA), (BBBBBB,BB), 

(AAAAAB,AB), (ABBBBB,AB) 

16 6 Six copies with LOH (AAAAAA,AA), (BBBBBB,BB), 

(AAAAAA,AB), (BBBBBB,AB) 

17 7 Seven copies with 
duplication of both alleles 

(AAAAAA,AA), (BBBBBB,BB), 

(AAAABBB,AB), (AAABBBB,AB) 

18 7 Seven copies with 
duplication of both alleles 

(AAAAAAA,AA), (BBBBBBB,BB), 

(AAAAABB,AB), (AABBBBB,AB) 

19 7 Seven copies with 
duplication of both alleles 

(AAAAAAA,AA), (BBBBBBB,BB), 

(AAAAAAB,AB), (ABBBBBB,AB) 

20 7 Seven copies with LOH (AAAAAAA,AA), (BBBBBBB,BB), 

(AAAAAAA,AB), (BBBBBBB,AB) 
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In the M step, transition probabilities between hidden states 

are updated from the Baum Welch algorithm [11]. The 

updating formulas for o,  ,   ,    are obtained by taking the 

partial derivative of equation (6) and (7) to 0 and then solving 

the equations. For example, o can be estimated as follows:  
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However, there is no close-form formula in updating    and 

   in EM algorithm. Alternatively, Newton-Raphson method 

is employed, which can efficiently increase the expectation of 

the partial log-likelihood in each M-step numerically and 

therefore the overall likelihood [14]. After EM algorithm 

converges, parameters in the last iteration will be output as 

optimal values and final copy numbers and LOH status for 

SNPs are determined by the corresponding hidden states (c) 

associated with the largest conditional probability. 

C. Generation of Simulated data 

For the purpose to verify the performance of TH-HMM, we 
generate simulated samples with pre-defined aberrations and 
proportions of the cellular components (subclone1, subclone2 
and normal cell) to imitate real heterogeneous tumor samples 
contaminated with normal cells. The simulated dataset is 
originated from the diploid HapMap sample NA06991 
hybridized on an Illumina BeadChip [15]. We first define 
various chromosomal aberrations for three cases and compute 
the mean value of LRR and BAF of SNPs according to its 
aberration types by empirical formula [13]. By sampling from 
the associated  normal distributions of LRR and BAF signals 
using equation (4) (5), simulated tumor SNP data are generated 
to examine the ability of TH-HMM for accurately recovering 
the corresponding subclone proportion and chromosomal 
aberrations. . For generality, we create a simulated dataset of 
16 samples by considering various percentages ranging from 0 
to 85% of the three proportions (normal cell proportion,    and 
  ) and use the names of these samples to show the actual 
proportions of subclones. For example, Simu-SNP-50-45 
means that sub-clone1 and sub-clone2 take 50% and 45% in 
the simulation mixture respectively.  

With the aim to mimic real tumor SNP array data, baseline 
shift and GC bias are also considered in data simulation. 
Chromosomal segments with intra-tumor heterogeneity are 
generated according to the proportion and aberration states for 
each subclone and the amount of normal cell contamination per 

sample. To determine genotypes in simulated tumor data, we 

make an assumption that tumor genotypes are generated from 
normal genotypes. For example, when the normal genotype is 
homozygous (AA), the tumor genotype can only be 
homozygous (A, AAA). On the other hand, when the normal 
genotype is heterozygous (AB), the tumor genotype can be 

either heterozygous (AAB, ABB) or homozygous (AAA, BBB) 
[9].  

III. RESULTS  

A. Evaluation of normal proportions 

To demonstrate the validity of our approach, we applied 
TH-HMM to the simulated dataset of heterogeneous tumor 
samples. We also examined the performance of OncoSNP and 
GPHMM for comparison. It is of note that many chromosomal 
aberrations cannot be correctly detected if normal cell 
proportion is wrongly estimated in tumor samples. For example, 
tumor cells (AAAAB) mixed with 80% normal cells will be 
predicted as (AAB) when normal cell proportion is detected as 
50%, as in this case the BAF signals for these two situations 
are very similar. Therefore, we first assessed the estimated 
normal cell proportion of simulated dataset using TH-HMM, 
OncoSNP and GPHMM with respect to actual proportions, as 
shown in Fig. 1. The estimated normal cell proportions of 
GPHMM have an average error of 15%. It performs well when 
there is only one tumor subclone (sample Simu-SNP-00-25), 
but incapable in predicting normal cell proportion in 
heterogeneity samples. The deviations of OncoSNP vary from -
27%~40%. When the normal proportion is 0.1, oncoSNP 
cangive correct results (Simu-SNP-50-40, Simu-SNP-55-35, 
Simu-SNP-65-25, Simu-SNP-75-15), but in the rest cases it fails 
to estimate the right normal proportions. Overall, TH-HMM 
outperforms GPHMM and OncoSNP with precise estimation of 
normal cell estimations throughout the whole dataset.   

B. Performance on unraveling the proportion of two 

subclones 

When referring to each subclone, OncoSNP is helpless in 

determining its exact proportion in tumor sample, and cannot 

profile clone-specific aberrations. On the other hand, TH-

HMM provides proportions of two sub-clones with high 

accuracy for simulated data (TABLE II). We considered 

 

Fig. 1.  Fig. 1. Comparision of estimated normal cell proportion in 16 diluted 

samples of three methods. The vertical axis is the estimated proportion 

and its correspondence actual value. The gap around 0 between TH-

HMM (red) and the expected value (purple) of the entire dataset 

demonstrates TH-HMM results highly coincide with the actual values. 
GPHMM always show higher normal cell contamination in all the 

samples (blue bar). The sharp fluctuation of OncoSNP (green) reveals 

disparate performance of OncoSNP in diverse samples, and the 
difference even reach to 40% in two samples. 
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samples with mixed proportions of different cellular 

components under three distinctive situations: 1) slight 

difference in the proportions between two subclones; 2) 

significant difference in the proportions between two 

subclones; and 3) pure heterogeneity tumor samples without 

normal cell contamination. The results show that 12 out of the 

16 samples have an error less than 1%, and the rest with a 

maximum error about 1.7%, which indicates that TH-HMM 

performs very well under three distinctive situations 

mentioned above. 

C. Performance on detection subclone aberration 

We further investigated the utility of TH-HMM in detecting 
various kinds of chromosomal aberrations. Fig. 2 shows the 
results of chromosome 1p and 3p in a simulation sample with 
45% and 35% of two subclones, respectively. Consecutive 
SNPs with the same copy number and LOH states are plotted 
as a segment. The top panel presents LRR and BAF signals of 
SNPs and the red lines indicate average signal values of 
different chromosomal segments. In Fig. 2a two subclone have 
the same aberration states on chromosome 1p (case 1). Under 
this situation, TH-HMM identifies all the aberration including 
one copy deletion, amplification and LOH successfully. In 
contrast, OncoSNP can detect the copy aberration regions and 
LOH events, but incapable in estimating the right copy number 
and neglects deletion event.  

In Fig. 2b, tumor subclone2 has distinct aberrations and 
takes 25% on chromosome 3p, while subclone1 is normal on 
this region, which imitates heterogeneous tumor cells with 
different abnormalities of the two subclones (case3). In this 
case TH-HMM still correctly identifies all the copy number 
and LOH for all the regions of subclone2 (blue), whereas the 
result figure of OncoSNP does not conform to the actual 
solution. Although the inconsistency of normal cell proportions 
of consecutive chromosome regions reveals heterogeneity level 
in the sample [10], OncoSNP cannot discriminate 
heterogeneity tumor subclones. The CN plot shows that two of 
the LOH parts are missed and segment copy numbers are 
wrongly interpreted. Taken together, we come to the 
conclusion that the capability of TH-HMM in detection tumor 
subclone aberrations is much better than OncoSNP. 

 

Finally, we calculated the accuracy (defined as the 
proportion of all correctly identified SNPs), and recall as 
fraction of the aberrations that are successfully retrieved. The 
average accuracy of the whole dataset is 0.953, demonstrating 
high consistency of our method. Meanwhile, 13 out of the 16 
samples have recalls of both clones close to 1. Even for 
samples with extremely low subclone proportion (Simu-SNP-
75-15, Simu-SNP-80-15, Simu-SNP-85-15), TH-HMM still 
achieves high performance with recalls of around 90%.  These 
results demonstrate the excellent performance of TH- HMM in 
analyzing heterogeneity tumor samples.  

D. Performance on real data 

We investigated the CRL-2324 breast cell line to further 
evaluate the efficiency of TH-HMM. The results reveal that 
CRL-2324 breast cell line is complicated by the numerous 
genomic rearrangements associated with intratumoral 
heterogeneity on chromosome 4. In Fig. 3a, two magenta 
regions of common copy neutral LOH and one copy gain for 
both subclones may indicate aberrations from the cancer 
ancestor cells. Individual tumor subclones (red and blue) 
harbor private genetic aberrations (five copies amplification 
and three copies amplification regions for subclone1 and a 
small five copies amplification region for tumor subclone2) in 
addition to the founder mutations, and that these subclonal 
copy number aberrations could help scientists to study the 
impact of tumor heterogeneity on resistance to therapy. 
Moreover, for the purpose to evaluate the consistency of TH-
HMM we observed the copy number and LOH profiles of 
CRL-2324 dilution series with 79% tumor content (Fig. 3b).  
The overall view of Fig. 3b is very similar with Fig. 3a, which 

 

 

Fig. 2. Examples of heterogeneity tumor sample SNP signals (top) and the 

estimated aberrations of TH-HMM (middle) and OncoSNP (bottom). a) 

Two subclone have the same aberration states on chromosome 1 (case 1), 
which are correctely identifed by TH-HMM (illustrated by magenta). 

OncoSNP recognises the LOH events (black) while gives the wrong tumor 

copy numbers at aberration segments. b) When only one of the subclones 
has aberrations on chromosome3 (case 3), TH-HMM dissected them 

successfully (blue). OncoSNP misses the LOH detection in segment 3and 

4, and even wrongly interprets segment copy numbers. 

TABLE II.  RESULTS OF THE PROPORTIONS OF TWO TUMOR SUB-
CLONES.  

SampleID w1 w2 SampleID w1 w2 

Simu_SNP_00_25 0.000 0.251 Simu_SNP_60_25 0.603 0.253 

Simu_SNP_20_25 0.201 0.249 Simu_SNP_60_40 0.590 0.389 

Simu_SNP_40_25 0.401 0.252 Simu_SNP_65_25 0.652 0.253 

Simu_SNP_50_40 0.502 0.401 Simu_SNP_70_25 0.698 0.248 

Simu_SNP_50_45 0.498 0.448 Simu_SNP_75_15 0.750 0.152 

Simu_SNP_55_35 0.553 0.351 Simu_SNP_75_25 0.739 0.240 

Simu_SNP_55_40 0.548 0.397 Simu_SNP_80_15 0.793 0.148 

Simu_SNP_55_45 0.540 0.439 Simu_SNP_85_15 0.833 0.140 
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proves high consistency of TH-HMM in detecting normal cell 
contaminated heterogeneous tumor samples. 

IV. CONCLUSION 

Studying subclonal heterogeneity on analysis of tumor 
biopsies is a crucial factor to explain tumor cell evolutionary 
and pathology. In this study we proposed a novel method to 
identify deletion, amplification, and LOH events in 
heterogeneity tumor samples. The experimental results 
demonstrate the robust performance of our algorithm. 
Fundamental to the success for our method is the integrated 
statistical TH-HMM framework taking the combination effects 
of normal cell contamination, aueploidy and tumor 
heterogeneity jointly. The ability of our proposed method to 
estimate the proportions of multiple tumor subclones and 
specify detailed information of genomic aberrations for them 
will greatly facilitate cancer research.  
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(a)                                   (b) 

Fig. 3. Plots of aberration regions on chromosome 17 and the results of 

TN-HMM for CRL-2324 dilution series data. (a) Cell line; (b) Tumor 

sample contaminated with 21% normal cells. Red lines indicate 

subclone1 aberrations and blue lines indicate subclone 2 aberrations. 
Common copy neutral LOH and one copy gain of both tumor clones are 

indicated by magenta. The overall results show high consistency of  TH-

HMM in detecting real tumor sampkes. 
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