
Hopf bifurcation and Turing instability in a modified
Leslie-Gower prey-predator model

Yan Meng
School of Mathematics and

physics,University of
Science and Technology Beijing

Beijing,100083, PR China
Email: mengyan1220@sohu.com

Guangwu Wen
School of Mathematics and

physics,University of
Science and Technology Beijing

Beijing,100083, PR China
Email: wenguangwu@yeah.net

Lequan Min
School of Mathematics and

physics,University of
Science and Technology Beijing

Beijing,100083, PR China
Email: minlequan@sina.com

Abstract—In this paper, we study a modified Leslie-Gower
prey-predator model in the presence of nonlinear harvesting in
prey subject to the Neumann boundary condition. Our results
reveal the conditions on the parameters so that the periodic
solution exist surrounding the interior equilibrium. Furthermore,
the direction of Hopf bifurcation and the stability of bifurcated
periodic solutions are investigated. For the model with the
Neumann boundary condition, Turing instability of the interior
equilibrium solution is studied. In particular, Turing instability
region regarding the parameters is established. Numerical simu-
lations are carried out to demonstrate the results obtained.

Keywords—Hopf bifurcation; Turing instability; Leslie-Gower
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I. INTRODUCTION

Deterministic nonlinear mathematical models (ODE mod-
els) are widely used to understand the dynamics of inter-
acting populations since Lotka [1] and Volterra proposed
the well-known predator-prey model. They usually display
similar dynamical behaviors. Due to its universal existence
and importance, predator-prey models have been proposed
([2],[3],[4],[5]). Dai and Tang [6] considered a predator-prey
model in which two ecologically interacting species are har-
vested independently with constant rates. Li and Xiao [7] pro-
posed a Leslie-Gower prey-predator model with Holling-type
III functional response for its bifurcation analysis. Aziz-Alaoui
and Daher Okiye[8] studied the following two-dimensional
system of autonomous differential equation model for a prey-
predator system which incorporates a modified version of
Leslie-Gower and Holling-type II functional response:





ẋ1 = rx1(1 − x1

K
) − a1x1x2

n1 + x1

ẋ2 = sx2(1 − a2x2

n2 + x1
)

(1)

The positive initial conditions x1(0) > 0, x2(0) > 0.
where, x1(t) and x2(t) are the prey and predator population
densities respectively.s measures the growth rate of the preda-
tor species, r is intrinsic growth rate and K is environmental
carrying capacity for the prey species respectively. a1 is the
maximum value of the per capita reduction rate of prey,
ni, i = 1, 2 measures the extent to which the environment
provides protection to prey and predator respectively, and sa2

is the maximum value of the per capita reduction rate of
predator.

Biological resources in the prey-predator system are
most likely to be harvested so that R.P.Gupta and Peeyush
Chandra[9] introduced a Model with prey harvesting. The
Michaelis-Menten type harvesting is more realistic from bio-
logical and economic points of view.The system of differential
equations follows:





ẋ1 = rx1(1 − x1

K
) − a1x1x2

n + x1
− qEx1

m1E + m2x1

ẋ2 = sx2(1 − a2x2

n + x1
)

(2)

where q is the catchability coefficient, E is the effort applied to
harvest the prey species, m1 and m2 are suitable constants.The
rest of the parameters have similar meanings as for the model
(1).

On the other hand, under some ecological settings, diffu-
sion should be thought of as dispersal of population density
and often be considered as a stabilizing process, thus it is the
diffusion of a homogenous stable steady state that results in a
reaction-diffusion system’s spatial patterning. We pay attention
to the fact that diffusion-driven instability can appear in the
predator-prey system.

The purpose of this paper is to investigate the effect of
diffusion on a modified Leslie-Gower prey-predator model. In
section 2 we discuss the asymptotic behavior of the interior
equilibrium and the existence of Hopf bifurcation of (2); In
section 3, we investigate the direction of Hopf bifurcation
and the stability of bifurcated periodic solutions. In section 4,
Turing instability of (2) is considered. Finally, some numerical
simulations are performed to illustrate our analytical results in
section 5.

II. STABILITY AND HOPF BIFURCATION

To investigate the dynamics of system (2), we shall con-
sider the following non-dimensional scheme:

x1 = Kx, a1x2 = Ky, rt = t, α =
1

r
, c =

m1E

m2K
,

β =
a2

a1
,m =

n

K
, h =

qE

rm2K
, ρ =

s

r
.
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We obtain the following system of differential equations:




ẋ = x(1 − x − αy

m + x
− h

c + x
)

ẏ = ρy(1 − βy

m + x
)

(3)

It is known from[9] that solutions of (3) are nonnegative
with the initial conditions: x(0) > 0, y(0) > 0. In addition,
except the origin E0 = (0, 0), E1 = (0,

m

β
), if h > c then

EL = (xL, 0) and EH = (xH , 0) both the equilibrium points
exist whenever c < 1 and (1 − c)2 > 4(h − c) while if h < c
then EH only exists.

xL =
1 − c −

√
(1 − c)2 − 4(h − c)

2

xH =
1 − c +

√
(1 − c)2 − 4(h − c)

2

The stability of trivial equilibria have been proved in[9].
From the biological point of view, however, it is more interest-
ing to study the dynamical behaviors of the interior equilibrium
point E∗

1 and E∗
2 . The interior equilibria are E∗

1 = (x∗
1, y

∗
1)

and E∗
2 = (x∗

2, y
∗
2) where x∗

1, x
∗
2 are the roots of the quadratic

equation:

x2 + (
α

β
+ c − 1)x + c(

α

β
+

h

c
− 1) = 0

x∗
1 =

1

2
(1 − c − α

β
) − 1

2

√
(1 − c − α

β
)2 − 4c(

α

β
+

h

c
− 1)

x∗
2 =

1

2
(1 − c − α

β
) +

1

2

√
(1 − c − α

β
)2 − 4c(

α

β
+

h

c
− 1)

together with y∗
1 =

m + x∗
1

β
and y∗

2 =
m + x∗

2

β
.

The two distinct interior equilibrium points E∗
1 and E∗

2

exist whenever
α

β
+c < 1 and (1−c−α

β
)2−4c(

α

β
+

h

c
−1) > 0.

If
α

β
+ c < 1 and (1− c− α

β
)2 − 4c(

α

β
+

h

c
− 1) = 0, then

exist E∗ = E∗
1 = E∗

2 =
1

2
(1 − c − α

β
).

It is easy to get that Jacobian matrix of (3) is

J =




x(−1 +
αy

(m + x)2
+

h

(c + x)2
) − αx

m + x
ρβy2

(m + x)2
ρβy

(m + x)




Then we suppose that E∗(x∗, y∗) = E∗
1 (x∗

1, y
∗
1) We can

rewrite J∗ at the point of (x∗, y∗) as following:

J∗ =




x∗(−1 +
αy∗

(m + x∗)2
+

h

(c + x∗)2
) − αx∗

m + x
ρ

β
−ρ




For the sake of convenience, let s0 = −1 +
αy∗

(m + x∗)2
+

h

(c + x∗)2
, s =

ρ

x∗ . In the following, we use s as the parame-

ter.Thus

traceJ∗ = x∗(−1 +
αy∗

(m + x∗)2
+

h

(c + x∗)2
) − ρ

= x∗s0 − x∗s

and

detJ∗ = x∗2s(s0 +
α

β(m + x∗)
)

Therefore, the characteristic equation of the linearized system
of (3) at the interior equilibrium E∗(x∗, y∗) is

λ2 − traceJ∗λ + detJ∗ = 0 (4)

Obviously, (4) has only two roots and they can be expressed
as

λ1,2 =
traceJ∗ ±

√
(traceJ∗)2 − 4detJ∗

2

when traceJ∗ < 0 and detJ∗ > 0,that is s > s0, two
roots of (3) have negative real parts and the interior equilibrium
E∗ is asymptotically stable.

Now, we study whether there exists periodic solutions of
(3) about the interior equilibrium E∗ as s passes through the
value s0. We note that detJ∗ > 0 and it is easy to see that
(4) has a pair of purely imaginary roots ±i

√
−4detJ∗ when

s = s0. Therefore, according to Hopf bifurcation theorem, (3)
can bifurcate a small amplitude nonconstant periodic solution
from the interior equilibrium E∗ when s crosses through s0 if
the transversality condition is satisfied.

In the following, by regarding s as the bifurcation param-
eter, we verify the transversality condition. Let λ = p + qi
(p, q ∈ R) denotes one of the roots of (11) when |s − s0| is
small sufficiently and λ =

√
detJ∗i when s = s0.

Substituting λ = p + qi into (11) and separating real and
imaginary parts, we have

p2 − q2 − ptraceJ∗ + detJ∗ = 0 (5)
2pq − qtraceJ∗ = 0 (6)

Differentiating (5) with respect to s and noticing the fact
that p = 0 when s = s0, we get

[
dp

ds

]

s=s0

= −x∗

2
< 0 (7)

This shows that the transversality condition holds.Thus, (3)
will undergo a Hopf bifurcation about the interior equilibrium
E∗, as s passes through the value s0.

Theorem 2.1: Suppose that the condition
α

β
+ c < 1 and

(1 − c − α

β
)2 − 4c(

α

β
+

h

c
− 1) > 0 is satisfied.
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1) The interior equilibrium E∗ of (3) is asymptotically stable
when s > s0 and unstable when s < s0.

2) (3) can undergo a Hopf bifurcation at the interior equi-
librium E∗ when s = s0.

We can suppose that the ecological system can keep
dynamic balance without any species died out when the
parameter s meets the conditions s < s0.

III. STABILITY OF BIFURCATED PERIODIC SOLUTIONS

In the previous section, we have obtained the conditions
under which a family of periodic solutions bifurcate from the
interior equilibrium E∗ of (3) when the s crosses through the
critical value s0 . In this section, we shall study the direction of
Hopf bifurcation and stability of bifurcated periodic solutions
arising through Hopf bifurcation.

We translate the equilibrium E∗ to the origin by the
translation x̃ = x−x∗, ỹ = y−y∗. For the sake of convenience,
we still denote x̃ and ỹ by x and y, respectively. Thus, the local
system (3) becomes





ẋ = (x + x∗)(1 − x − x∗ − α(y + y∗)
m + x + x∗

− h

c + x + x∗ )

ẏ = ρ(y + y∗)(1 − β(y + y∗)
m + x + x∗ )

(8)

Rewrite system (8) to

(
ẋ
ẏ

)
= J∗

(
x
y

)
+

(
f(x, y, s)
g(x, y, s)

)

where

f(x, y, s) := a3x
2 + a4xy + a5y

2 + a6x
3 + · · ·

g(x, y, s) := b3x
2 + b4xy + b5y

2 + b6x
3 + · · ·

and

a3 =
αy

(m + x∗)2
+

h

(c + x∗)2

+x∗(− αy∗

(m + x∗)3
− h

c + x∗)3
)

a4 = − a

m + x∗ +
ax∗

(m + x∗)2
, a5 = 0

a6 =
αx∗y∗

(m + x∗)4
+

hx∗

(x∗ + c)4

− αy∗

(m + x∗)3
− h

(c + x∗)3

b3 = − sβx∗

m + x∗ , b4 =
sx∗

m + x∗

b5 = − sβx∗

m + x∗ , b6 = − sx∗

(m + x∗)2

The Jacobian matrix of (8) at the E∗ = (0, 0) is

J∗ =

(
a1 a2

b1 b2

)

We set matrix

B =

(
1 0
M N

)

where

M =
p(s) − a1

a2
, N = −q(s)

a2

By the transformation

(
x
y

)
= B

(
u
v

)

(8) becomes



du

dt
= p(s)u − q(s)v + f ′(u, v, s)

dv

dt
= q(s)u + p(s)v + g′(u, v, s)

(9)

where

f ′(u, v, s) = (a3 − 1 + a4M + a5M
2)u2

+(a4N + 2MNa5)uv + a5N
2v2 + a6u

3 + · · ·
g′(u, v, s) = −M

N
f ′(u, v, s) +

1

N
g1(u, v, s) + · · ·

g1(u, v, s) = (b3 + b4M + b5M
2)u2 + (b4N + 2MNb5)uv

+b5N
2v2 + b6u

3 + · · ·
Rewrite (9) in the following polar coordinates form

{
ṙ = p̃(s)r + ã(s)r3 + · · ·
θ̇ = q̃(s) + b̃(s)r2 + · · · (10)

Then the Taylor expansion of (10) at s = s0 yields
{

ṙ = p̃(s0)(s − s0)r + ã(s0)r
3 + · · ·

θ̇ = q(s0) + q̃(s0)(s − s0) + b̃(s0)r
2 + · · · (11)

To determine the stability of Hopf bifurcation periodic solu-
tion, we need to calculate the sign of the coefficient ã(s0),
which is given by

ã(s0) =
1

16
[f ′

uuu + f ′
uvv + g′

uuv + g′
vvv]|(0,0,s0)

+
1

16q(s0)
[f ′

uv(f ′
uu + f ′

vv) − g′
uv(g′

uu + g′
vv)

−f ′
uug′

uu + f ′
vvg′

vv]|(0,0,s0)

where

f ′
uuu = 6a6, f

′
uvv = g′

uuv = g′
vvv = 0, f ′

vv = 2a5N
2,

f ′
uu = 2(a3 − 1 + a4M + a5M

2) + 6a6u,

f ′
uv = a4N + 2MNa5, f

′
vv = 2b5N

2

g′
uv = −M

N
f ′

uv +
1

N
g1

uv, g′
uu = −M

N
f ′

uu +
1

N
g1

uu,

g1
uu = −M

N
f ′

vv +
1

N
g1

vv, g1
uv = b4N + 2MNb5,
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Thus, we obtain µ = − ã(s0)

p̃(s0)
, According to Poincare-

Andronov theorem, we have the following conclusions:

Theorem 3.1: Suppose that the condition
α

β
+ c < 1 and

(1 − c − α

β
)2 − 4c(

α

β
+

h

c
− 1) > 0 is satisfied.

1) ã(s0) determines the stability of bifurcated periodic solu-
tions. If ã(s0) < 0(> 0), the bifurcated periodic solutions
are stable (unstable);

2) µ determines the directions of Hopf bifurcation. If µ > 0
(< 0), then the Hopf bifurcation is supercritical (subcrit-
ical).

We can also come to a conclusion that the ecological system is
difficult to destroy with small disturbance when the parameter
ã(s0) meets ã(s0) < 0.

IV. TURING INSTABILITY FOR SYSTEM WITH DIFFUSION
EFFECTS

In this part, we will derive conditions for the diffusion-
driven instability with respect to the equilibrium solution,
the modified Leslie-Gower prey-predator model under the
assumption that s > s0. Consider the following system with
the no-flux boundary condition in a one-dimensional bounded
domain Ω.




∂x

∂t
= x(1 − x − αy

m + x
− h

c + x
) + d1∆x

∂y

∂t
= ρy(1 − βy

m + x
) + d2∆y

(12)

∂x

∂n⃗
=

∂y

∂n⃗
= 0.

n⃗ is the unit outer normal to ∂Ω. d1 and d2 are the diffusion
coefficients. We can obtain the linearized system of (12) at E∗:

(
xt

yt

)
=D

(
∆x
∆y

)
+ J∗

(
x
y

)

To this end, let

(
x
y

)
=
(

α1

α2

)
eλtcos(kl)

where k is the growth rate of perturbation in time t, α1, α2

is the amplitude and k is the wave number of the solutions.
Denote
Jk = J∗ − k2

(
d1 0
0 d2

)
Then the characteristic equation

of (12) at the interior equilibrium solution E∗ is

λ2 − traceJkλ + detJk = 0 (13)

where

traceJk = a1 + b2 − (d1 + d2)k
2

detJk = d1d2k
4 − (b2d1 + a1d2)k

2 + a1b2 − a2b1

It is well known that the interior equilibrium solution E∗

of (12) is unstable when (13) has at least one root with positive

real part. Noticing that traceJk < 0 when s > s0 and hence
traceJk = traceJ∗ − (d1 + d2)k

2 < 0, since d1, d2 > 0.
Therefore, (13) has no imaginary root with positive real parts,
thus E∗ is unstable if (13) has at least a positive real root. For
the sake of convenience, let F (k2) = detJk. when F (k2) < 0,
(13) has two real roots in which one is positive and another is
negative.Note that

d1d2 > 0, k2 > 0

Therefore, F (k2) will take the minimum value at k2 =
k2

min when b2d1 + a1d2 > 0, where

k2
min = −b2d1 + a1d2

2d1d2

In this case, we can obtain

b2
2

d2
1

d2
2

+ (4a2b1 − 2a1b2)
d1

d2
+ a2

1 > 0 (14)

Hence, k2
min will be negative when (14) is satisfied and for

the wave numbers close to k2
min the growth rate of perturbation

λ can be positive. Thus, (14) is the criterion for Turing
instability of (12).From (14), we have

0 <
d1

d2
<

1

s
(

2α

β(m + x∗)
− s0)

−1

s

√
(

2α

β(m + x∗)
− s0)2 − s2

0

or

d1

d2
>

1

s
(

2α

β(m + x∗)
− s0) − 1

s

√
(

2α

β(m + x∗)
− s0)2 − s2

0

It is easy to get from a4d1 + a1d2 > 0 and that

1

s
(

2α

β(m + x∗)
− s0) − 1

s

√
(

2α

β(m + x∗)
− s0)2 − s2

0 <
s0

s

and

1

s
(

2α

β(m + x∗)
− s0) +

1

s

√
(

2α

β(m + x∗)
− s0)2 − s2

0 >
s0

s

Therefore, we have the following result:

1

s
(

2α

β(m + x∗)
− s0) − 1

s

√
(

2α

β(m + x∗)
− s0)2 − s2

0 <
s0

s

Theorem 4.1: Suppose that the condition 0 <
s0

s
< 1 (the

interior equilibrium of (3) is stable). Then E∗ is an unstable
interior equilibrium solution of (12), that is, Turing instability
occurs, if

0 <
d1

d2
<

1

s
(

2α

β(m + x∗)
− s0)

−1

s

√
(

2α

β(m + x∗)
− s0)2 − s2

0

We can suppose that the ecological system cause unstable
with diffusion when the the diffusion coefficient meets the
above conditions.
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V. EXAMPLES AND NUMERICAL SIMULATIONS

In this section, we present some examples and numerical
simulations to verify our theoretical results proved in the
previous sections by using matlab programm. We first give
the numerical simulations for the following particular case of
system (3) for fixed parameter values α = 0.4, β = 1, c =

0.05, h = 0.1, m = 0.1. It is easy to see that 1 − c − α

β
=

0.55 > 0, (1−c− α

β
)2−4c(

α

β
+h/c−1) = 0.0225 > 0, hence

(3) has a interior equilibrium E∗
1 = (0.35, 0.45).it follows from

Theorem 2.1 that E∗ is asymptotically stable when ρ = 0.185,
s0

s
= 0.9722 < 1, the results are shown in Fig.1-2. and E∗

is unstable when ρ = 0.174,
s0

s
= 1.7278 > 1, the results

are shown in Fig.3-4. the Hopf bifurcation at s = s0(ρ =
0.179861) is subcritical and the bifurcating periodic solutions
are local asymptotically stable. The numerical simulation are
shown in fig.5.

Furthermore, we choose ρ = 0.185 and
s0

s
= 0.9722 <

1,the interior equilibrium E∗ = (0.35, 0.45) is stable. Con-
sidering the reaction-diffusion model with no-flux boundary
conditions. We only choose the diffusion coefficients d1 and
d2. Then we let

R0 =
1

s
(

2α

β(m + x∗)
− s0) − 1

s

√
(

2α

β(m + x∗)
− s0)2 − s2

0

The result are showed in fig.6 and fig.7.
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Fig. 2. The trajectory portrait of (2) in the prey-predator when ρ =

0.185,
s0

s
= 0.9722 < 1.
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Fig. 3. The trajectory portrait of (2) in the t-prey. ρ = 0.174,
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Fig. 4. The trajectory portrait of (2) in the prey-predator. ρ = 0.174,
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=

1.7278 > 1.
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Fig. 5. The trajectory portrait of (2) in the prey-predator. ρ =

0.1798611,
s0

s
= 1.
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Fig. 6. Numerical simulations of an unstable equilibrium solution of system

of (12) in the prey-predator. ρ = 0.85, d1 = 0.2, d2 = 1.2,
d1

d2
= 0.167 <

R0 = 0.20657.
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Fig. 7. Numerical simulations of an unstable equilibrium solution of system

(12) in the prey-predator under ρ = 0.85, d1 = 0.2, d2 = 1.2,
d1

d2
=

0.167 < R0 = 0.20657.

VI. CONCLUSION

This paper introduces modified Leslie-Gower prey-predator
model. we study the Hopf bifurcation and the stability of the
system. Our results reveal the conditions on the parameters
so that the periodic solution exist surrounding the interior
equilibrium. It show that s0 is a critical value for the parameter
s. Furthermore, the direction of Hopf bifurcation and the sta-
bility of bifurcated periodic solutions are investigated. Turing
instability of the interior equilibrium solution is studied for the
diffusion model with the Neumann boundary condition. Then
diffusion-driven instability of the equilibrium solution and

bifurcating periodic solution occur when
d1

d2
< R0. Numerical

simulations are carried out to demonstrate the results obtained.
The global branch of periodic solutions bifurcating from the
Hopf bifurcation point needs further investigation.
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