
GPU-Meta-Storms: Computing the similarities among

massive microbial communities using GPU

Xiaoquan Su
$
, Xuetao Wang

$
, JianXu, Kang Ning*

Shandong Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels and BioEnergy Genome Center, Qingdao

Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province,

People’s Republic of China

*ningkang@qibebt.ac.cn

$ These authors contribute to this work equally.* To whom correspondence should be addressed.

Abstract—With the development of next-generation

sequencing and metagenomic technologies, the number of

metagenomic samples of microbial communities is increasing

with exponential speed. The comparison among metagenomic

samples could facilitate the data mining of the valuable yet

hidden biological information held in the massive metagenomic

data. However, current methods for metagenomic comparison

are limited by their ability to process very large number of

samples each with large data size.

In this work, we have developed an optimized GPU-based

metagenomic comparison algorithm, GPU-Meta-Storms, to

evaluate the quantitative phylogenetic similarity among massive

metagenomic samples, and implemented it using CUDA

(Compute Unified Device Architecture) and C++ programming.

The GPU-Meta-Storms program is optimized for CUDA with

non-recursive transform, register recycle, memory alignment

and so on. Our results have shown that with the optimization of

the phylogenetic comparison algorithm, memory accessing

strategy and parallelization mechanism on many-core hardware

architecture, GPU-Meta-Storms could compute the pair-wise

similarity matrix for 1920 metagenomic samples in 4 minutes,

which gained a speed-up of more than 1000 times compared to

CPU version Meta-Storms on single-core CPU, and more than

100 times on 16-core CPU. Therefore, the high-performance of

GPU-Meta-Storms in comparison with massive metagenomic

samples could thus enable in-depth data mining from massive

metagenomic data, and make the real-time analysis and

monitoring of constantly-changing metagenomic samples

possible.

Keywords—Metagenome; Phylogenetic Comparison; GPU;

High Performance Computing

I. INTRODUCTION

Most microbes live and reproduce together as “microbial

communities” in nature, meanwhile, their activities and

metabolisms also have profound effect to environment. The

complete genomic information of an environmental microbial

community is referred to as “metagenome”. As most of the

microbes are not isolatable and cultivatable[1], metagenomic

technology has become one of the most important and efficient

methods to analyse the structures and functions of microbial

communities.

A. Large-scale datasets for microbial communities

Next-generation sequencing techniques[2] have enabled

the fast profiling of a large number of metagenomic data.

Thus, a rapidly increasing number of metagenomic profiles of

microbial communities have been archived in public

repositories and research labs around the world, such as

MG-RAST[3], CAMERA2[4] and NCBI[5] contain

thousands of metagenomic related works with more than

10,000 samples. Therefore, it is becoming more and more

important to compare microbial communities in large scale

for in-depth data mining for precious biological information

held in the massive metagenomic data.

B. Comparison of microbial communities

A number of methods have been proposed for comparison

of different metagenomic samples mainly adopting two

different approaches: taxon-based (using overlap in lists of

species, genera, OTUs, and so on) and phylogenetic-based

(using overlaps on a phylogenetic tree).

For taxon-based methods, many recent pyro-sequencing

studies have been developed to compare samples. MEGAN[6]

is a metagenomic analysis tool with recent additions for

phylogenetic comparisons [7] and statistical analyses[8],

however, can only compare single pair of metagenomic

samples based on taxonomy without quantitative

measurement , as is also the case with STAMP[9], which

introduces a concept of “biological relevance” in the form of

confidence intervals. Other methods, such as MG-RAST[3],

ShotgunFunctionalizeR[10], mothur[11], and METAREP[12]

process metagenomic data using standard statistical tests

(mainly t-tests with some modifications), yet would turn out

to be insufficient in accuracy[13].

In phylogenetic-based approaches, such as UniFrac[14]

and Fast UniFrac[15], utilize the similarities and differences

among species[16] to make phylogenetic beta diversity

measurement more effective at showing ecological patterns.

Nevertheless the sample size and running speed restrictions

limit the extension on the rapidly increasing scale of

metagenomic experiments. Recently we have developed

Meta-Storms [17], a metagenomic database engine for sample

searching, which also supports quantitative phylogenetic

comparison of metagenomic samples. However, for many

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

69 Huangshan, China, August 23–25, 2013

metagenomic samples, the CPU based computation speed

becomes the bottleneck again in massive data analysis: when

the number of samples exceeds several hundred, the time-cost

of comparison increases to be unacceptable.

II. METHODS

In this work we have developed GPU-based metagenome

comparison method, GPU-Meta-Storms, to enable the

high-speed comparison on massive microbial community

samples. GPU-Meta-Storms implements the scoring function

algorithm of Meta-Storms [17] on Compute Unified Device

Architecture (also refer as “CUDA”) [18] to evaluate the

quantitative similarity between metagenomic samples with

high acceleration rate. More importantly, it has designed with

optimizations in memory accessing, threads invocation,

register allocation for the many-core architecture of NVIDIA

GPU.

A. Scoring function of Meta-Storms

The scoring function of Meta-Storms [17] compares two

microbial communities’ structure by calculating the maximum

common component of their weighted co-phylogenetic tree

considering the beta-diversity, phylogenetic distance and

abundance of each species. In this algorithm, initially a

common binary phylogenetic tree is built, in which leaf nodes

(Fig. 1, eg. node X) represent species with abundance values

in two samples (Fig. 1, eg. X.P1= 30% and X.P2 = 40%), as

well as the branch length indicates the evolutional distance

from one species to its ancestor. We define the MIN(X) as the

similarity score for a single species X:

Then the formula Reduce(X) parses the reminding

component of a node to its ancestor (Fig. 1, eg. X.Anc = N)

for comparison in higher phylogenetic level multiplied by the

factor of 1-Dist (Dist is the phylogenetic distance between X

and X.Anc).

We further define that for an internal node N, its two

children nodes are N.Left (Fig. 1, eg. node X) and N.Right

(Fig. 1, eg. node Y). Then the overall similarity score of one

whole branch in the phylogenetic tree can be calculated

recursively by this function:

Therefore the overall similarity between two metagenomic

samples can be calculated by GetSimlairty(R), in which R

represents the root node of the co-phylogenetic tree of two

samples.

Fig. 1. An example for common binary phylogenetic tree with leaf node

abundance and branch length of two metagenomic samples. P1 and P2 values

are the abundance of two samples in each species.

B. Non-recursive Transformation

For the iteration depth and stack size limitation of

recursive function in GPU and CUDA, formula (3) needs to

be transformed into no-recursive format. Focusing on a basic

binary branch with one ancestor node (Fig. 1, eg. node N) and

its children (Fig. 1, eg. node X and Y), we found that the

scoring function could be transformed into serial operations

by poster-order traversal to the branch with following

formula:

which can be also extended to all nodes of the common

phylogenetic tree by post-order traversal to all basic branches

without recursive overlap to transform formula (3) into

no-recursive format.

C. CUDA-based implementation

Based on the many-core architecture of GPU, formula (4)

can be invocated in parallel by large number of threads of

CUDA to process the calculation of similarity values among

different metagenomic samples. For the synchronization of

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

70 Huangshan, China, August 23–25, 2013

many-core programming, we map all samples to Greengenes

coreset phylogenetic tree [19], in which inexistent species are

marked by abundance of 0 . Therefore all threads can parse

the sample phylogenetic tree using formula (4) for high

parallelization efficiency.

To calculate the pair-wise similarity matrix of N samples,

we launch N * N threads in GPU to make each similarity

value in the matrix processed by one independent thread. Fig.

2 shows the process of GPU computing: abundance values of

species and phylogenetic distances are loaded from the file

system and initialized in RAM to build the common

phylogenetic tree by CPU (Fig. 2, step 1), then sent to GPU

on-board RAM for parallel computing (Fig. 2, step 2). After

all threads of GPU kernel finish the tasks (Fig. 2, step 3, the

key step), all elements of similarity matrix are sent back to

RAM (Fig. 2, step 4), and stored into file system on hard disk

(Fig. 2, step 5).

Fig. 2. Overview of the GPU based similarity matrix computing

D. CUDA-based optimization

Limited by the I/O bandwidth to the GPU on board RAM

(also refer as “global memory” in CUDA), we have also

designed the following optimizations to adapt the GPU

architecture to improve the running speed.

1) Global memory Alignment

Since all threads calculate the same phylogenetic tree by

formula (4) with same node order, their abundance values can

be sorted in the same order as the leaf nodes (species) and

aligned straight in the global memory (Fig. 3). Then

abundance values of each species among different samples

could be accessed from the same index in the global memory

(Fig. 3) to accelerate both the transmission from RAM to

GPU on board memory and the memory access by GPU.

Fig. 3. Global memory alignment of abundance values

2) Register recycle allocation

In formula (4), results of each Reduce function (formula

(2)) need to be added into the ancestor node (refer to formula

(3) for details). To eliminate the I/O frequency to global

memory, all internal nodes of the phylogenetic tree are kept

into registers, of which the I/O speed is about 100 times faster

than global memory. Theoretically each internal node should

be assigned to a unique register, which requires a space

complexity of O(N) (here N is the number of internal nodes).

However, the available registers limitation of each thread (eg.

~ 128 registers for each thread in one block of Fermi GPU) is

smaller than the total amount of internal nodes (eg. in

Greengene coreset[19] there are >4900 internal nodes). We

also found that an internal node that has been reduced by

formula (3) would not be used again, and then its registers

could be released to reduce the space complexity to be

constant. In such, we developed a register recycle method to

cut the total register number to be only 10 for the

phylogenetic tree of Greengenes coreset[19].

3) Application of shared memory

For all threads calculate on the same phylogenetic tree,

distance values are stored into shared memory, which can be

accessed by all threads with low I/O latency, and also reduce

the I/O access time to global memory in total.

III. RESULTS& DISCUSSIONS

In this work, we have used 7datasets of human habitat

microbial community samples from the project “Moving

pictures of human microbiome”[20] to evaluate the

performance of GPU-Meta-Storms of metagenomic

comparison among different amount of samples in 4 aspects:

(1) GPU granularity, (2) efficiency of modules (refer to

section II.C), (3) acceleration rate compared to CPU and (4)

results consistency compared to CPU. All experiments in this

work were finished on a rack server with dual Intel Xeon

E5-2650 CPU (16 cores in total, 2.0GHz), 64GB DDR3 ECC

RAM, NVIDIA M2075 GPU (448 stream processors and 6GB

GDDR5 on board RAM) and 1TB hard drive in RAID 1.

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

71 Huangshan, China, August 23–25, 2013

TABLE 1. THE SAMPLE AMOUNT OF EACH DATASET

Dataset Sample amount Total size (M) Byte)

Dataset 1 8 53

Dataset 2 64 337

Dataset 3 128 637

Dataset 4 256 1331

Dataset 5 512 2663

Dataset 6 1024 5222

Dataset 7 1920 9216

A. Granularity analysis for block size configuration

In CUDA, threads were grouped into blocks, in which

computing resources such as registers, shared memory were

shared among threads; therefore the computing capability of a

block correlated with the thread number in it. We selected 4

largest datasets from Table 1 (Dataset 4, 5, 6 and 7) to test the

running time in different block configuration with (4*4),

(8*8), (16*16) and (32*32) threads. In this test only the GPU

running time was recorded excluding the data transfer time

from file system.

Fig. 4.Similarity matrix computing time of GPU with different block size

Results had shown that for various amounts of input

samples, block size of (8*8) cost the least time. The reason

was that although each block supported maximum thread

number of 1024 in CUDA, registers' total size was restricted

to be 32768 Byte for all threads. Since for the calculation of

formula (4), a single thread needed 21 variables of 152 Byte

space (Table 2), block size of (8*8) could efficiently use the

computing resources, while smaller size blocks (4*4) wasted

the computing capacity and larger blocks (16*16 and 32*32)

rotated the threads due to the insufficiency of register spaces

(Table 3).

TABLE 2. THE REGISTER USAGE OF A SINGLE GPU THREAD FOR CALCULATION

OF FORMULA (4)

Variable purpose Type Number Size (Byte)

Phylogenetic tree Parsing Double 10 80

Abundance value accessing Double 4 32

Abundance value reduce Double 2 16

Loop control Integer 1 4

Thread ID Integer 3 12

Result Double 1 8

Total 21 152

TABLE 3. THE REGISTER SIZE FOR EACH THREAD OF DIFFERENT BLOCK SIZE

Block size Thread amount Register size (Byte)

4*4 16 2048

8*8 64 512

16*16 256 128

32*32 1024 32

B. Efficiency of each module

Then we focused on the time cost of 5 modules of

GPU-Meta-Storms illustrated in section II.C and Fig. 2

including input loading of metagenomic samples, RAM to

GPU data transfer, GPU kernel computing, GPU to RAM data

transfer and results save to file system time, which could also

detect the bottle-neck of the system. We computed the

similarity matrix of all 7 datasets in Table 1 with block size of

(8*8) that is considered as the most optimized configuration

in section III.A, and timed all 5 modules of

GPU-Meta-Storms.

Fig. 5. Time cost rate of each module of GPU-Meta-Storms

In Fig. 5 bar-charts represented the time cost rate of

modules of GPU-Meta-Storms for processing each dataset. In

GPU-Meta-Storms, 5 modules were affected by 3 factors: a.

File system bandwidth (for input loading and results saving);

b. PCI-E bandwidth (for data transfer between GPU and RAM)

and c. GPU kernel computing ability. Obviously in Fig. 5 that

input loading and results saving took more than 98% time due

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

72 Huangshan, China, August 23–25, 2013

to the low average bandwidth of the file system (file system

bandwidth was calculated by dataset size / loading time),

which was only 43.32 MB/s. We also checked the time cost of

data transmission between RAM and GPU via the PCI-E bus,

and calculated the average PCI-E bus bandwidth was 2.25

GB/s, which was significantly higher than the file system. As

the GPU kernel computing cost only less than 2% time on

average during the test, the file system bandwidth can be

considered as the bottle-neck in the system. In addition, since

our file system was based on HDD (Hard Disk Drive), and the

bottle-neck condition could be improved by replacing HDD

by SSD (Solid State Disk) which provides much higher

bandwidth.

C. Running time comparison with CPU-based computation

In this work, we also used GPU and CPU to compute the

similarity matrix of all datasets in Table 1 to show the

acceleration rate of GPU-Meta-Storms. For CPU computing,

we tried both the single core and multiple cores (with 16

threads) and for GPU we used the block size of (8*8).

Additionally we recorded the time cost of entire program

including all components described in section III.B.

Fig. 6. Overall running time of similarity matrix computing by CPU and

GPU.

Fig. 7. Speed up of GPU compared to CPU

Form the results of Fig. 6 and Fig. 7 we can observe that

to build out the same similarity matrix GPU had a maximum

speed up of 3905 times compared to single core CPU and 593

times to 16-core CPU, which made the similarity matrix of

1920 metagenomic samples can be constructed within 4

minutes by GPU-Meta-Storms on Tesla M2075. Since the

computing was in parallel, the running time did not linearly

increase with the sample number as CPU, but depended on the

throughput of GPU thread scheduling and memory access.

Therefore dense computing with large number of samples

approached the efficient usage of resource, which made the

higher speed up rate of large number of samples. Furthermore,

the high acceleration could not only largely eliminate the

running time in computing the similarity of metagenomic data,

but also enabled in-depth data mining among massive

microbial communities.

D. Consistency of results between GPU and CPU

Considering the similarity values computed by CPU as the

standard, we compared the results of all 7 datasets in Table

1between GPU and CPU based methods to evaluate the

accuracy of GPU-Meta-Storms. For each dataset, the error

ranges with average differences (absolute values) of each

dataset were illustrated in Fig. 8.

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

73 Huangshan, China, August 23–25, 2013

Fig. 8. Inconsistency and average error between CPU and GPU computing

Although hardware difference for float number computing

(eg. Float Point Unit, FPU) caused the inaccuracy between

CPU and GPU, supports of double float computing in GPU

CUDA minimized their inconsistency. From the result of Fig

8 we can observe that the inconsistency (error range) between

CPU and GPU computing could be controlled into a restricted

range and gotten an average error of 6.22E-06, which

elucidated the reliability of GPU-Meta-Storms.

IV. CONCLUSIONS

With the number of metagenomic samples increased

rapidly, analyzing the large volume of these data quickly

faces the bottleneck of computation efficiency. In this work

we proposed an optimized metagenomic comparison

algorithm based on GPU and CUDA to calculate the

similarities among a large of microbial community samples

with very high speed. The GPU-Meta-Storms program is

optimized for CUDA with non-recursive transform, register

recycle, memory alignment.

A large number of human microbial community samples

have been collected and compared, and our tests have shown

that this GPU algorithm reduces the computing time largely

with a speed of more than 500 times compared to the 16 cores

CPU parallel program for 1920 samples. Specifically, the

pair-wise similarity matrix of 1920 metagenomic samples to

be completed within 10 minutes, so that clustering based on

such a large set of samples could be made. Therefore,

acceleration techniques based GPU make it possible to

perform in-depth data mining in massive metagenomic

samples, as well as make the real-time analysis and

monitoring of constantly-changing metagenomic samples

possible.

V. MATERIAL AVAILABILITY

Source code of GPU-Meta-Storms and CPU version

Meta-Storms with complete manual are available at

http://www.computationalbioenergy.org/meta-storms.html.

All 7 datasets of Human habitat microbial community

samples for test in this work can be accessed from

ftp://www.computationalbioenergy.org/Meta-Storms/GPU.

REFERENCES

[1] A. Jurkowski, et al., "Metagenomics: a call for bringing a new science

into the classroom (while it's still new)," CBE Life Sci Educ, vol. 6, pp.
260-5, Winter 2007.

[2] E. R. Mardis, "The impact of next-generation sequencing technology

on genetics," Trends Genet, vol. 24, pp. 133-41, Mar 2008.
[3] F. Meyer, et al., "The metagenomics RAST server - a public resource

for the automatic phylogenetic and functional analysis of

metagenomes," BMC Bioinformatics, vol. 9, p. 386, 2008.

[4] R. Seshadri, et al., "CAMERA: a community resource for

metagenomics," PLoS Biol, vol. 5, p. e75, Mar 2007.
[5] http://www.ncbi.nlm.nih.gov/

[6] D. H. Huson, et al., "MEGAN analysis of metagenomic data," Genome

Res, vol. 17, pp. 377-86, Mar 2007.
[7] S. Mitra, et al., "Comparison of multiple metagenomes using

phylogenetic networks based on ecological indices," ISME J, vol. 4, pp.

1236-42, Oct 2010.
[8] S. Mitra, et al., "Visual and statistical comparison of metagenomes,"

Bioinformatics, vol. 25, pp. 1849-55, Aug 1 2009.

[9] D. H. Parks and R. G. Beiko, "Identifying biologically relevant
differences between metagenomic communities," Bioinformatics, vol.

26, pp. 715-21, Mar 15 2010.

[10] E. Kristiansson, et al., "ShotgunFunctionalizeR: an R-package for
functional comparison of metagenomes," Bioinformatics, vol. 25, pp.

2737-8, Oct 15 2009.

[11] P. D. Schloss, et al., "Introducing mothur: open-source,

platform-independent, community-supported software for describing

and comparing microbial communities," Appl Environ Microbiol, vol.

75, pp. 7537-41, Dec 2009.
[12] J. Goll, et al., "METAREP: JCVI metagenomics reports--an open

source tool for high-performance comparative metagenomics,"

Bioinformatics, vol. 26, pp. 2631-2, Oct 15 2010.
[13] M. Hamady and R. Knight, "Microbial community profiling for human

microbiome projects: Tools, techniques, and challenges," Genome Res,

vol. 19, pp. 1141-52, Jul 2009.
[14] C. Lozupone and R. Knight, "UniFrac: a new phylogenetic method for

comparing microbial communities," Appl Environ Microbiol, vol. 71,

pp. 8228-35, Dec 2005.
[15] M. Hamady, et al., "Fast UniFrac: facilitating high-throughput

phylogenetic analyses of microbial communities including analysis of

pyrosequencing and PhyloChip data," ISME J, vol. 4, pp. 17-27, Jan
2010.

[16] C. H. Graham and P. V. Fine, "Phylogenetic beta diversity: linking

ecological and evolutionary processes across space in time," Ecol Lett,

vol. 11, pp. 1265-77, Dec 2008.

[17] X. Su, et al., "Meta-Storms: Efficient Search for Similar Microbial

Communities Based on a Novel Indexing Scheme and Similarity Score
for Metagenomic Data," Bioinformatics, Jul 26 2012.

[18] http://www.nvidia.ca/object/cuda_home_new.html

[19] T. Z. DeSantis, et al., "Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB," Appl Environ

Microbiol, vol. 72, pp. 5069-72, Jul 2006.

[20] J. G. Caporaso, et al., "Moving pictures of the human microbiome,"
Genome Biol, vol. 12, p. R50, 2011.

2013 The 7th International Conference on Systems Biology (ISB)
978-1-4799-1389-3/13/$31.00 ©2013 IEEE

74 Huangshan, China, August 23–25, 2013

