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Abstract—An epidemic model with infectivity and recovery in 

both latent and infected period is introduced. Utilizing the 

LaSalle invariance principle and Bendixson criterion,the basic 

reproduction number is found, we prove that the disease-free 

equilibrium is globally asymptotically stable when the basic 

reproduction number is less than one. The disease-free 

equilibrium is unstable and the unique positive equilibrium is 

globally asymptotically stable when the basic reproduction 

number is greater than one.Numerical simulations support our 

conclusions. 
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I. INTRODUCTION 

Pestilences have a profound impact on human civilization. 
Human has a long history of struggling with infectious 
disease,thereinto epidemic dynamics is an important method of 
studying the spread of epidemic qualitatively and quantitatively. 
The research results are helpful to predict the developing 
tendency of the epidemic and to seek the optimum strategies of 
preventing the spread of the epidemic.In recent years,several 
studies have been devoted to the epidemic models with 
exposed (latent) period

[1-7]
 .[1-4] demonstrate the models 

without infectivity in latent period. [5-7] discuss the models 
with infectivity ,but without recovery in latent period. However, 
many infectious diseases,such as SARS, tuberculosis, etc., not 
only can be transmitted, but also can be recovered in latent 
period.In this paper,we consider an SEIR epidemic model with 
infectivity and recovery in both latent period and infected 
period ,which is given by the following form: 
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Where A is the recruitment rate of the population, d is the 

natural death rate, 1d is the disease-related death rate, is the 

transformation rate from the exposed individuals to the 

infected individuals, the recovery rate of the exposed group is 

1 , the recovery rate of the infected group is 2 , )(1 N and 

)(2 N are the adequate contact rates,which satisfy the following 

assumptions
[8]

: 

 1A )(Ni is a nonnegative nondecreasing continuous function 

and is continuously differentiable as 0N , 0)0( i 2,1i . 
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  is a nonincreasing continuously differentiable 

function as 0N , 2,1i   

II. THE EXISTENCE AND STABILITY OF THE EQUILIBRIUM  

Let )()()()()( tRtItEtNtS   ,
1  d  and 

21   dd then the system  1 becomes      
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From biological considerations, system  2 is studied in the 

positive invariant set.   
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By setting the right sides of the four differential equations of  

system  2  to zero, we obtain 
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According to the assumptions  1A and  2A , we have   
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The function )(NF is nondecreasing,so the equation 

0)( NF  has a unique root at most . And because 
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0R is called the basic reproduction number.The equation 

0)( NF has a unique positive root in the interval 

),0(
d

A When 10 R ,then the equation 0)( NF has no 

positive root When 10 R .Based on the above analysis,we 

obtain the following results. 

Theorem2.1 The system  2 always has the disease-free 

disease-free equilibrium ),0,0,0(0
d

A
P ,then it has a unique 

positive equilibrium ),,,( ****

1 NRIEP  if 10 R . 

Theorem2.2 The disease-free equilibrium
0P of the 

system  2 is globally asymptotically stable in
1 when 

10 R and it is unstable when 10 R . 
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Its characteristic equation is 
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Therefore,the characteristic roots of Jacobian matrix 

)( 0PJ all have negative real parts.It follows that the disease-

free equilibrium
0P is locally asymptotically stable when 

10 R and it is unstable when 10 R . 

Then we analyse the global stability of the disease-free 

equilibrium 0P and construct Lyapunov function.  
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It shows that the disease-free equilibrium
0P of the system 

 2 is globally asymptotically stable when 10 R in accordance 

with Lyapunov-LaSalle invariance principle.  

Assume that 

 1B there is a compact absorbing set DK  ; 

 2B x  is the only equilibrium in D  

Lemma 2.1
[9]

 Suppose thatD is simply connected domain, 
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We need only to consider the system consisted of the first 

three equations,denote it by  4  
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system  4 is studied in the positive invariant set.   
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And the disease-free equilibrium
0Q of the system  4 is 

globally asymptotically stable in
2 when 11 R and it is 

unstable when 11 R . 

Theorem2.3 The positive equilibriu
1Q of the system  4 is 

locally asymptotically stable in
2  if 11 R . 

Proof  The Jacobian matrix of the system  4 at the positive 
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satisfied.It follows that the positive equilibrium

1Q is locally 

asymptotically stable. 
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then the positive equilibrium
1Q of the system  4 is globally 

asymptotically stable in
2 . 

III. NUMERICAL SIMULATIONS 
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,001.0,10000,015.0,3.0 12  dad  then ,1914.00 R  

Its phase diagram is illustrated in Figure 1.Numerical 
simulations  show  that  the  solutions  approach  to the disease- 

free equilibrium
0P if 10 R  
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Figure1  The phase diagram of example3.1 
Example 3.2  We choose the function 

bNbN

N
Ni

211
)(


 , 2,1i . ,1.0,4.0,3 1  b  

,10000,015.0,3.02  ad then 146.11 R ,Its phase 

diagram is illustrated in Figure 2.Numerical simulations show 
that the solutions approach to the positive equilibrium

1Q if 

11 R  
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Figure2  The phase diagram of example 3.2 
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IV. CONCLUSIONS 

This article has illustrated an SEIR epidemic model with 

infectivity in both latent period and infected period.The basic 

reproduction number )( 10 RR is established.When 10 R

disease-free equilibrium is globally asymptotically stable and 

the disease dies out eventually. When 10 R the disease-free 

equilibrium is unstable and the positive equilibrium is globally 

asymptotically stable in certain conditions. Further,the 

conclusions are verified by numerical simulations . 
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