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Abstract—Glioblastoma multiforme (GBM) is the most com-
mon and aggressive type of brain tumor in humans. Distinguish-
ing “driver” mutations from passively selected “passengers” is
a central challenge in computational cancer biology. Because
of mutational heterogeneity, analyses that extend beyond single
genes are often restricted to examine known pathways and
functional modules for enrichment of somatic mutations. In this
paper we present a network-based method to identify mutated
core modules for tumors without any prior information other
than the data of somatic mutations and gene expressions from
tumor patients. Firstly, two networks with weighted vertices
and weighted edges are constructed by using the mutations and
expressions, respectively. Then these two networks are combined
to get an integrative network, for which an optimization model
is used to identify the most coherent subnetworks. With the
significance and exclusivity tests we get the core modules for
tumors. By applying our method to The Cancer Genome Atlas
(TCGA) GBM data, we obtained three core modules, which
contain not only oncogenes and tumor suppressors that have
been previously implicated in GBM pathogenesis (e.g., EGFR,
TP53, PTEN, NF1 and RB1), but also some genes which have
not or rarely been reported earlier in the context of glioblastoma
multiforme (e.g., DST, PRAME and SYNE1). Thus, in addition to
present generally applicable methodology, our findings provide
several GBM candidate genes for further studies.

Index Terms—Cancer; core module; somatic mutation; gene
expression.

I. INTRODUCTION

With the rapid advances in high-throughput genome se-
quencing, large-scale cancer genomics projects, such as the
Cancer Genome Atlas (TCGA) and the International Genome
Consortium (ICGC), are producing a large volume of data
about genomic, epigenomic, and gene expression aberrations
in tumor samples [1], [2], [3]. This unprecedented volume of
information provides a basis for systems level understanding
of cancer formation and progression. A key challenge is to
distinguish the functional “driver” mutations, which contribute
to tumorigenesis, from the random “passenger” mutations,
which have accumulated in somatic cells but do not contribute
to tumor development [4].

A standard approach to predict driver mutations is to iden-
tify recurrent mutations in a large cohort of cancer patients.
For example, by comparing alteration rates in individual genes
or regions of copy number alteration against an empirically

derived background alteration rate [5]. But further studies
revealed that cancer genomes exhibit extensive mutational
heterogeneity with no two genomes containing exactly the
same complement of somatic mutations [1], [6], [7]. That is,
the driver mutations may be different for diverse patients –
even those from the same tumor type.

On the other hand, driver mutations typically target genes
in cellular signaling and regulatory pathways which lead to
the acquisition of tumorigenic properties, such as cell prolif-
eration, angiogenesis, or metastasis [8], [9]. Thus, examining
mutations in the context of such biological pathways is an
alternative approach. These studies include analyzing known
pathways for enrichment of somatic mutations [1], [6], [7],
identifying known pathways that are significantly mutated
across many patients [10], [11], and de novo discovery of
mutated driver pathways in cancer [12], [13].

In addition, algorithms that extend pathway analysis to
genome-scale gene interaction networks have recently been
introduced. For example, Cerami et al. [14] and Ciriello et al.
[15] identified oncogenic network modules from a constructed
network by using gene mutation information and the human
reference network (including protein-protein interactions (PPI)
and signal transduction pathways). The defect of such ap-
proaches exist in that human PPI network is incomplete, and
many protein-protein interactions are unknown. Furthermore,
while some pathways are well-characterized and cataloged in
various databases [16], [17], knowledge of pathways remains
incomplete, too. Recently, Miller et al. developed a method
for detecting functional modules in tumors based solely on
patterns of recurrent genomic aberration [18].

Some investigations indicate that cancer alterations tend to
cluster within closely knitted network modules or communi-
ties, and that altered modules are closely linked to specific
biological pathways. Furthermore, genes in the same pathway
are usually activated together and thus have similar gene
expression profiles. Some research already shows that genes
with similar expression profiles are more likely to coordinately
achieve a particular function [19], [20]. So it is very necessary
to integrate gene expression information to identify oncogenic
network modules and candidate pathways. Masica and Karchin
proposed a method to examine the correlation among somatic
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mutation and gene expression to identify important genes in
human cancer [21]. In the procedure, each time a particular
mutated gene is examined if there are genes differentially
expressed with respect to its mutation status, then the mutated
genes are selected out for further investigation which have 2
or more drastic mutation-correlated over- and under-expression
genes. But whether the selected genes form oncogenic modules
or pathways and whether their expressions are correlated are
not discussed.

Glioblastoma multiforme is the most common brain tumor
in adults, with median survival just over a year. Although some
genes have been reported to be drivers for this cancer, the
etiology and the molecular pathogenetic mechanisms are not
entirely clear yet. In this paper we present a network-based
method to integrate somatic mutations and gene expressions
to identify mutated core modules for cancers without any
other prior information such as PPI networks and known
pathways. Our approach is based on the hypothesis that
cooperative dysregulation of gene sequence and expression
may contribute to cancer formation and progression. Core
modules and candidate oncogenic processes are investigated
with the consideration that cellular networks contain functional
modules, and that tumors target specific modules critical to
their growth. Key elements in our approach include combined
analysis of somatic mutations and gene expressions, that
is, analysis of an integrated molecular network constructed
from mutations and expressions, respectively; identification of
coherent subnetworks (modules) using an optimization model;
and statistical assessment of identified core modules. We
applied the method to the TCGA GBM data and obtained
three core modules, which contain not only some well-known
oncogenes and tumor suppressors that have been previously
implicated in GBM pathogenesis (e.g., EGFR, TP53, PTEN,
NF1 and RB1), but also some others which have not or rarely
been reported earlier in the context of glioblastoma multiforme
(e.g., DST, PRAME and SYNE1). Thus, in addition to present
generally applicable methodology, our findings provide several
GBM candidate genes for further studies.

II. METHODS

A. Data

We downloaded the GBM data from TCGA website
(https://tcga-data.nci.nih.gov/tcga/). After processing the gene
expression data using the method in [22], we obtained unified
gene expression profiles in 202 samples. We collected the nu-
cleotide sequence aberrations data in three different platforms
and got the somatic mutations in 135 samples.

Finally we obtain the mutation matrix A and the gene
expression matrix B. The rows and columns of these matrices
correspond to samples and genes, respectively. At this stage,
B is a standerization matrix and A is binary: 1 if any mutation
occurs for a particular gene in a particular sample, otherwise
the element is 0.

B. Construction of an integrative network

With the GBM data, we have constructed an integrative
network based on which an optimization model can be used
to detect oncogenic modules and pathways. Mainly the con-
structive procedure contains three steps.

1) The network based on gene expression: In this step
we construct a network based on gene expression, called
Expression Network (denoted by EN). EN is weighted both
for its edges and vertices, in which each vertex denotes a
gene, and the edge is weighted by the correlation between
expressions of the two vertices (genes). As for the weight in
each vertex, it reflects the influencing extents of the gene’s
mutation to other genes’ expression.

We notice that the genes in A and B may be different,
so the common genes are found out at first. Let (G1, S1)
and (G2, S2) are the sets of genes and samples contained
in these two matrices, respectively. Set G0 = G1 ∩ G2 and
S = S1 ∩ S2. For any gene i ∈ G0, the samples in S are
classified into two groups according to the binary mutation
vector of i from the mutation matrix A, and the corresponding
numbers of samples are denoted by n

(1)
i and n

(2)
i , respectively.

Then p-values for all genes in G2 are calculated using the
program mattest in MATLAB toolbox to evaluate the extents
of differential expression of these genes related to i’s mutation
status. In this procedure the prerequisite that the minimum
numbers of samples of these two groups are no less than 2
are required. So the vertex set of the expression network EN
is in fact G where

G = {i ∈ G0 : n
(1)
i ≥ 2, n

(2)
i ≥ 2}.

For any gene i ∈ G, the vertex weight of EN can be defined
as:

fi = 1 − 1/d

d∑

r=1

pr,

where d is the number of genes in G2, and pr is the p-value of
differential expression of gene r relative to i’s mutation status.
The meaning is that the smaller the p-values the stronger the
influence of the gene’s mutation to others. That is, it is more
likely to be drivers, so it should have greater weights.

For any two genes i and j in G, the edge weight uij is
defined as the absolute value of Pearson correlation between
expressions of i and j across the samples in S.

2) The network based on somatic mutation: To hold the
same vertex set with the expression network EN, in this
subsection the gene set G is also used to construct the network
based on somatic mutations, called Mutation Network (MN).
For any gene i ∈ G, let mi denote the number of mutations
for i across the samples in the mutation matrix A, i.e.,
mi =

∑
r ari. The vertex weight is defined as

hi = mi/m,

where m is the number of all samples in A. For any pair of
genes i and j in G, the edge weight vij is defined as the
number of samples where exactly one of the pair is mutated
divided by the number of samples where at least one of the pair

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

305 Xi’an, China, August 18–20, 2012



is mutated in A. It is clear that the vertex weight measures the
mutation coverage and the edge weight measures the mutual
exclusivity.

3) The integrative network: An integrative network M can
be obtained by synthesizing the expression network EN and
the mutation network MN.

We notice that in EN or MN the vertex weights and edge
weights have different measurement of levels. To balance these
two terms, define f = max fi and u = max uij in EN
(similarly, h = max hi and v = max vij in MN). Set ξ = u/f ,
and η = v/h. Let F = {fi} and U = {uij} denote the sets of
vertex weights and edge weights in EN, respectively (similarly,
H = {hi} and V = {vij} in MN). Then U and ξF (similarly,
V and ηH) have the balanced values.

On the other hand, considering that gene expression values
often contain noises, it is proper to give more importance
for MN than EN while integrating these two networks. Set
δ · (u/v) = k, where k is a quantity reflecting the relative
importance of MN respective to EN. Then δ = k/(u/v). In
this paper k = 2 is used.

The integrative network M with edge weights wij and
vertex weights ci can be defined as follows:

wij = δ · uij + vij , ci = δξ · fi + η · hi, (1)
i, j = 1, · · · , n,

where n is the number of genes in G. From the above
discussion we know that ξ and η can be directly determined
by the networks EN and MN. Also is the case for δ once k
is preassigned.

C. An optimization model for detecting coherent subnetworks

For the integrative network M, our goal is to extract some
modules (subnetworks) with high weights for both edges and
vertices, the optimization model in [23] can be used for this
purpose. With wij and ci defined in Eq. (1), the model is as
follows:

max
∑

i

∑
j wijxixj + λcixi,

s.t. xβ
1 + xβ

2 + · · · + xβ
n = 1, (2)

xi ≥ 0, i = 1, · · · , n,

where the n-dimensional non-negative vector
x = (x1, x2, · · · , xn), determined by solving the optimization
model, represents the degree of each node belonging to some
specific subnetwork. The first term in the objective function
measures the interconnectivity within the subnetwork, while
the second term measures the degree of association between
the nodes and the subnetwork. In the model a positive
parameter λ is introduced to balance these two terms.

On the other hand, a trivial solution will be obtained
when model (2) is unconstrained where all nodes from the
original network can be included into the subnetwork, so
a regularization constraint should be introduced to limit the
number of nodes selected. This is the role of β which can
adjust the strength of regularization applied to the variable
x = (x1, x2, · · · , xn). When β = 2, it is very attractive in

many cases since the optimization of a quadratic function
over a sphere is polynomially solvable in contrast to general
nonconvex programming [24] but tends to select all the nodes
in the network to the final subnetwork. When β = 1, this
L1-type constraint will lead to a sparse solution, i.e., many
of the entries in the final optimal solution x will be zeros
[25]. Usually we use β = 1 in model (2) in order to extract
small-sized subnetworks from a large network.

The optimization model (2) can be easily solved by quickly
finding a local minimum from a predetermined initial solution
through the following iterative algorithm [23]:

xt+1
i =

(
xt

i

2(WX)i + λci

2XT WX + λ
∑

i cixt
i

) 1
β

, (3)

where W = (wij) is the n × n edge weight matrix, and
X = (xt

1, x
t
2, · · · , xt

n)T is the n-dimensional solution vector
at time t. Algorithm (3) is convergent and the non-zero entries
in solution x (determined in practice as entries that are greater
than a cutoff, 0.03 is used in this paper) define a certain
subnetwork (module). After one locally optimal solution is
obtained, these corresponding vertices are eliminated from the
network, and the whole procedure is then iterated, i.e., we
solve for another locally optimal solution and its correspond-
ing subnetwork based on the new network.

D. Significance test of the subnetwork (module)

We perform a random test to assess the significance of the
results. For a selected subnetwork SN with b vertices, we get
a quantity C by summing up all the vertex weights and edge
weights involved in SN. Then we randomly select b vertices
from the original network and also get a similar quantity CR.
This procedure is repeated for 1000 times and the number
r of CRs which is larger than C can be calculated. The
significance p-value of SN (denoted by p1) can be obtained
through the quantity of r divided by 1000.

E. Mutual exclusivity test of the subnetwork (module)

After a subnetwork has passed the significance test, the
following step is to evaluate whether it exhibits a pattern of
mutually exclusive genomic alterations. Here the “switching
permutation” method proposed by Ciriello et al. [15] was
used for this purpose, in which a Markov chain Monte Carlo
permutation strategy is adopted based on random network
generation models.

Furthermore, it is imaginable that even though a subnetwork
SN with b (b > 2) vertices is not significantly mutually
exclusive, we cannot exclude that one of its subsets actually is.
In this case two strategies can be adopted. One is to reduce the
scale of the subnetwork sequentially, that is, a subset SN′ of
size b−1, contained in SN, is selected which is more likely to
be significant among all the subsets of SN with b−1 vertices.
This can be realized by removing from SN the less informative
vertex (gene), i.e., the one with the smallest number of unique
alterations [15]. The process is repeated recursively until either
of the two conditions is reached: SN′ is significantly mutually
exclusive or b = 2. On the other hand, because high weights
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Fig. 1. The schematic figure of the mutated core modules in GBM obtained by our integrative network analysis. The area of each vertex (gene) and the
width of each edge are proportional to their weights in the integrative network M. The orange and green in the vertex correspond to the gene’s coverage and
the influence of its mutation status to other genes, respectively, whereas the dark red edge corresponds to the mutual exclusivity and expression correlation
between the genes. Here all the weights are extracted from the 118-gene network M wherein the module MO1 in A is directly identified. The modules
MO2 in B and MO3 in C can be obtained by removing the detected module(s) from M and recalculating the weights using Eq. (1). For clarity, we do not
display the recalculated weights here.

are simultaneously required for the subnetwork, an alternative
strategy is to hold the largest entry vertex and examine which
else gene is mutually exclusive with it. Hereafter in this
paper, we denote the exclusivity p-value by p2 for concise
description.

III. RESULTS

In this section the results will be presented for the GBM
data from TCGA (see the above Data subsection). Through
the construction procedure of the integrative network we have
118 genes left in M. Three core modules are obtained by
performing algorithm (3) on M, where λ = 1 is used. A
schematic figure of the modules are displayed in Fig. 1.

A. Core module MO1

The first module MO1 consists of five genes: EGFR, NF1,
PTEN, PIK3R1 and TP53. MO1 is significant with p1 = 0.00
and p2 = 0.01.

The first four genes in MO1 (i.e., EGFR, NF1, PTEN
and PIK3R1) are in the RTK/RAS/PI(3)K signalling pathway,
one of the three core pathways altered in the development of
glioblastoma deduced by the TCGA Research Network [1].
NF1 is a human glioblastoma suppressor gene, and EGFR
is frequently activated in primary glioblastomas [1]. Both

of them have been used as biomarkers for identifying the
glioblastoma subtypes [26]. PTEN functions primarily by reg-
ulating RTK/PI3K/AKT signaling through its lipid phosphatase
activity. As a tumor suppressor gene, PTEN’s mutations and
deletions inactivate its enzymatic activity which may lead
to increased cell proliferation and reduced cell death. Fre-
quent genetic inactivation of PTEN occurs in glioblastoma,
endometrial cancer, and prostate cancer. The gene PIK3R1,
except occurring in the core glioblastoma pathway in [1],
it has also been reported to be involved in human cancers
before, including glioblastoma [27]. TP53 is an important
tumor suppressor and it is the most commonly mutated gene
for the samples of the TCGA GBM data (∼ 28.9%). It is
known that mutations in TP53 and PTEN are both obligate
events in the pathogenesis of human glioblastoma. However,
there are also studies indicate that PTEN loss may disrupt
cellular homeostasis enough to be detected as a cellular stress
inducing a low-level astrogliosis response, but it is insufficient
to drive proliferation, consistent with the inability to initiate
gliomagenesis in the absence of other mutations. In [28]
the authors examined the cooperativity between these two
tumor suppressors TP53 and PTEN in mature mice and they
concluded that combined inactivation of PTEN and TP53
induced high-grade astrocytomas. So maybe it is reasonable to
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think that TP53 loss is required for the genesis of glioblastoma
if PTEN deletion appears [29]. On the other hand, Zhu et al.
investigated the cooperativity between TP53 and NF1 and they
found that early inactivation of TP53 tumor suppressor gene
cooperating with NF1 loss induces malignant astrocytoma
[30]. All these indicate that although TP53 is in another core
pathway in [1], it is of certain reasonability to include TP53
in the module MO1.

B. Core module MO2

The second module MO2 is obtained by removing MO1
from M and performing (3) on the remaining genes. Now
five genes including COL6A2, DST, ERBB2, PIK3CA and RB1
were detected with p1 = 0.00 and p2 = 0.00, which indicates
that MO2 is very significant for both statistical tests.

The gene RB1 is a principal member of the RB signalling
core pathway for glioblastoma in [1]. In fact, it is a key
regulator of entry into cell division that acts as a tumor
suppressor, and one of its functions is to prevent excessive
cell growth by inhibiting cell cycle progression until a cell
is ready to divide. RB1 is dysfunctional in several major
cancers [31]. COL6A2 encodes one of the three alpha chains
of type VI collagen. Its product contains several domains
which have been shown to bind extracellular matrix proteins,
an interaction that explains the importance of this collagen
in organizing matrix components. Recently a multi-cancer
stage-associated gene expression signature has been identified,
consisting of a set of genes that are coordinately overexpressed
only in samples of cancer that have exceeded a particular stage
specific to each cancer type. The signature contains numerous
epithelial-mesenchymal transition (EMT) markers, such as the
EMT-inducing transcription factor Slug (SNAI2), as well as
FAP, COL6A2, etc [32]. And in [32] the authors demonstrated
that the signature was strongly associated with the phenotype
“Days to Tumor Recurrence” in glioblastoma. Moreover, Slug
has also recently been found to be associated with invasiveness
in glioma [33], and COL6A2 is one of the several genes with
high correlation expression with Slug [32]. In [34] COL6A2
was selected as one of the endothelial marker genes and has
been confirmed to be conserved in primary and metastatic
brain tumors. COL6A2 has also been reported to be related
to glioblastoma in other papers such as [35], [36].

The genes ERBB2 and PIK3CA are also contained in the
RTK/RAS/PI(3)K signalling pathway [1]. ERBB2 mutation has
also previously been reported in glioblastoma tumor in [37].
Like PIK3R1, gene PIK3CA also belongs to PI(3)Ks, which
are a family of lipid kinases capable of phosphorylating the
3’OH of the inositol ring of phosphoinositides. They are
responsible for coordinating a diverse range of cell functions
including proliferation, cell survival, degranulation, vesicular
trafficking and cell migration. Moreover, frequent activating
missense mutations of PIK3CA have been previously reported
in multiple tumor types, including glioblastoma [38], [39]. The
gene DST encodes a member of the plakin protein family
of adhesion junction plaque proteins. Multiple alternatively
spliced transcript variants encoding distinct isoforms have

been found for this gene. It has been known that some
isoforms are expressed in neural and muscle tissue, and some
isoforms are expressed in epithelial tissue. Consistent with the
expression, mice defective for this gene shows skin blistering
and neurodegeneration [40]. Because there has not been any
report about the relationship between DST mutation and
glioblastoma, maybe this is a new gene for the pathogenesis
of human glioblastoma.

C. Core module MO3

After removing MO1 and MO2 from M and performing
(3) on the remaining network the third module MO3 is
obtained which contains two genes: PRAME and SYNE1.
Actually, at first seven genes including MO3 and five others
were detected with p1 = 0.00 and p2 = 0.47. Then sequential
removing less informative genes was performed but none of
the subsets passed the exclusivity test. Finally, we held the
largest entry gene SYNE1 and respectively examined each
gene pair. The gene PRAME was identified which was very
significantly exclusive with SYNE1 with a p-value p2 = 0.00.

Gene SYNE1 mutation is known to influence cerebellar
ataxia, and is associated with lung, ovarian, and colorectal
cancers. But it has not been highlighted in previous studies
using TCGA GBM data and there has not been any correlation
between GBM and SYNE1 mutation in the literature until
recently. In [21] the authors found one large network in
which the genes’ expression changes are associated with the
mutated SYNE1 gene, wherein several known oncogenes are
included. The results suggest that SYNE1 mutation is important
in TCGA GBM tumor samples. SYNE1 and its associated
genes may be new targets for future treatments. In [41] SYNE1
was highlighted to be associated with the GBM patients’
lifetime, so it is an important biomarker of glioblastoma
survival. PRAME was previously reported to be associated
with melanoma and acute leukemias. And recently it has been
reported to be involved in the pathogenesis of glioblastoma
also [42], [43].

IV. CONCLUSION

In this paper, a network-based method is presented which
integrates somatic mutations and gene expressions to find out
mutated core modules in cancer. Different from some previous
approaches exploring pathways or modules, our method does
not use any prior information such as human PPI networks
and known pathways.

In the construction of the integrative network M and the
performing process of the optimization algorithm (3) there are
two parameters, i.e., k and λ, need to be further explained.
This is a typical feature of our method, which employ two pa-
rameters to balance not only different sources of data but also
the vertices and edges of the weighted network constructed
from the data. On one hand, this provides flexibility for
using the method because one can choose different parameters
depending on which factor he/she puts more emphases. On
the other hand, different choices of parameters may result in
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slightly different results. This needs further consideration in
practice according to the actual data.

Three core modules are identified in this paper when the
method with k = 2 and λ = 1 was applied to the TCGA
GBM data (referring to Fig. 1). Among the modules, there are
not only some well-known oncogenes and tumor suppressors
that have been previously implicated in GBM pathogenesis,
but also some others which have not or rarely been reported
earlier in the context of glioblastoma multiforme. These results
indicate that the presented method of integrative network
analysis can be expected to provide useful information for
the study of pathogenesis in cancer.
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