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Abstract—The recent discovery of cancer stem cells (CSCs), or 

tumor initiating cells (TICs), in a variety of cancers, including 

breast cancer, provides a key to understand the processes of 

tumor initiation, progression and recurrence. Here, we present a 

three-dimensional (3D) multiscale model of the CSC-initiated 

tumor growth, which takes into account essential 

microenvironmental (mE) factors (e.g. nutrients, extracellular 

matrix) and some important biological traits (e.g. angiogenesis, 

cell apoptosis, and necrosis) and addresses tumor growth from 

three different levels, i.e. molecular, cellular and tissue levels. At 

the molecular level, mathematical diffusion-reaction equations 

are used to understand the dynamics of mE factors. At the 

cellular level, a cellular automaton is designed to simulate the life 

cycle and behaviors of individual cells. At the tissue level, a 

computer graphics method is used to illustrate the geometry of 

the whole tumor. The simulation study based on the proposed 

model indicates that the content of CSCs in a tumor mass plays 

an essential role in driving tumor growth. The simulation also 

highlights the significance of developing therapeutic agents that 

can deliver drug molecules into the interior of the tumor, where 

most of CSCs tend to reside. The simulation study on the breast 

cancer xenografts reveals that the mouse tumor initiated from a 

mixed population of human CSCs and other tumor cells show a 

faster growth rate, while a weaker proliferation and 

aggressiveness than that initiated from a pure human CSCs 

population. These simulation results are mostly consistent with 

our experimental observations. The mathematical model thus 

provides a new framework for the modeling and simulation 

studies of CSC-initiated cancer development. 

Keywords—cancer stem cells; multiscale modeling; tumor 

development;drug treatment. 

I.  INTRODUCTION 

Tumor is a complex disease, and the processes that drive 
tumor progression, e.g. angiogenesis, tissue invasion, 
metastasis and resistance to drug treatment remain unclear. 
Recently, experimental and clinical studies have reported that 
tumor progression depends on the existence of a small subset 
of cells called cancer stem cells (CSCs) or tumor initiating 
cells (TICs) [1-5]. The CSCs have extensive self-renewal 
potential, and are able to re-grow into a tumor through 
asymmetric proliferation [2, 6]. It is hypothesized that CSCs 
are the root that cause for therapeutic failures and tumor 
recurrence [3, 7]. Though the CSC concept offers reformative 
insights into tumor development and treatment, the roles of 
CSCs in tumor development and treatment remain unclear 
because even a tiny piece tissue of a tumor is a complex 
system, including signaling transduction inside and outside of 
cells, and thus it is technically difficult to investigate 
individual CSCs in such a complex system.  

Mathematical models enable us to simulate, predict and 
validate the non-intuitive and complex hypotheses of tumor 
development [8-13]. In general, three groups of models have 
been widely used for the tumor development simulation, i.e. 
cellular (discrete), continuum, and hybrid models (integration 
of cellular and continuum models). In the cellular model (e.g. 
cellular automaton [14] and cellular potts models [15]), cancer 
cells are simulated individually, and cell behaviors are 
governed by a set of deterministic or probabilistic rules. In the 
continuum model, cancer-related variables such as cell 
population, nutrient and drug concentrations and concentration 
of other mE factors are modeled using a set of ordinary or 
partial differential equations [11, 16]. In the hybrid approach, 
nutrient concentrations, drug concentrations, and other mE 
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Figure 1. A flowchart of behaviors of tumor cells, i.e. cancer stem cell, 

progenetor cells and tumor cells, under the constriants of mE factors. 

 

Figure 2. Three scales of the proposed model. At the molecular level, 

the adaptive finite element method is employed to solve the PDE system 

that discribes the diffusion and reactions of mE factors. At the cellular 
level, a 3D cellular automaton is designed to describe the cell behaviors. 

At the tissue level, the global visualization of tumor is presented.  

 

 

factors are modeled as continuous variables and cancer cells 
are modeled as discrete variables, and the behaviors of 
individual cancer cells are subject to the spatial dynamics of 
mE factors [8]. A few mathematical models have been 
proposed to investigate the roles of CSCs in tumor progression, 
[9, 10, 12, 13]. However, the effects of mE factors to CSCs 
and roles of CSCs, progenitor cells (PCs) and differentiated 
tumor cells (TCs) as well as the effects of CSC content, have 
not been fully investigated through 3D modeling.  

Herein we propose a 3D and multiscale computational 
model to simulate tumor progression in response to 
interactions between CSCs and tumor mE factors. Fig. 1 
shows mE factors and their effects on tumor cell behaviors 
that are described by the model. As indicated, when a small 
avascular tumor grows beyond its critical size, the cells in the 
interior of the tumor begin to die or be quiescent because of 
hypoxia. The dying cells then release tumor angiogenesis 
factors (TAFs), which diffuse into the surrounding tissues and 
activate endothelial cells (EC) to form neovasculature toward 
the hypoxia regions [18]. The tumor cells, on the other hand, 
may secrete the matrix degrading proteolytic enzyme (MDE) 
(e.g. fibronectin) to dilute the extracellular matrix (ECM) to 
create space for their migration [19].  

The proposed model is designed in the 3D space and multi-
scale, consisting of three biological scales: molecular, cellular, 
and tissue, as shown in Fig. 2. At the molecular level, the 
adaptive finite element method is employed to solve the PDE 
system that describes the diffusion and reactions of mE factors, 
i.e. nutrients, TAF, MDE, ECM and tissue pressure (also 
known as interstitial fluid pressure [20]). At the cellular level, 
a 3D cellular automaton is designed to describe the cell 
behaviors. We allow a hierarchical organization of tumor cell 

subtypes, including CSC, PC and TC, as shown in Fig. 1. At 
the tissue level, the global visualization of tumor is presented.  

Based on the proposed model, we conducted simulations 
on CSC-initiated tumor development. The results indicated 
that the content of CSCs in a tumor plays an essential role in 
tumor growth. The results also suggest that it is critical to 
develop therapeutic agents that can penetrate and deliver drug 
molecules into the interior of tumor, where most CSCs are 
located. By simulating the development of xenografted tumor 

in mice, we observed a faster growth rate while a weaker 
proliferation and aggressiveness in the tumor initiated from a 
mixed population of human CSCs and other tumor cells than 
the tumor initiated from a pure human CSC population. These 
simulation results are consistent with our experimental 
observations. The proposed model and simulation thus provide 
us a new computational framework for exploration of CSC-
initiated cancer development. 

II. MATERIALS AND METHODS 

A. Animal and Tumor Samples  

Breast cancer tissues were obtained from patients 
undergoing surgical resection after informed consent. Two 
groups of NOD/SCID mice were prepared for flank injection. 
One group (n = 5) was injected with 1×10

3
 breast cancer cells, 

which are all CSCs identified as CD44+/CD24-. Another group 
(n = 4) was injected with 1×10

6
 breast cancer cells in which 4.1% 

are CSCS (CD44+/CD24-). The CD44+/CD24- are general 
biomarkers for identifying breast CSCs [21]. All nine of the 
injections formed tumors, and the diameter of each tumor was 
measured every other day until they reached about 2 cm in size, 
which is a constraint imposed by our Institutional Animal Care 
and Use Committee (IACUC).   

B. The PDE System Describing mE Factors 

The following is the system of PDEs describing the 
diffusion and reactions of five mE factors, including nutrients 
(n), TAF (c), MDE (m), fibronectin (f), and tissue pressure (p). 
For simplification, domain symbol Ω is omitted in each 
equation, except where noted. All variables and parameters 
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involved are non-dimensional. Also an indicator function χΩ 

defined in a domain Ω is defined as: χΩ(x) = 1, if x ∈ Ω;  χΩ(x) 

= 0, if x ∉ Ω.   

The diffusion-reaction profile of nutrients is depicted by 
the following quasi-steady equation with non-zero Dirichlet 
boundary conditions [22, 23].  
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where Dn 
is the nutrient diffusion coefficient, and n

pp  and n

pa  

are rates of nutrient transfer from preexisting and neo-

vasculature blood vessels, respectively. 
n

b is the rate of 

binding to fibronectin, and 
n

u is the rate of uptake by all cells, 

which varies with different cell types. χ∑ c is the indicator 

function of the neo-vasculature. By multiplying the pressure 
term (1-p), the heterogeneity of the blood vessels was 
implicitly incorporated in terms of nutrient transfer, where p is 
the hydrostatic/oncotic pressure. Further, the term (1-p) was 

incorporated in n

paK  to adapt the saturation effect of nutrient 

transfer; more specifically, the transfer was depressed with 
increase to the pressure outside the vessels [22, 23]. 

The TAF released by the tumor cells, especially dying 
tumor cells, diffuses throughout the tumor region. During 
diffusion, it may be ingested by endothelial cells or degrade 
naturally. This process is modeled by the following Neumann 
problem [22, 23]: 
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where Dc is the TAF diffusion coefficient, ∂ΩN is the necrotic-

viable interface, n is the unit outer normal direction on the 

boundary of Ω, 
c

pN  and 
c

pV are rates of secretion of TAF 

by dying cells and by viable cells, respectively, c

u is the rate 

of uptake by endothelial cells, and c

d is the rate of 

degradation. 

Fibronectin is one of major components of ECM, which is 
a long binding molecule that does not diffuse but does 
enhance cell adhesion to the extracellular matrix of the 
surrounding tissue. The concentration of fibronectin obeys: 
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  (3)                                      

where f

p  and f

sp  are rates of production of fibronectin by 

the viable tumor cells and endothelial cells constituting the 
neovasculature, respectively, and f

d  stands for the rate of 

degradation of ECM by the MDE. 

The MDE secreted by both viable tumor cells and 
endothelial cells causes the degradation of the ECM, 
subsequently providing space for cells. The diffusion, 
production and degradation of MDE are described as:   
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  (4)                              

where, Dm is the diffusion coefficient while the other three 
parameters correspond to those in (3).   

Cell velocity is related to tissue pressure, which results 

from heterogeneous cell proliferation presented by the 

following equation, known as Darcy-Stokes (DS) law [22]: 

, | 0u p p    .  The velocity field of the cell motility obeys 

the following divergence equation:  

( )a N
V N

u n        , where, λa and λN are the rates of 

volume loss due to apoptosis and necrosis. Here, the first term 

on the left side is regarded as the source effect, and the second 

term is considered as the sink effect due to cell apoptosis. A 

divergence on both sides of the DS law equation is performed 

and combined with the divergence equation of cell motility to 

yield the diffusion equation of pressure: 
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               (5) 

The PDEs containing the diffusion items are solved by the 
finite element method with adaptive mesh as demonstrated in 
[24]. Cell velocity was calculated by equation (5) and the 
equation of ECM was solved by the 2

nd
 order total variation 

Runge-Kutta method [25]. Finally, the time step Δt was 
calculated at each time point [22] for the sake of 

computational stability: Δt=(Δl/4).min{1/maxi|Vi|, 1/maxi| iu |}, 

where Δl=0.1 stands for the spatial step in all the simulations, 
Vi is a function of TAF, ECM, and cell velocity at each spatial 

point i [22], and iu  represents cell velocity at spatial point i.  

C. 3D Cellular Automaton   

Each cell could migrate or generate a new cell into one of 
its six orthogonal neighbors, considering the status of mE 
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factors at each time step. In specific, for a given cell located at 
grid k:  

1)  Check all the empty immediate orthogonal neighbor grids 
that are not occupied by cells.  

2)  If there is no empty neighbor grid, then go to 8).   

3) The cell migration probabilities to the m (m<=6) immediate 
orthogonal neighbors are calculated as: qi=ni/fi, 
i=0,1,2,…,m, where q0 

denotes the probability of staying at 
the same grid. 

4)  Let '

1

k

k ii
q q


  , then we get a monotonically increasing 

vector: ' ' '

0 1[ , ,..., ]mq q q , and normalize them as: " ' '/i i mq q q . 

6) Define "

1 1[0, ]R q , and " "

1[ , ]i i iR q q , i = 1,2,…,m. 

7) Generate a random number r uniformly from [0, 1], check 
which interval does r belong to, and then migrate the cell 
to the grid corresponding to the selected interval.  

8) Increase the age of the cell. Check whether the cell would 
divide or not. If it divides, increase one cell with a proper 
cell type, and let it migrate following the above migration 
rules. Check whether the cell would become quiescent or 
death due to mE conditions, e.g. nutrients and drugs.    

D. Gompertz Curve Fitting and Metrics 

The Gompertz curve describes a growth pattern which is slow 

in both the beginning and the end, but is fast in between, and 

has been considered to be a good mathematical descriptor of 

untreated tumor growth [26]. It is defined as: 
0( )

0( ) exp( (1 e ))
b t t

y t y k
 

  , where y0 is the tumor 

volume at time t0, while k and b (both positive) are parameters 

relating to the axis displacement and growth rate. The four 

parameters are estimated as: 
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   , where yi is the 

measured tumor volume at time ti, and N is the number of 

observations. The properties of tumor are measured by four 

metrics: the Proliferation Potential (PP), the Time a tumor 

needs to reach its Potential (TtP), the Average Aggressive 

Index (AAI) and the Average Fitting Error (AFE) when fitted 

to the Gompertz curve. Specifically, PP was calculated as: 

0lim ( ) k

tPP y t y e  . It is used to estimate the potential 

size of a tumor. TtP was obtained as: 

inf{ 0; ( ) }TtP t y t PP   , ‘inf’ means the infimum of a set. 

The aggressiveness metric, AAI, is defined as: 

1
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iS  and 
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and volume of the tumor i.  The metric AFE is defined as: 
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III. RESULTS 

A. Determination of paratmeters important to tumor growth 

Table 1 lists the parameters of the proposed model. The 

continuous parameters are related to the PDE system, and the 

discrete parameters are used in the cellular automaton. The 

values of the parameters were determiend from literatures or 

estimated from experimental data.  

To determine which parameters of the model contributed 
significantly to the final equilibrium state (or stable steady 
state) of tumor growth, we performed sensitivity analysis. The 
final tumor volume was estimated by perturbing the parameter 
values in a range of 10%. In each simulation, the total number 
of tumor cells (CSCs + PCs + TCs) was calculated after the 
model reached a steady state. Specifically, we observed a few 
parameters’ values are relative sensitive to the tumor growth, 
including some continuous parameters, i.e.,    

  (the rate of 

nutrient transfer from pre-existing blood vessels),    
  (the 

rate of secretion of TAF by dying cells),   
  (the rate of 

production of MDE by viable tumor cells), Dc (the TAF 
diffusion coefficient); and some important symmetric and 
asymmetric  proliferation abilities of tumor cells, i.e., KCCP 
(the probability that CSC divide asymmetrically to generate 
one CSC and one PC) and KPP 

(the probability that PCs divide 
symmetrically to two progenitor cells).  

 

TABLE I.  SUMMARY OF ALL THE CONTINUOUS AND 

DISCRETE PARAMETERS USED IN THE MULTISCALE CSC MODEL.  

Symbol Description Value Source 

Continuous Parameters 

Dn Nutrient diffusion coefficient 1.0 PM2009 

 Dc TAF diffusion coefficient 100 Estimated 

Dm MDE diffusion coefficient 1.0 PM2009 

n

u  Rate of nutrient uptake 
[0.2,0.5,0.33,

0.67, 1, 1]  

XZ2005; 

Estimated 
n

b  Rate of binding of nutrient 2.5·e-3 Estimated 

n

pa  Rate of nutrient transfer from 
neovasculature 

0.05 
XZ2005; 
Estimated 

n

pp  Rate of nutrient transfer from 

existing vessel 
0.01 Estimated 

c

pN  
Rate of production of TAF by 

dying cells 
0.05 Estimated 

c

pV  Rate of production of TAF by 

viable cells 
0.004 Estimated 

c

d  Rate of degradation of TAF 0.01 PM2009 

c

u  Rate of uptake of TAF by 
endothelial cells 

0.025 PM2009 

m

p  Rate of production of MDE by 
viable cells 

{50,100,150
} 

PM2009; 
Estimated 

m

sp  Rate of production of MDE by 
endothelial cells 

1.0 PM2009 

m

d  Rate of degradation of MDE 10 PM2009 
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Figure 4. Four metrics of simulated tumor growth initiated from 50 

tumor cell with different CSC contents: 4%, 50%, and 100%.  

 

 

Figure 3. Simulation results of tumor growth initiated from sorted and 

unsorted tumor cell populations. A. tumor growth patterns at different 
time points. B. Profiles of mE factors at different time points. 

 

f

p  Rate of production of ECM by 

viable cells 
0.1 PM2009 

f

sp  Rate of production of ECM by 

endothelial cells 
0.01 Estimated 

f

d  Rate of dissolution of ECM 0.01 PM2009 

λa
 
 

Rate of volume loss due to 

apoptosis 
0~0.00013 Estimated 

λN
 
 Rate of volume loss due to necrosis 0.25 XZ2005 

θa

 Minimum nutrient concentration 

for cell survival 

{0.1, 0.17, 

0.25} 

XZ2005; 

Estimated 

θd

 Maximum drug concentration for 
cell survival 

{0.25, 0.27, 
0.375} 

Estimated 

Discrete Parameters 

[KCC, KCCP, 

KCP, KCT] 

Probabilities related to 

CSC proliferation 

{0.6,0.25,0.1,

0.05} 
Estimated 

[KPP, 
KPT]  

Probabilities related to PC 
proliferation 

{0.25,0.75} Estimated 

[KTT, dT]  
Probabilities related to TC 

proliferation 
[1- λa, λa] Estimated 

Ap

 
Proliferation ages of cells δt·[5, 2, 5, 1] Estimated 

Gm

 Maximum generations a cell 

can proliferate 
δm·[10, 2, 1] Estimated 

Cs

 
Constant for cell size scaling 10·e-5 Estimated 

B. Simulation of CSC-Initiated Tumor Development 

We simulated the breast cancer tumor development under 
two experimental conditions of CSC initiation. We then 
validated the simulated results by the corresponding 
experiment data so that justified the proposed mathematical 
model. The two experiments, i.e. the breast cancer 
xenografting with sorted and unsorted human CSC cells, are 

described in the method part. In the simulation corresponding 
to the sorted experiment, tumor growth in mouse was initiated 
by a set of pure CSCs population (~20 CSCs). In the 
simulation corresponding to the unsorted experiment, tumor 
growth in mouse was initiated by a mixed population of CSCs 

and niche cells (~500 cells with 4% cells as CSCs).  Fig. 3 
shows the tumor growth and mE factor profiles in the two 
simulations. Tumors initiated from the unsorted cells grow to 
the limit size much faster (~50 days) than that from the sorted 
cells (~85 days). Interestingly, the tumor derived from the 
sorted CSCs has fingered irregular morphology, in comparison 
with the tumor from unsorted cells. The fingered morphology 
is probably caused by the individual CSCs generated their 
own colonies. These simulated results are consistent to our 
experimental observations. 

To further investigate how CSCs affect tumor growth, we 
conducted simulations, in which the initial proportion of CSCs 
was set to be 4%, 50%, and 100%, respectively, with the 
initial number of cancer cells fixed (50 tumor cells). Fig. 4 
shows the four metrics of simulation results. As shown, 
proliferation potential and aggressiveness of tumors 
significantly increases with the increase of CSC fraction, and 
the time needed to reach the proliferation potential (TtP) also 
generally increases as the CSCs’ fraction increases. However, 
the tumors initiated from the pure population of CSCs reach 
their limit size slightly faster than the ones initiated from 50% 
CSCs. This is because CSCs may proliferate fast under certain 
mE factors such as nutrient and ECM concentrations during 
the tumor growth. We also found that the tumor derived from 
the pure CSCs have a smaller average fitting error, which 
indicates that the growth of the pure CSCs more resembles the 
Gompertz curve that mixed tumor cells (CSCs+non-CSCs). In 
conclusion, the content of CSCs in a tumor mass plays an 
essential role in driving tumor growth, which is consistent 
with our experimental observations.  
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Figure 5. Simulation of tumor response to chemotherapy. A. After a 

period of 9 weeks treatment to a CSC-initiated tumor, the tumor size 

shrinks quickly at first and then remains stable or even expands slightly 
during the post treatment. B,C. The simualted and experimental 

variations of CSC fraction.  

 

C. Simulation of tumor response to drug treatment 

We also conducted a simulation of chemotherapy on tumor 
growth. We assumed that both cancer cells and CSCs could be 
killed when the drug concentration reaches a threshold level, 
and we set different threshold values for CSCs and tumor cells. 
Fig. 5 shows the simulated dynamics of drug treatment. As 
illustrated, during the drug treatment the solid tumor shrinks 
while the fraction of CSCs increases, which is consistent with 
experimental observations and clinical reports [27]. It is also 
shown that once the treatment stops, the solid tumor grows to 
a half of its original size within a short period of time. The 
percentage of CSCs in the re-grown tumors is significantly 
larger than that before treatment. The fast re-growth and 
increased fraction of CSCs during tumor re-growth are 
indicative of the aggressiveness of the relapsed tumors. The 
fast relapse is probably because that the drug treatment first 
induced the death of most non-CSCs, residing in the rim of 
tumors, and consequently, once the drug treatment is stopped, 
more space and nutrient would be available for CSCs that tend 
to reside in the interior of tumors. 

IV. DISCUSSION 

In this study, a 3D and multiscale model of tumor growth 
is developed to investigate how CSCs interact with mE factors 
to drive tumor progression. Multiple important mE factors and 
biological processes important to tumor development are 
incorporated into the model. The model is implemented on a 
3D platform at three hierarchical levels (e.g. molecular, 
cellular and tissue levels). The proposed computational model 
could be easily modified and extended to different 
applications in CSC-related studies. 

The proposed model predicts important insights into caner 
development and drug treatment. Through the modeling, we 
found, for example, that the neovasculature can extend into 
the interior of a tumor during its evolution. This implies that 
the neovasculature might help deliver drugs into the interior of 

a tumor, where CSCs reside. We also found that the mouse 
tumor initiated by the sorted human CSC population have 
enhanced proliferation potential and stronger aggressiveness, 
while the growth of tumors from the unsorted cells is faster 
than that from the sorted cells. The mathematical simulations 
also explain the aggressive recurrence of tumors once 
medication is stopped. These findings may motivate the 
implementation of localized drug delivery that can deliver 
drug into the interior of a tumor and target at the CSC 
subpopulation effectively. 

Our current model treats the metabolism of a tumor in a 
simple manner. We allow the nutrients to diffuse among the 
tumor region according to dynamic principles and clear the 
apoptotic or killed cells forcefully. These processes, however, 
involve complex biochemical reactions. Relevant regulatory or 
signaling pathways, particularly those related to proliferation of 
cancer cells need to be considered. Moreover, different drugs 
might target on different cell populations. Specific effects of 
drugs should be considered to accurately simulate their effects. 
Last but not the least, the cell shape impacts cell-cell and cell-
mE factor interactions, particularly when the cell density is 
dense, causing shape deformation and cell-cell interaction 
through cell surface markers. We will thus take this as well as 
others into account as part of our further improvements of the 
proposed model. 
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