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Abstract—We study the transition time between different meta-
stable states in the continuous Wright-Fisher (diffusion) model.
We construct an adaptive landscape for describing the system
both qualitatively and quantitatively. When strong genetic drift
and weak mutation generate infinite adaptive peaks, we calculate
the expected time to escape from such peak states. We find a new
way to analytically approximate the escape time, which extends
the application of Kramer’s classical formulae to the cases of non-
Gaussian equilibrium distribution and bridges previous results
in two limits. Our adaptive landscape, compared to the classical
fitness landscape or other scalar functions, is directly related to
system’s middle-and-long-term dynamics and is self-consistent
in the whole parameter space. Our work provides a complete
description for the bi-stabilities in the present model.

I. INTRODUCTION

The issue of multi-stabilities and state-transition probabili-
ties in biological evolution have been long concerned by pop-
ulation geneticists [1][2][3][4][5][6]. Theoretical results are
widely used for phenomenal studies of biological speciation
[7], evolutionary robustness [8], and genetic substitutions [9].

Viewing the biological evolution as a stochastic process, one
may classify the dynamics into two fundamentally different
types of movements: toward the local stable (or meta-stable)
state or between different stable states [10]. Theoreticians
are strongly interested in the peak-to-peak transitions, which
is often considered of stochastic essence [11][12]. On the
qualitative side, mechanisms for such rare events are variously
defined [13] (one example is the random genetic drift [14]).
From the quantitative side, it has been frequently asked how to
calculate the expected rate/time of peak-shifting events under
the interaction of different biological factors.

A widely used approach to calculate the escape time is
derived from the diffusion process, first introduced by [11]. It
applies when the equilibrium distribution of probability den-
sity, near one or other peak, is approximately Gaussian. The
escape time or first passage time was also calculated using the
backward diffusion equation in population genetics and other
areas under similar approximations [12][15][16]. The results
estimate an exponential dependency of the escape time on the
energy gap, called a “Arrehnius factor”. In the present model,
however, this classical results cannot be applied as strong
genetic drift would generate infinite peaks on the equilibrium
distribution. The Gaussian approximation is invalid as the local
maximum would diverge to infinity.

The second approach for estimating the transition rate in
population genetics is by calculating the probability of fixation
of a single mutant in a finite population [3][4]. The rate of
substitution (of a new mutation), then, is obtained as the
multiplication of this probability and the average number of
mutations that enter the population in each generation [9].
This approach is valid under weak forward mutation, but is
not generally applicable for more complex dynamics (e.g.
when the backward mutation rate is considerable). On the
other hand, it provides a rather simple expression for the
substitution rate, but the result is precise only under certain
limiting conditions (e.g. when the forward mutation is very
weak).

A third approach proposed by [6] is to calculate the leading
(non-zero) eigenvalue of the diffusion equation, which gives
the flux between different equilibria. Their method can be used
when the forward mutation is weak, and allows the calculation
under the joint effects of other factors (like the backward
mutation). However, their method fails when the selection is
so weak that there only exists one peak on their “deterministic
equilibrium”. The deterministic equilibrium fails to show the
(long-term) bi-stability of the system in certain cases as the
effect of genetic drift was not considered.

In the present work, we make attempts to solve this infinity-
escape problem in one of the most classical model in popu-
lation genetics, the (continuous) Wright-Fisher model. We are
motivated to construct an adaptive landscape for an accurate
and self-consistent description for the system’s middle-and-
long term dynamics. The concept of classical fitness/adaptive
landscape has been under controversy since Wright’s first
proposition in 1932 [14]. Recently, one the present authors
provided a new way for landscape constructions in general
dynamical systems [17][18]. Results have been applied in
the studies of phage-lambda genetic switch [19], Darwinian
evolution [20] and cancer [21]. We will show in the process
of population evolution, how genetic drift and other factors
would drive a population to shift between alternative peaks on
the adaptive landscape.

II. MODEL AND METHODS

A. Wright-Fisher model and diffusion process

The Wright-Fisher model describes the evolution of a
diploid population at one locus (denote the corresponding
alleles as A1 and A2). It assumes that the generations are
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non-overlapping and the population size N is constant. If N
is big enough (usually satisfying N > 50), the continuous
approximation of the Wright-Fisher model can be described
by the diffusion process equation

∂tρ(x, t) = ∂x

[
εD(x)∂x − f(x)

]
ρ(x, t) . (1)

Here x is the allele frequencies of A1 (so the A2 frequency is
1−x). ρ(x, t) is the probability density that the A1 frequency
of the population is x at time t. f(x) and εD(x) consist of
evolutionary factors (mutation, selection, genetics drift, etc.)
being considered in specific models. One can easily find the
equilibrium solution of Eq.(1) by setting its right side to be
zero [12]:

ρ(x, t =∞) =
1

Z
exp

[ ∫ x f(y)

εD(y)
dy

]
, (2)

where Z is the normalization constant

Z =

∫ 1

0

ρ(x, t =∞)dx . (3)

In the present work, we start from the simplest case of
mutation and drift. The parameters in Eq.(1) are given by

f(x) = −µx+ ν(1− x)− (1− 2x)/4N , (4)
εD(x) = x(1− x)/4N . (5)

Here µ is the rate of mutation from A1 alleles to A2 alleles
and ν in the reverse direction. 2N is the total number of alleles
at the interested locus in the diploid population.

B. Adaptive landscape and escape time

There are various ways to obtain the long-term dynamics
of the model in Eq.(1). In the present work, we are motivated
to study the above system using an adaptive landscape. We
define

Φ(x) =

∫ x f(y)

D(y)
dy , (6)

which, if combined with Eq.(2), can be easily shown to
conform the Boltzmann-Gibbs distribution

ρ(x, t =∞) ∝ exp
[
Φ(x)/ε

]
. (7)

In the mutation-drift case, we specify the adaptive landscape
in Eq.(6) by substituting into Eqs.(4)(5) (we set ε = 1 in the
present construction)

Φ(x) = (4Nν − 1) lnx+ (4Nµ− 1) ln(1− x) . (8)

From this expression, a bi-stable system emerges if we take
4Nν, 4Nµ < 1 (see Figure 1). Once such a “Boltzmann-
Gibbs” potential energy has been defined, the escape time can
usually be obtained by [11][12]

Tescape ∼ |f |−1 exp (∆Φ) . (9)

Here ∆Φ = Φ(peak) − Φ(valley), is the valley depth on a
landscape. The exponential term exp (∆Φ) is often called the
“Arrhenius factor” [11]. However, this classical result fails in

the present model. As shown in Eq.(8), genetic drift generates
two infinite adaptive peaks at x = 0, 1:

Φ(0) = Φ(1) = +∞ .

With finite Φ(x = a) (denote x = a the valley state), we have
∆Φ = ∞. By Eq.(9), the escape time from x = 0 becomes
infinite then, and it changes very quickly with x near 0. This
is not a good estimation for the escape time. Mathematically,
under 4Nν = 4Nµ = 1, the potential landscape becomes
flat (∆Φ = 0) and we obtain Tescape ∼ 1/|f |; for any
4Nν, 4Nµ < 1, however, we obtain Tescape = ∞. The
escape time does not change continuously with 4Nν and 4Nµ
near 1. Biologically, we expect that the evolutionary state
would eventually reach an equilibrium distribution (though
this process may be extremely slow), and for any finite-
size system peak of the distribution would probably spread
around. The question here is: Does the escape time really
diverge with the infinite adaptive peak? Equivalently, does
the infinity of equilibrium distribution at certain states imply
the impossibility of peak-shifting events? If not, how does it
depend on the parameters of the system? We try to answer
these questions by first calculating the first passage time in
the diffusion process.

C. First passage time

We come back to the standard formula for the first passage
time, derived from the backward diffusion equation [12]. We
later show how it can be used to estimate the escape time. We
study the first passage event through some state a < x1 < 1
(again x = a is the valley state), starting from some state
0 < x = x0 < a. The average first passage time T (x0 → x1)
(denoted here as T ; it is a function of the initial state x = x0)
satisfies

[
f(x) + εD′(x)

]
∂xT + εD(x)∂2xT = −1 .

To study the time to exit (0, x1) from x1, we set the boundary
conditions as (x = 0 reflecting and x = x1 absorbing)

∂xT |x0=0 = 0 ,

T |x0=x1 = 0 .

The solution is

T (x0 → x1) = T ,

=

∫ x1

x0

1

εD(y)
exp

[
− Φ(y)

]
dy

∫ y

0

exp
[
Φ(z)

]
dz . (10)

Here Φ is just our adaptive landscape in Eq.(6). We specify
Eq.(10) under weak mutation (4Nν, 4Nµ < 1) and drift by
substituting Eqs.(5, 8), and there is

T (x0 → x1) =4N

∫ x1

x0

y−4Nν(1− y)−4Nµdy

·
∫ y

0

z4Nν−1(1− z)4Nµ−1dz . (11)

The second integral is just the integral of ρ(x, t =∞) in [0, y],
having the form of incomplete Beta function. No previous
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Fig. 1. Equilibrium distribution and the corresponding adaptive landscape
for a typical bi-stable system under mutation and drift. The parameter is set
as 1/4N > ν > µ (drift dominates mutation); the peak at x = 1 is higher
than that at x = 0 on each figure. (a) As ν, µ → 0, the probabilities would
accumulate more sharply at the boundaries; when ν = µ = 0, it develops
two Dirac delta functions. (b) The U-shaped landscape shows a “fat” valley
at the middle states and two sharp peaks at the boundaries. A population
may wander some time at the middle (heterozygotic) states, but would be
absorbed quickly into the boundary (homozygotic) state once appearing near
one. As ν, µ→ 0, the landscape would continuously converge to a symmetric
configuration; there would be no sudden change in the limit ν = µ = 0.

expansion was taken on this divergent equilibrium distribution,
though [6] claimed that their eigenvalue method can be applied
in the Gamma-like divergent equilibrium (see Section III.B).
We describe our expansion of Eq.(11) as follows. Under 0 <
z < y < x1, there is 0 < 1 − x1 < 1 − y < 1 − z < 1; the
expansions on the exponential terms of 1−y and 1− z would
converge near 0. First we expand (1 − z)4Nµ−1 with respect
to z in the second integral of of Eq.(11) (denoted as I(y)):

I(y) =

∫ y

0

z4Nν−1(1− z)4Nµ−1dz ,

=

∫ y

0

z4Nν−1
[
1 +

∞∑

n=1

n∏

k=1

(
k − 4Nµ

k

)
zn
]
dz . (12)

The convergence is obvious given 0 < y < x1 < 1. Substitute
I(y) and expend (1− y)−4Nµ in the first integral of T (x0 →
x1), we obtain the expansion result

T (x0 → x1)

= 4N

∫ x1

x0

[
1 +

∞∑

n=1

n∏

k=1

(
k − 1 + 4Nµ

k

)
yn
]
I(y)dy ,

=
x1 − x0

ν
+

4Nµ

ν

∞∑

n=1

n∏

k=2

(
k − 1 + 4Nµ

k

)
xn+1
1 − xn+1

0

n+ 1

+ 4N(1− 4Nµ)

∞∑

n=1

n∏

k=2

(
k − 4Nµ

k

)
xn+1
1 − xn+1

0

(n+ 1)(n+ 4Nν)
.

(13)

With x1, x0 < 1, the convergence of this expansion is obvious.
We discuss its convergence under two limiting conditions:

(1) Under x→ 0 and ν → 0. For any non-zero ν, our result
for escape time is not sensitive to x0 near 0, and we can take
x0 → 0. It is of the essence that the incomplete Beta function
in Eq.(12) is of near-linear dependence on the integral interval
near the boundary y = 0, given ν > 0. For ν = 0, however,
the expansion in Eq.(12) will not be valid. We have instead

I(y) = ln y +

∞∑

n=1

n∏

k=1

(
k − 4Nµ

k

)
yn

n
.

The leading term changes from a polynomial of order ∼ y−1
to the logarithmic scale (∼ ln y). The result becomes sensitive
to the value of x0 near 0 and approaches infinity at x0 = 0. To
ensure the convergence of the escape time as x0 → 0 under
weak mutation, we should first take x0 → 0, and then we
can set ν → 0. Nevertheless, as discussed above, the result
T (x0 → a)→∞ is consistent for any way of taking ν → 0.

(2) Under x → 1 and µ → 1/4N . When 4Nµ = 1, the
expansion of (1− y)−4Nµ in Eq.(13) would not converge for
x1 = 1, as the series

∞∑

n=2

n∏

k=2

(
k − 1 + 4Nµ

k

)
xn+1
1

n+ 1
(14)

would then become a harmonic series (with logarithmic diver-
gence rate) in maths. We return to Eq.(11) for 4Nµ = 1:

T (x0 → x1) = 4N

∫ x1

x0

y−4Nν(1− y)−1dy
∫ y

0

z4Nν−1dz ,

= ν−1 ln
1− x0
1− x1

.

As x1 → 1, this result approaches infinity. This is also
illustrated by the vanishing bi-stability of the system. To
ensure the validation of the expansion, we require at least that
x1 < 1 or 4Nµ < 1.

III. RESULTS AND DISCUSSIONS

A. Escape time revisited

We come back to the average time to escape from x = 0,
after which the population is not expected to return immedi-
ately. The escape time can be derived from above first passage
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time by setting x0 → 0, x1 → 1. This statement comes from
our following observations on the landscape configuration
shown in Figure 1b: Near x = a, the landscape valley is
flatly distributed and a population may wander there for some
time before approaching either boundary state; and for any
a < x1 < 1 (x1 not near 1), it may still come back to x = 0
with considerable possibilities after reaching x1; near x = 1,
the landscape peak grows sharply, so that a population would
be caught stable there (not easily returns to x = 0). Thus the
escape time can be approximately considered as the average
time taken to reach another stable state (the substitution time
in population genetics [9]). By taking x0 → 0, x1 → 1
in Eq.(13), we obtain Eq.(16). The convergence of Eq.(16)
(mainly the series in Eq.(14)) under 4Nµ < 1 can be verified
by Raabe’s test, which can be found in a typical textbook on
Mathematical Analysis.

We make a further comment on Eq.(16). Under 4Nν � 1,
the scale of 1/ν would be much bigger than the remain-
ing terms (of order 2NO(1), the well-known characteristic
timescale of genetic drift [22]). The interesting thing is that
even though the expansion is taken on frequency x, it naturally
separates the two distinct timescales, and provides a good
analytical approximation for the escape time in Eq.(11). If
instead 4N and ν−1 are comparable (under the constraint
4Nν < 1), the expansion in Eq.(16) is still valid, but there
would be no clear separation between the leading term and
the rest. It implies a mixed timescale of uphill and downhill
movements on the landscape, illustrated by its near-flat slopes.

Assume 4Nν, 4Nµ � 1 and take the leading terms in
Eq.(16), we get

T (0→ 1) =
1 + 2Nµ

ν
+ 2NO(1) . (17)

Comparisons among the numerical solution of the classical
formula Eq.(11), our analytical approximation in Eq.(17), and
the results in the discrete Wright-Fisher model (derived from
the Master equation of Eq.(1) [23]) is given in Figure 2.

From Eq.(17), the escape time increases with N and µ; this
is consistent with the biological interpretations. For increasing
µ, the stronger backward mutation makes the forward transi-
tion more difficult; for 4Nµ � 1, the effect is near-linear;
for 4Nµ ≥ 1, it makes the transition to x = 1 impossible.
The fixation of A1 becomes phenomenally impossible because
the attractive basin (a, 1) vanishes and x = 1 becomes an
unstable state (potential valley) then. For increasing N , it has
effects from two sides: increase the number of new mutants
each generation and decrease the intensity of random drift. By
Eq.(17), the net effect is to increase the escape time, though
in a minor order if 4Nν � 1.
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Fig. 2. Comparisons among the numerical solution of Eq.(15) (solid line),
analytical approximation in Eq.(17) (dashed line), and results in the discrete
model (crosses) in the range 0 < 4Nν < 1. Other parameter settings are: µ =
0.00005, N = 100. The leading terms in the expansion Eq.(17) approximates
the exact solutions well for 4Nν � 1; when 4Nν ≈ 1, the two timescales are
comparable and the remaining terms becomes important, so the error becomes
major. The numerical solution of the discrete formula matches well with the
continuous results for the whole range 0 < 4Nν < 1, though is found
generally smaller than the latter. This may be explained by that a diffusion
equation is the second order approximation of a master equation.

If we further take µ = 0, Eq.(17) becomes

T (0→ 1) ≈ ν−1 . (18)

The result is approximately independent of the population
size N . It reminds us of the well-known formula for the rate
of substitution for the neutral mutants: 2Nν × 1/2N = ν
[9]; Eq.(18) is just its inverse. We note that Eq.(18) is not
simply the characteristic timescale for mutation, but coincides
with it under the limit 4Nν � 1. The driving force for the
process is mainly random drift (1/2N � ν), without which
the stochastic escape cannot happen. Simulation realized from
single population dynamics are shown in Figure 3.

B. Compare with previous results

[11] derived the rate of escaping over a potential barrier
from the diffusion equation, by calculating the probability cur-
rent at the saddle point (our valley state). He assumed that the
main contribution to the escape time is due to a small region
near the saddle. His analytical approximation requires a finite
barrier height, and that the equilibrium distribution near the
potential well be approximately Gaussian. These assumptions
generate an “Arrehnius exponential factor” as in Eq.(9) in
the calculations. Other methods developed from the backward

T (0→ 1) = 4N

∫ 1

0

y−4Nν(1− y)−4Nµdy ·
∫ y

0

z4Nν−1(1− z)4Nµ−1dz , (15)

=
1

ν
+

1

ν

[
2Nµ+ 4Nµ

∞∑

n=2

n∏

k=2

(
k − 1 + 4Nµ

k

)
1

n+ 1

]
+ 4N(1− 4Nµ)

∞∑

n=1

n∏

k=2

(
k − 4Nµ

k

)
1

(n+ 1)(n+ 4Nν)
. (16)
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Fig. 3. Simulations realized from the stochastic differential equation
(SDE) corresponding to Eq.(1). Parameter settings are: N = 150, µ =
0.00005, ν = 0.00015. The number of populations (denoted as particles
in the figures) simulated is 1000, all of which are initiated at x0 = 0, thus
ρ(x = x0) = δ(x). Observations of the first passage time 0 → 1 are made
for each population. (a) Snapshot of population distribution at time t ≈ 2N .
States of populations spread around near x = 0, the local attractive state.
(b) Snapshot of population distribution at time t ≈ ∞ (equilibrium). Each
population has at least passed the global stable state x = 1 once. Most
populations are centered around x = 1 or x = 0. The simulated average first
passage time is 6656.5 (the theoretical expectation is 1/ν = 6666.67).

diffusion equation obtained similar results [12]. In population
genetics, however, strong random genetic drift would generate
non-Gaussian (even divergent) equilibrium distributions. The
adaptive landscape is typically flat at the middle states and
divergent at the boundaries (Figure 1b). This constrains the
application of the classical escape formulae in certain cases:
The peak-shifting rates are often numerically approximated or
can be analytically discussed only under very special settings
in population genetics [24][5]. Our expansion Eq.(13) taken on
the escape formula Eq.(11) near the divergent state makes it
possible to analytically approximate the results in such cases.
It is proved to be valid for all the conditions where a bi-stable
adaptive landscape is maintained. Our results show that the
finiteness of the escape time does not require the finiteness of

the potential peak (or barrier height), but corresponds to the
finiteness of the partial integral of equilibrium distribution in
that attractive basin (see Eq.(12)).

As mentioned previously, our result in Eqs.(17)(18) can
be compared with that derived as the rate of substitution
in population genetics [3][4]. First, the estimation of neutral
substitution rate ν [9] only gives a characteristic rate for
the fixation of A1 to take place. We cannot have a detailed
knowledge about how the transition time depends on other
factors of the system. An example is the effect of popu-
lation size N , though it may be of minor impacts under
ν � 1/4N . If instead ν and 1/4N become comparable, the
simple estimation would not work any more. We’ve shown
that our analytical approximation is valid for the whole range
0 < 4Nν < 1; when 4Nν is not very small, the timescales of
the uphill and downhill movements become mixed and the
substitution time should be expressed by a more complex
form. Second, the evolutionary transition time calculated in
the present work can be more generally applied in population
genetics than the substitution time, because all evolutionary
factors are here treated in a unified and consistent manner.
For example, it allows the existence of considerable backward
mutation (0 < µ < 1/4N ), which may make the fixation
probability of A1 incalculable.

[6] proposed to calculate the leading (non-zero) eigenvalue
of Eq.(1), which gives the flux between different equilibria.
The authors claimed that their general expression of transition
rate agrees with the two approaches (backward diffusion equa-
tion and rate of substitution) in the limits of very high and very
low mutation, respectively. Our first comment is that, in this
sense, our expansion also bridges the two approaches in the
two extreme conditions — we make the first method applicable
in the second situation. Second, their method failed under very
weak selection s < 4µ. It requires the existence of two peaks
on the “deterministic equilibrium”, which does not necessarily
capture the correct dynamical features of the system. For
example, even in the neutral case (s = 0, 4Nµ, 4Nν < 1),
the equilibrium distribution (and our adaptive landscape) has
two local maxima, implying the long-term bi-stability. We’ve
showed that our result can be applied under strong genetic
drift. Third, part of their solution is numerical and can only
be analytically expressed under limiting conditions (4Nµ� 1
or 4Nµ � 1). Our method, in contrast, can be used for
analytical results not only under extreme conditions, but in
the cases with intermediate parameter values (when ν and
1/4N are comparable). It naturally separates two distinct
timescales from the complex form of Eq.(11), and gives a
good analytical approximation for the escape time. Our result
provides a complete answer for the present bi-stable models.

C. Our adaptive landscape

Our construction of the adaptive landscape in Eq.(6) comes
principally from the novel decomposition of system’s dynam-
ical components [17][18]. It is closely associated with the
equilibrium distribution. The adaptive landscape corresponds
to the potential energy in a Boltzmann-Gibbs distribution
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as shown in Eq.(7), if the normalization constant in Eq.(3)
is finite. It defines a measure of probabilistic potential, and
all dynamical factors are treated equivalently. It gives a full
picture of the system’s middle-and-long-term behaviors. This
can be compared to the classical fitness landscape, which
only presents the effect of selection. Other effects, such as
mutation and drift, are not integrated into the expression
and require separated attentions. Wright’s shifting balance
theory, for example, tried to describe the evolution under the
interaction of selection, mutation, and random drift on the
fitness landscape. It has been under controversy whether this
“artificial” mechanism is truly relevant.

An extension to the classical fitness landscape is the so-
called “deterministic equilibrium” [6], which integrates all
the “deterministic” factors (mutation, selection, etc.) of the
system and defines a landscape. Compared to the “stochastic
equilibrium” (system’s equilibrium distribution), it does not
include genetic drift. Such definition does not match exactly
to the long-term behaviors of the system, just like the fitness
landscape. One example is the case of weak selection, where
there is only one peak on their deterministic equilibrium, and
their method fails. We’ve shown that strong genetic drift would
lead to bi-stable distribution in the long-term evolution and at
equilibrium. Our treatment for the non-Gaussian distribution
can be applied there.

In analogy with thermodynamics, [25] defined three scalar
functions in biological evolution: a (negative) energy for
selection, a potential function for mutation, and an entropy
for random drift. Our present work, instead, integrates all
above factors into an evolutionary adaptive landscape, and treat
them with unified viewpoint and approaches. Other factors
(e.g. frequency-dependent selection) can be readily added into
our formulas. [26] used the analogy to thermodynamics to
study the evolution of macroscopic quantitative traits, in a
way that is independent of the microscopic details. However,
there are cases (e.g. when mutation rate is low) that their
maximum entropy approximation would not work. Also, their
method requires a normalizable equilibrium distribution. They
used the normalization constant as the generating function for
macroscopic variables, which plays a “major role” in their cal-
culations. Our method does not have such restrictions and the
equilibrium distribution can be unnormalizable. As ν, µ→ 0,
the equilibrium distribution in Figure 1a would develop Dirac
delta functions at the boundary [27]; our adaptive landscape,
instead, changes continuously under this limit (see Eq.(8)).

IV. CONCLUSION

We have calculated the expected time to escape from an
infinite adaptive peak. We’ve shown that such an infinite adap-
tive peak does not necessarily mean biological fixation, and
the peak-shifting time can be analytically approximated. Our
results extend the application of Kramers’ classical formula
to the non-Gaussian distribution cases, and break through the
limitations of previous efforts. Our adaptive landscape has
served as a both qualitative and quantitative tool for describing
the system’s middle-and-long-term behaviors and guiding our

calculations. Our work has provided a complete description
for the bi-stabilities in the present model.
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