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Abstract—Due to the rapid progress of high-throughput tech-
niques in past decade, a lot of biomolecular networks are
constructed and collected in various databases. However, the
biological functional annotations to networks do not keep up with
the pace. Network alignment is a fundamental and important
bioinformatics approach for predicting functional annotations
and discovering conserved functional modules. Although many
methods were developed to address the network alignment
problem, it is not solved satisfactorily. In this paper, we propose a
novel network alignment method called CNetA, which is based on
the conditional random field model. The new method is compared
with other four methods on three real protein-protein interaction
(PPI) network pairs by using four structural and five biological
criteria. Compared with structure-dominated methods, larger
biological conserved subnetworks are found, while compared
with the node-dominated methods, larger connected subnetworks
are found. In a word, CNetA well balances the biological and
topological similarity.

I. INTRODUCTION

In the past decade, due to the rapidly developing high-
throughput techniques, more and more biomolecular networks
such as protein-protein interaction (PPI) networks, gene reg-
ulatory networks and metabolic networks are constructed and
collected in various database, e.g., BIND[1], DIP[2], IntAct[3],
BioGRID[4], MINT[5], MPact[6], KEGG[7]. However, the
biological functional annotations to the biomolecular networks
do not keep up with the pace of network data growth. There
is urgent demand of efficient computational tools for network
analysis and annotation. As an important bioinformatics ap-
proach for biomolecular network analysis, network alignment
has extensive applications such as revealing the conserved
functional modules and orthologs, predicting gene functions
and new interactions, and so on. Briefly speaking, the mission
of network alignment is to find the global similarity and
dissimilarity among different biological networks. Network
alignment is an generalization of the subgraph isomorphism
problem which is known to be NP-complete. Generally net-
work alignment is much harder than the subgraph isomorphism
problem because the mutations and evolutionary events have
disturbed both the network structure and biomolecule func-
tions, as illustrated in Figure 1.

Many algorithms have been proposed to solve the
network alignment problem. For example, MRF based
method[8], IsoRank[9], [10], IsoRankN[11], Græmlin[12],

MI-GRAAL[13]. Most methods formulate the network align-
ment problem as an optimization problem, and solved by
greedy or heuristic algorithms such as match-and-split algo-
rithms, the seed extend algorithms, and the graph matching
algorithms, and so on. According to the major features they
used, network alignment methods can be categorized into three
groups: structure-dominated (mainly use the structural features
of the networks), node-dominated (mainly use the biological
features of the nodes in networks), mixed (comprehensively
use both types of features). Although the network alignment
problem has been extensively studied in literature, it is far
away from being solved successfully and satisfactorily. There
is a trade off between the biological similarity and the topo-
logical similarity, and it is not easy to achieve good balance.
The computational complexity is another important issue when
dealing with large scale networks. New approaches that can
efficiently and effectively solve the problem by appropriately
integrating both the biological and topological information of
networks are still strongly desired.

In this paper, we propose a novel network alignment ap-
proach based on the conditional random fields (CRF) model,
called CNetA. CRF is a conditional probabilistic graphical
model which is an extension and generalization of hidden
Markov model and maximum entropy Markov model. CNetA
utilizes the biological sequence similarity and network struc-
ture features, and has the ability to integrate other information.
Four structural and five biological criteria are adopted to
comprehensively evaluate the performance of network align-
ment methods. The new method is compared with a structure-
dominated method, MI-GRAAL[13], and two node-dominated
methods based on BLAST. The computational experiments
on the real PPI networks show CNetA make better balance
between the biological similarity and the topological similarity
than other methods.

II. METHODS

A. Network alignment problem

Network alignment problem can be classified into local
alignment and global alignment. There are two kinds of
mapping between the nodes of two aligned networks: one-
to-one and many-to-many. In this paper, we only consider the
global alignment, and one-to-one mapping.
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Fig. 1. An illustration of network alignment between networks G1 and
G2. A network alignment model need to deal with the node mutations (e.g.,
insertion, deletion, duplication, mismatch, and also functional change) and the
edge mutations (e.g., detachment, attachment).

Suppose G = (V,E) and G′ = (V ′, E′) are two biomolec-
ular networks, where V , V ′ are the node sets, and E, E′

are the edge sets, respectively. Network alignment problem is
to find the maximum conserved subnetworks between G and
G′. A small example of network alignment problem is shown
in Fig 1. The evolutionary events and mutations, including
node mutations (insertion, deletion, duplication, mismatch,
functional change), edge mutations (detachment, attachment),
are need to handled in the computational models.

B. Conditional random field model

The CNetA method is based on the conditional random
fields model we have developed for the network querying
problem[14]. Network querying problem is a special case of
network alignment in which a small network is aligned with a
large network. In the CRF model, network querying problem
is treated as a labeling problem. The model is briefly described
as follows. If we consider G′ = (V ′, E′) as a label set, i.e.,
V ′ is all possible labels and E′ is the relations between the
labels, the network alignment problem can be transformed into
a labeling problem. Give a network G and the label set G′,
network alignment is to find the best labels for V . The score
of each labeling solution Y ⊆ G′ is computed by a conditional
probability such as

Pr(Y |G) =
1

Z(G)

∏

vi∈V

fN (yi, G, i)

∏

(vi,vj)∈E

fE(yi, yj , G, i, j)

where fN , fE are the feature functions, Z(G) is the normal-
ization factor. The optimal solution is the one that gives the
maximal conditional probability. To deal with the insertions
and deletions, we define the feature functions as follows.

fN (yi, G, i) = S(vi, yi),

fE(yi, yj , G, i, j) =
S(vi, yi) + S(vj , yj)

2
W (yi, yj).

where S(vi, yi) is the non-negative similarity score between
nodes vi ∈ G and yi ∈ G′, W (yi, yj) is the non-negative
connectivity score between nodes yi ∈ G′ and yj ∈ G′.
In this study, S(vi, yi) is defined based on BLAST E-value
of two sequences and W (yi, yj) is the structural measure
which is reciprocal with the shortest distance between yi and
yj in the network G2. When yj is not reachable from yi,
the shortest distance is set as L0 ≫ dmax where dmax is
the maximum distance among any connected node pairs. The
details of S(vi, yi) and W (yi, yj) can be found in [14].

C. Bi-directional mapping strategy

The solution obtained in the above CRF model does not
guarantee one-to-one mapping. Several nodes in G may be
mapped to the same node in G′. It is not an issue in network
querying since the query network is generally very small.
The multiple mapping rarely occurs in the optimal solution
of network querying. However, the multiple mapping problem
becomes serious when the size of network increases. There are
many gene duplication events in the biological evolution which
results in many similar subnetworks. The larger the query
network is, the higher the probability that several subnetworks
of the query network are mapped onto the same subnetwork. In
this paper, a bi-directional mapping strategy is proposed. This
strategy can be integrated with any network querying method
to obtain one-to-one network alignment.

The bi-directional mapping strategy iteratively applies the
network querying method. In the k-th iteration, we firstly
query G in G′ and gets a subnetwork of G′, say G′

k, which
is similar to G. Secondly G′

k is queried in G to obtain a
subnetwork of G, say Gk. A node pair (x, y), x ∈ Gk,
y ∈ G′

k, is called bi-directional matching if x is mapped to
y in the first querying and y is mapped to x in the second
querying. Then we fix the feature functions to ensure that x
can only be mapped to y and vise versa. In detail, we set set
fN (yi, G, i) = 1 if (vi, yi) is bi-directional matching, other-
wise, fN (yi, G, i) = 0. The iterative process terminates when
the bi-directional matching pairs are not changed within two
consecutive iterations. Finally, the one-to-one bi-directional
matching pairs in the final iteration are extracted as the results.

D. Evaluation measures

There are many criteria for evaluating the performance of
network alignment methods. In this study, we adopt two kinds
of measures to assess the alignment results from the biological
and topological perspective respectively.

Biological measures. The mostly used biological criterion
for network alignment is based on the number of shared Gene
Ontology (GO)[15] or the functional similarity between the
GO terms of the matching nodes. The first measure is the
fraction of matching pairs that share at least k GO terms
(SGO)[13]. In order to investigate the effects of GO domains
and depth, we further compute the GO coverage of each
GO domain, which is defined as the percentage of matching
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pairs that share at least one GO term with depth d ≥ 3.
Here, the GO term depth d is defined as the shortest distance
from the root of GO hierarchy. The homology and pathway
information are used to more deeply compare the alignment
results and we use the measures in Græmlin[12]. The third
measure is the number of hit pathways (HP). Hit pathways are
the pathways in KEGG [7] which align at least three proteins
to their counterparts in the other network. We also calculate
the pathway average coverage (PAC), that is, the average
fraction of proteins correctly aligned in hit pathways. Finally,
to assess the homology, the number of KEGG[7] orthologous
(OP) proteins in alignment results is computed which is not
the same as the corresponding measure in Græmlin[12].

Topological measures. The first topological measure for
the alignment results is the number of matching pairs (MP),
i.e. the number of aligned nodes. The second measure, edge
correctness (EC)[13], is the fraction of correctly aligned edges
which is defined as:

EC =
|{(u, v) ∈ E

∧
(u′, v′) ∈ E′}|

|E|
where u, v ∈ V , and u′, v′ ∈ V ′ is the matching nodes of
u, v respectively. To take account for the partial changes of
network structure, we propose an extended version of EC, edge
accumulated coverage (EAC):

EAC(k) =
|{(u, v) ∈ E

∧
d(u′, v′) ≤ k}|

|E|
where u, v ∈ V , u′, v′ ∈ V ′ is the matching nodes of u, v
respectively, d(u′, v′) is the distance between u′ and v′ in G′,
and k = 1, 2, 3, · · · . Obviously, EAC(1) = EC. EAC is an
approximate edge correctness measure considering the node
insertion and deletion in network evolution. Another important
indicator is the size of largest common connected subgraph
(LCCS)[13] that each of the aligned networks have as an exact
copy. However, due to most PPI networks in current databases
are not complete, the LCCS may not reflect the real situation
exactly.

III. RESULTS

A. Comparison settings

In order to comprehensively investigate the capability of
CNetA to integrate the biological and topological features,
we compare it with two kinds of network alignment methods.
For comparison with structure-dominated methods, we select
MI-GRAAL[13] which can reveal large structural similarity
and integrate any number and type of similarity measures. We
also apply the network querying method CNetQ[14], which
is based on the same CRF model, to test the effectiveness
of bi-directional mapping strategy. We note that CNetQ gen-
erates multiple-to-one mapping. For comparison with node-
dominated methods, we compare CNetA with two BLAST[16]
based methods which only use the sequence information. The
first one, BLASTQ, simply query each node of G in G′ by
BLAST. Similar to CNetQ, the results of BLASTQ may be
multiple-to-one mapping. The other method is BLASTA which

further integrates BLASTQ with the iterative bi-directional
mapping strategy used in CNetA. In each iteration, if two
nodes are bi-directional matching, the corresponding BLAST
E-value are set as 0.

MI-GRAAL[13] has a random process and every run may
generate different results. In this study, we use the most stable
score metrics described in [13] and run five times for each
alignment experiment. We choose the alignment result with
maximum EC as its final result.

To fairly compare CNetA and CNetQ, we set the parameter
L0 = 10000 in both methods. We note that L0 = infinity
leads to fE(yi, yj , G, i, j) = 0 when yj is not reachable from
yi, which implies several connected components can not be
matched with one single connected component of the other
network. However, due to evolution and data missing, large
real biomolecular network may consists of many disconnected
subnetworks which should be aligned with one connected
subnetwork in the other network. Therefore, we do not set
L0 to infinity as in [14].

B. Experimental results

In this section, we show the computational results of
several methods for aligning three real PPI networks which
are used by MI-GRAAL[13]. GO[15] ontology data were
obtained by Matlab Bioinformatics toolbox in November
2011. KEGG pathway and orthologous protein analysis are
performed by using Matlab KEGG API web service. Local
executable BLAST is version 2.2.21 which was downloaded
from http://blast.ncbi.nlm.nih.gov/Blast.cgi. Yeast and human
GO annotation data were downloaded from GO website in
November 2011, and other species GO annotation data were
downloaded from European Bioinformatics Institute (EMBL-
EBI) website in May 2012. We use BP, CC, MF as the
abbreviation of three GO domains biological process, cellular
component, and molecular function respectively.

1) Yeast-Human PPI network alignment: The high-
confidence Saccharomyces cerevisiae PPI network[17] con-
tains 2390 proteins and 16127 interactions, while human
PPI network[18] contains 9141 proteins and 41456 in-
teractions. The sequences of yeast proteins were down-
loaded from Saccharomyces Genome Database (SGD,
http://www.yeastgenome.org)[19] and the sequences of human
proteins were got from [18]. The alignment results of five
methods are shown in Table I and Figure 2.

Although MI-GRAAL gets the largest structural similar
subnetwork (LCCS equals to 1467), it fails to reveal the bio-
logical similarity. Figure 2(b) shows that two matching nodes
identified by MI-GRAAL have few common GO terms, i.e.
the two matching nodes may be not very similar in biological
sense. For example, only less than 50% pairs of matching
nodes have one or more common GO terms, and less than
10% for 3 or more common terms, while the percentages for
other methods are larger than 80% and 60% resepectively. MI-
GRAAL gets very poor GO coverage and only one orthologous
protein pairs. In KEGG[7] pathway analysis, from totally 30
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pathways which have the same definition in two species, MI-
GRAAL only hits 2 pathways and covers 3.33% proteins in
hit pathways, while other methods get at least 26 hit pathways
and their PAC are larger than 20%. In a word, MI-GRAAL
focuses more on the topological similarity than the biological
similarity.

As expected, BLAST based methods get largest scores for
the biological measures such as SGO (Figure 2(b)), GO cov-
erage, HP, PAC and OP. However, their scores of topological
measures are worst, for example, EC and LCCS. BLASTA
ourperforms BLASTQ in terms of both biological and topolog-
ical measures, which show the bi-directional mapping strategy
is powerful.

Compared with MI-GRAAL, CNetA/CNetQ dramatically
improve the biological similarity in the results at the cost of
acceptable decline in the topological similarity. Compared with
BLAST based methods, CNetA/CNetQ gets the comparable
results from the biological point of view, with larger EC, LCCS
and EAC, which means that CNetA/CNetQ can find large
structurally conversed subnetworks preserving the biological
similarity as much as possible. Compared with CNetQ, CNetA
gets one more hit pathway, larger PAC, more orthologous pro-
tein pairs. With the bigger matched pairs, CNetA finds more
functional similar matched pairs measured by GO coverage
and SGO, which implies that the bi-directional strategy is
useful to identify more orthologous proteins and functional
similar proteins. The smaller EC and LCCS of CNetA may
owe to the missing edges in the high-confidence PPI networks
since that the EAC curves of both methods are comparable.

Method MI-GRAAL CNetQ CNetA BLASTQ BLASTA
MP 2390 1029 1694 1297 1672
EC 12.88% 15.29% 9.25% 4.81% 6.52%

LCCS 1467(1508) 205(956) 116(376) 47(141) 55(172)
GO coverage (depth ≥ 3)

MF 5.68% 47.78% 54.61% 55.07% 56.43%
BP 3.99% 52.01% 53.97% 58.55% 58.10%
CC 38.95% 72.20% 72.73% 76.33% 74.74%

KEGG analysis
OP 1 331 556 583 719
HP 2 26 27 27 27

PAC 3.33% 21.80% 32.35% 31.66% 35.06%

TABLE I
YEAST-HUMAN ALIGNMENT RESULTS.

MP: Matching pairs; EC: edge correctness; LCCS: Largest common connected subgraph; MF: Molecular function; BP:
Biological process; CC: Cellular component; OP: Orthologous proteins; HP: Hit pathways; PAC: Pathway average

coverage. The numbers in LCCS are the number of nodes and edges of LCCS respectively.

2) Campylobacter jejuni-Escherichia loli PPI network
alignment: C. jejuni PPI network[20] contains 1091 proteins
and 2966 interactions, and E. coli PPI network[21] contains
1873 proteins and 3803 interactions. The networks are not
completely the same as the networks used in MI-GRAAL[13].
The sequence data were downloaded from Uniprot[22]. All
results are shown in Table II and Figure 3.

The experimental results are similar as yeast-human align-
ment results. There are totally 12 pathways which have the
same definition in two species in KEGG[7] database. CNetA
and BLASTA hit 11 pathways with PAC larger than 29%,
while MI-GRAAL only hits 3 pathways with PAC 9.47%.
CNetQ and BLASTQ are slightly worse. In this experiment,
CNetA gets much smaller topological measures than MI-

GRAAL because PPI networks of C. jejuni and E. coli are not
complete and include many small disconnected subnetworks.
Compared with CNetQ and BLASTQ, CNetA and BLASTA
get remarkable improvement in biological measures with sim-
ilar topological measures respectively.

Method MI-GRAAL CNetQ CNetA BLASTQ BLASTA
MP 1091 444 677 533 711
EC 23.33% 1.69% 1.21% 0.37% 0.84%

LCCS 598(634) 7(6) 7(6) 3(2) 4(3)
GO coverage (depth ≥ 3)

MF 2.53% 27.70% 30.58% 30.96% 32.21%
BP 0.84% 23.87% 26.44% 28.33% 30.38%
CC 4.60% 12.39% 14.33% 13.88% 14.35%

KEGG analysis
OP 0 95 146 152 206
HP 3 10 11 10 11

PAC 9.47% 15.40% 29.61% 21.91% 36.68%

TABLE II
C. JEJUNI-E. COLI ALIGNMENT RESULTS

MP: Matching pairs; EC: edge correctness; LCCS: Largest common connected subgraph; MF: Molecular function; BP:
Biological process; CC: Cellular component; OP: Orthologous proteins; HP: Hit pathways; PAC: Pathway average

coverage. The numbers in LCCS are the number of nodes and edges of LCCS respectively.

3) Mesorhizobium-Synechocystis PPI network alignment:
Mesorhizobium loti[23] and Synechocystis sp. PCC6803[24]
have 3094 interactions among 1804 proteins and 3102 in-
teractions among 1920 proteins, respectively. The sequence
data were downloaded from Kazusa DNA Research Institute
(http://www.kazusa.or.jp/e/). All results are shown in Table III
and Figure 4.

Since the orthologous proteins of two species are not
well studied until now, we do not compare the OP for this
experiment. There are only 2 pathways which have the same
definition in KEGG database. The experimental results are
similar to the above two experiments, which show that CNetA
can well balance the biological similarity and topological
similarity, and reveal more function similar matching protein
pairs.

Method MI-GRAAL CNetQ CNetA BLASTQ BLASTA
MP 1803 414 744 414 764
EC 41.69% 2.52% 1.55% 0% 0.097%

LCCS 1149(1155) 31(35) 10(9) 1(0) 2(1)
GO coverage (depth ≥ 3)

MF 2.55% 26.52% 33.60% 28.16% 38.24%
BP 1.36% 23.84% 24.56% 24.76% 31.67%
CC 0.51% 8.52% 8.23% 9.22% 9.72%

KEGG analysis
HP 1 1 2 1 2

PAC 1.76% 1.06% 3.43% 0.82% 5.45%

TABLE III
MESORHIZOBIUM - SYNECHOCYSTIS ALIGNMENT RESULTS

MP: Matching pairs; EC: edge correctness; LCCS: Largest common connected subgraph; MF: Molecular function; BP:
Biological process; CC: Cellular component; OP: Orthologous proteins; HP: Hit pathways; PAC: Pathway average

coverage. The numbers in LCCS are the number of nodes and edges of LCCS respectively.

IV. CONCLUSION AND DISCUSSION

A network alignment method based on the CRF model,
called CNetA, is presented in this paper. CNetA employs the
iterative bi-directional mapping strategy to identify one-to-one
mapping instead of multi-to-one mapping results in CNetQ,
the CRF-based network querying method. The bi-directional
mapping strategy also improves the biological similarity mea-
sures since the bi-directional matching proteins are more likely
to be evolutional conserved. This is also confirmed by the
comparison between the results of BLASTQ and BLASTA.
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Fig. 2. EAC and SGO curves for aligning yeast and human PPI networks. (a) EAC curves. The x-axis is the distance k between two nodes aligned to two
ends of edges. The y-axis is EAC(k). The legend is the network alignment methods. (b) SGO curves. The x-axis is the number of shared GO terms. The
y-axis is the percentage of matching protein pairs.
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Fig. 3. EAC and SGO curves for comparing C. jejuni and E. coli PPI networks. The legends are the same as Figure 2.
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Fig. 4. EAC and SGO curves for comparing Mesorhizobium and Synechocystis PPI networks. The legends are the same as Figure 2.
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Since there is a tradeoff between the biological similar-
ity and topological similarity, the performance of network
alignment methods can not be evaluated by a single measure.
We collect several biological and topological measures from
literature to access the network alignment results. Several
new measures are also developed in order to better compare
network alignment methods. For example, we extend the edge
correctness measure to edge accumulated coverage which
considers the node insertion and deletion in network evolution.

As a representative of structure-dominated methods, MI-
GRAAL[13] tries to align all proteins in the small network
to the large network. However, it may not be proper in the
network alignment problem, since that two real networks are
impossible to match perfectly. Instead, CNetA aims to find
the high quality matching proteins which constitute conserved
subnetworks. The network alignment results are not convin-
cible if the functional similarities between matching proteins
are too low. In other words, the biological similarity should
play an equally important role as the topological similarity in
network alignment, if not more important. As shown by the
computational experiments on real PPI networks, CNetA can
find the high quality network alignment with both biologically
and topologically conserved subnetworks, which can be useful
for downstream analysis such as protein function prediction.

Although the network alignment has been extensively stud-
ied in literature, there still exists many problems which are
not solved completely. For example, lack of the benchmark
datasets and measures for evaluating and comparing the net-
work alignment methods. There are many datasets, including
simulated and real datasets, and measures used for testing
network alignment methods proposed in literature. However,
there is no standard and widely accepted datasets and measures
in the field of network alignment, which make the comparison
of network alignment methods difficult. We note that the
biomolecular databases are currently not complete which is
not considered in most network alignment studies. As shown
in this paper, when two networks are not complete, the true
alignment may contain many disconnected pieces. In this
case, if the topological similarity is emphasized too much,
the biological meanings of alignment results may be reduced.
Finally, the multiple network alignment is still a big challenge
and rare in literature, but it is absolutely one of the most
important directions in this field and need more attention from
more researchers.
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