
Dynamics of Coexistence of Asexual and Sexual
Reproduction in Adaptive Landscape

Shuyun Jiao∗†,Yanbo Wang‡, Ping Ao∗§
∗Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine of Ministry of Education,

Shanghai Jiao Tong University, 200240, Shanghai, P.R.China
†Department of Mathematics, Xinyang Normal University, 464000, Xinyang, Henan, P.R.China

‡Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R.China
§Department of Physics, Shanghai Jiao Tong University, 200240, Shanghai, P.R.China

Abstract—Background: The dynamics for species, especially
rare species, with mixed type reproduction is instructive and
meaningful for predicting the extinction of them. Though the
extinction time is still a difficult problem for sexual or asexual
populations. Adaptive landscape introduced by Wright, a pow-
erful concept in systems biology can describe the evolution of
organisms. To our knowledge, the dynamical of inhomogenous
reproductive organisms have not investigated by a simple model
globally.

Methods: We describe how a Wright-Fisher process maps to
the dynamics of a population with mixed type. We analytically
construct adaptive landscape from the general diffusion equation.
It shows that the construction is dynamical and the adaptive
landscape is independent of the existence and normalization of
the stationary distribution.

Results: We first give a global model describing the evolution of
an inhomogenous reproductive population by adaptive landscape.
We visualize the dynamical behavior by adaptive landscape.
Finite and infinite potential occur in the process. These results
suggest a possible way to investigate the complex reproductive
process in an inhomogeneous reproductive population.

Index Terms—Wright-Fisher Process, Adaptive Landscape,
Stationary Distribution, Fixed Points

BACKGROUND

All organisms are under the action of mutation, selection
and random drift and changing environment all the time.
Their joint effects are complex. Especially the dynamical
behavior of a population with mixed type of sexual and
asexual reproduction is more complicated. There are some
methods to explore the dynamics of a system. The prior and
direct method is adaptive landscape. To build intuition, Wright
introduced adaptive landscape [1], whose contours are meant
to describe the net effects of these diverse population genetic
forces. The appeal of this approach is its analogy to a physical
landscape, whose gradient predicts a rolling marble’s spatial
trajectory [2]. Mathematically it is complex that required to
fully integrate the genetics with Darwinian natural selection.
Geometric representations of microevolutionary trajectories
over adaptive landscape of one or another are motivated by
the desire to provide some heuristic intuition into the process
of microevolution. If we can extract the population genetics by
investigating the contours of such a topographic surface, we
can visualize how an evolving population will behave without
always resorting to the algebraic heavy lifting. The system will

shift its configuration by following the steepest gradient on the
potential function [2]. Though recently considerable progress
[3] has been made on the evolutionary dynamics of transiting
the fitness valley for finite populations in the presence of
diverse evolutionary forces, there are also several others [2]
[4] that have voiced the critique of adaptive landscape.

Evolutionary biologists have spent a lot of time attempting
to identify factors that speed or slow adaptation. One of the
most intensively studies of these factors is sexual vs. asexual
reproduction [5]. For asexually reproducing population, with-
out recombination, chromosomes are directly passed down to
offsprings, as a consequence the deleterious mutations accu-
mulate so that the fittest class loses. For sexually reproducing
population, because of the existence of recombination between
parental genomes, a parent carrying high mutational loads can
have offspring with fewer deleterious mutations. The high
cost of sexual reproduction is thus offset by the benefits of
inhibiting the ratchet [6]. How about the coexistence and
coevolution of sexuals and asexuals? It is significant for the
evolutionary dynamics of mixed type population. Because
the evolution for this kind of species such as rare species
is meaningful. If we can distill the population genetics by
exploring the contours of such a topological surface, we can
visualize how the population will behave. Further we can make
the possible prediction in the presence of diverse parameters
by changing corresponding population genetic factors. Authors
in [7] explored the coexistence and coevolution dynamics of
sexual and asexual competitors. They focused on determining
the condition when the advantage of sexuals will outway
its three disadvantages. Authors in [8] explored the rates of
accumulation of both beneficial and harmful mutations with
weak selection depend on population variance of the number
of mutant genes for hermaphroditic, selfing and asexual popu-
lations. We first consider the issue by adaptive landscape. This
work can imply advantage of adaptive landscape by projecting
the system into allele state space. In addition, we expect this
work can contribute to clearing some controversies about the
adaptive landscape.

The key concept in constructing adaptive landscape is of
potential function as a scalar function. There is a long history
of definition, interpretation, and generalization of potential.
Potential has also been applied to biological systems in various
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ways. The usefulness of a potential reemerges in the current
study of dynamics of gene regulatory networks [9], such as
its application in genetic switch [10][11][12]. The role of
potential is the same as that of adaptive landscape. In this
article, we do not distinct them.

In this article we present an approach to an inhomogenous
genetic structure population with constant size, projecting
evolutionary dynamics of the population with mixed type
reproduction to one dimensional Wright-Fisher model where
one locus with two alleles are used to depict all different types
of individuals. Before sexual reproduction, the population is
composed of haploid asexuals. After sexual reproduction, the
population is composed of haploid and diploid individuals. We
explore the dynamics in the presence of irreversible deleterious
mutation, viability selection and random drift. These results
suggest the dynamical behavior could be derived more quickly
and more convenient by adaptive landscape. Additionally, we
expect this work can contribute to clearing some controversies
about the adaptive landscape.

METHODS

Model description

We consider here the mode of reproduction - coexistence
of asexual and sexual reproduction. We aim to get the dynam-
ical information for the inhomogenous genetic population in
presence of irreversible mutation, selection and random drift.
For asexuals, Muller ratchet is an important process. Muller’s
ratchet is the process by which genomes of a finite population
composed of asexual individuals accumulate deleterious mu-
tations in an irreversible manner [13][14]. For sexuals, with
recombination, the process is like Muller ratchet under the
same conditions. Consider a mixed type reproduction popu-
lation of fixed size with discrete generations t = 0, 1, 2, . . ..
The starting point in a generation is regarded as adult stage,
new mutations occur at reproduction and all mutations are
assumed to deleteriously affect viability but have no effect
on fertility. After all selection has occurred and immediately
prior to reproduction. Supposed population size is always
fixed each generation by ecological thinning, then there are
always alleles with constant number in the gene pool. Here
we consider one locus with two alleles A and B, that is,
initially there are two classes in the haploid population, one
class with allele A while the other with allele a. Among them
αN alleles reproduce asexually. (1 − α)N alleles reproduce
sexually. Sexuals can reproduce asexually at fixed probability
β. So there are αN + (1 − β)(1 − α)N alleles reproduce
asexually. Sexuals are composed of individuals with genotypes
AB and BB. Supposed mutation from allele A to B is
deleterious, we assume population of constant size N > 1,
generations are non-overlapping, the generation length for
asexual and sexual reproduction is same. The lifecycle of the
individuals in the population is from adults to juveniles, during
which we consider the change of allele A in the presence
of irreversible mutations, selection and random genetic drift.
Given above assumptions, we can study the evolution of allele
A. The frequency of allele A in generation t is xt while

that of allele B is 1 − xt. Let μ be the probability that an
offspring of an adult with allele A is an individual with allele
B. It is labeled by M1,0, that is, M1,0 = μ. Analogously,
M0,0 = 1 − μ, M0,1 = 0, M1,1 = 1. The relative viability
of individuals with allele A and AB is ν = 1 while that
of individuals with allele B and BB is ν1 = 1 − σ, where
σ can be treated as effective selection rates associated with
deleterious mutations. Then in generation t+1, after selection
and deleterious mutation the frequency of allele A is (1−μ)xt,
the frequency of allele B with asexual reproduction in two
generations is (1−σ)(α+(1−β)(1−α))(1−xt), the frequency
of allele B with sexual reproduction in the form of AB is
(1−xt)β(1−α)(1−μ), the frequency of allele B with sexual
reproduction in the form of BB is (1 − xt)β(1 − α)(1 − σ).
So the frequency of allele A in the whole population is

xt+1 = (1 − μ)xt/(xt(1 − σμ) + (1 − xt)[(1 − σ)

(1 − αβ − β) + β(1 − α)(2 − σ − μ)]). (1)

Under the general diffusion approximation, frequency xt is
treated as continuous quantities x, and this also leads to the
distribution of the frequency of allele A being probability
density. Let ρ(x, t) be the probability density of the frequency
of allele A being x at time t. The diffusion equation obeys
the following formula [15] [16]

∂tρ(x, t) = ∂2
x[V (x)ρ(x, t)/2] − ∂x[M(x)ρ(x, t)], (2)

with

M(x) =(1 − μ)x/(x(1 − σμ) + (1 − x)[(1 − σ)

(1 − αβ − β) + β(1 − α)(2 − σ − μ)]) − x,
(3)

and

V (x) =
x(1 − x)

N
, (4)

where M(x) represents the average transition rate of x or
driving force [15][17] and V (x) is the corresponding variance.

Adaptive landscape

We can also depict the same evolutionary process by the
following symmetric equation

∂tρ(x, t) = ∂x[εD(x)∂x − f(x)]ρ(x, t) (5)

with

f(x) = (1 − μ)x/(x(1 − σμ) + (1 − x)[(1 − σ)

(1 − αβ − β)) + β(1 − α)(2 − σ − μ)])

−x − (1 − 2x)/(2N), (6)

εD(x) =
x(1 − x)

2N
. (7)

Adaptive landscape is directly given under natural boundary
condition as

Φ(x) =

∫
f(x)

D(x)
dx. (8)
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We are interested in the dynamical property of adaptive
landscape, so we treat Φ and Φ/ε no difference in this respect,
that is, for convenience we can take ε = 1 of εD(x). Then

Φ(x) =

∫
f(x)

εD(x)
dx (9)

=
2Nμ(1 − σ)

1 − σμ
ln(1 − x) − ln x(1 − x)

+
2N(1 − μ)

1 − σμ
ln(x(σ − σμ − β(1 − μ

−α(3 − 2σ − μ))) + 1 − σ

+β(1 − μ − α(3 − 2σ − μ))).

Here the adaptive landscape is composed of three terms. The
first term and the third term quantify the effect of irreversible
mutation and selection respectively, the second term quantifies
the effect of random drift. When the parameter β = 1 or
α = 1, β = 0, the genetic structure of the population turns
to the homogenous genetic structure- population composed of
asexual individuals. When the parameter α = 0, β = 0, the
genetic structure of the population turns to another case of
homogenous genetic structure- population composed of sexual
individuals.

In addition, the symmetric Eq.(5) has two advantages. On
the one hand, the adaptive landscape is directly read out
when the detailed balance is satisfied. On the other hand, the
constructive method is dynamical, independent of existence
and normalization of stationary distribution. We call f(x)
directional transition rate, integrating the effects of M(x) and
the derivative of V (x). Directional transition rate can give
equilibrium states when f(x) is in linear form.

Under natural boundary condition satisfying that the prob-
ability flux of the system at boundary is zero, and the proba-
bility flows in [0, 1]. The stationary distribution is given by

ρ(x, t = +∞) =
1

Z
exp

(
Φ(x)

ε

)
.

Stationary distribution can also be expressed as

ρ(x, t = +∞) ∝ exp

(
2Nμ(1 − σ)

1 − σμ
ln(1 − x) − ln x(1 − x)

+
2N(1 − μ)

1 − σμ
ln(x(σ − σμ − β(1 − μ

−α(3 − 2σ − μ))) + 1 − σ

+β(1 − μ − α(3 − 2σ − μ)))) .

(10)

It has the form of Boltzmman-Gibbs distribution [18], so the
scalar function Φ(x) naturally acquires the meaning of poten-
tial energy [9]. The value of Z determines the normalization
of ρ(x, t = +∞) in terms of probability, and the finite value
of Z manifests the normalization of ρ(x, t = +∞). If Z =
+∞, the actual stationary distribution is not ρ(x, t = +∞),
this demonstrates the absorbing phenomena occur. Combing
ρ(x, t = +∞) at boundary, the stationary distribution can be
actual stationary distribution. The constant ε holds the same

position as temperature of Boltzmman-Gibbs distribution in
statistical mechanics. The constant ”temperature” does not
hold the nature of temperature in Boltzmman-Gibbs distribu-
tion.

RESULTS AND DISCUSSION

Previous works mainly focus on the coexistence of sexual
and asexual in a population. Recently there is a work about the
competition advantage of two different percentage of asexuals
in mixed type of sexual and asexual populations [19]. Authors
in [20] use the method of game theory to indicate the dynamics
of a mixed type population. Their method in [20] has the
advantage in the presence of inconsistence of cycles for sexual
and asexual reproduction. But the interaction between the
two modes of reproduction is not evident. Here we model
the dynamics at the allele level. We analyze the evolutionary
process in all parameter regimes based on Fokker-Planck
equation by adaptive landscape. We investigate the dynamics
by discussing the positions of the fixed points and boundary
points x = 0, 1. We address the condition of finite and infinite
potential occurring analytically.

Regimes of parameters α, β

To understand the population dynamics with a mixed type
of sexual and asexual reproduction, a full characterization of
dynamical process is prerequisite. Here we study it in the
framework of adaptive landscape in detail.

Let

Φ′(x) = 0, (11)

that is

2(N − 1)(σ − σμ − C)x2 − (2 − 3σ + 2Nσ + σμ

−2Nμ − (2N − 3)C)x + 1 − σ + C = 0. (12)

Where

C = β(1 − μ − α(3 − 2σ − μ)). (13)

It is a quadratic equation regard to x. Then we can get the
fixed points.
They are

x1,2 =
2 − 2Nμ − (2N − 3)C − 3σ + 2Nσ + σμ ± D

4(N − 1)(σ − σμ − C)
,

(14)

where

D = (−8(N − 1)(1 + C − σ)(σ − σμ − C)

+(−2 + 2Nμ + (2N − 3)C + 3σ − 2Nμ − σμ)2)1/2.

(15)

From the expression of adaptive landscape Φ(x), we may
find there are two singular points 0 and 1 of adaptive land-
scape, characterized by infinity values. And there is a point
x∗ in the third term of adaptive landscape. Where

x∗ = − 1 − σ + β(1 − μ − α(3 − 2σ − μ))

σ − σμ − β(1 − μ − α(3 − 2σ − μ))
. (16)
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It may be singular, may not be. Here we study the dynamical
behaviors by investigating the position and adaptiveness of
all fixed points and singular points. Possible proportion of
asexuals and possible probability of sexuals is demonstrated
in Fig. 1.

α

β

(1-σ)(1-μ)/(3-2σ-μ) μ σ-μ σ-μ σ-μ

σ-σμ μ-α(3-2σ-
μ

1-σ μ-1+α(3-2σ-
μ

Fig. 1. Relation between adaptive landscape and parameters α and
β. There are two singular points with x = 0 and x = 1 in the regions
of I), II) and V). There are three singular points with x = 0, x = 1
and x = x∗ in the region III). The regions with no words can not
be reached. Solid line implies the corresponding regime included,
dashed line implies the corresponding regime removed.

Irreversible mutation, selection and random drift balance

We further get the parameters regions for all possible cases.
In the following we give the details of the parameters regimes
according to the different kinds of potential in the presence of
two stable states. First we denote

β1 = −(2−6Nμ+4N2μ−σ+4Nσ−4N2σ−σμ+2Nμσ)
(2N−1)2(1−μ−α(3−2σ−μ))

− 4
√

N(N−1)(1−μ)(2Nμ−1+σμ−2Nσμ)

(2N−1)2(1−μ−α(3−2σ−μ)) , (17)

β2 = −(2−6Nμ+4N2μ−σ+4Nσ−4N2σ−σμ+2Nμσ)
(2N−1)2(1−μ−α(3−2σ−μ))

+
+4

√
N(N−1)(1−μ)(2Nμ−1+σμ−2Nσμ)

(2N−1)2(1−μ−α(3−2σ−μ)) . (18)

I) Finite potential
i) Finite potential in the absence of two stable states
Under the parameters regimes 1 > α > (1−μ)/(3− 2σ −μ),
μ < σ < (2Nμ−1)/(2Nμ−μ), β = (1−σ)/(α(3−2σ−μ)+
μ − 1), there are two unstable states with allele x = 0, x = 1
and one stable states with allele x = x2 in the system. The
shape of potential is like a inverse V-shape. The population
tends to evolve as a mixed type with sexuals and asexuals.
ii) Finite potential in the presence of two stable states
Under the parameters regimes 1 > α > (1 − μ)/(3 −
2σ − μ), μ < σ < (2Nμ − 1)/(2Nμ − μ), β <
min(1 − σ)/(α(3 − 2σ − μ) + μ − 1), −β2, and regimes 1 >
α > (1 − μ)/(3 − 2σ − μ), μ < σ < (2Nμ −
1)/(2Nμ − μ), β > −β1, and regimes 0 < α < (1 −

μ)/(3 − 2σ − μ), μ < σ < (2Nμ − 1)/(2Nμ − μ),
β < min(σ − σμ)/(1 − μα(3 − 2σ − μ)), β1, and regimes
0 < α < (1−μ)/(3−2σ−μ), μ < σ < (2Nμ−1)/(2Nμ−μ),
β > β2, corresponding to the case 1 > x2 > x1 > 0 > x∗,
there are two unstable states with allele x = x1, x = 1 and
two stable states with allele x0, x = x2 in the system. The
population with allele greater than x = x1 tends to evolve to
the state with allele x = x2 as a mixed type with sexuals and
asexuals. The population with allele less than x = x1 tends to
evolve as a homogenous genetic population only with allele B.
Ultimately the population with high possibility goes to state
with allele x = 0.
II) Infinite potential
i) Infinite potential in the absence of two stable states
In the cases such as x2 = 1 > x∗ > 0 > x1, 1 > x2 = x∗ >
0 > x1, x∗ > 1 = x2 > 0 > x1, x∗ > x2 > 1 > 0 > x1,
x∗ = x2 > 1 > 0 > x1, x2 > 1 > 0 = x∗ = x1,
x2 = 1 > 0 = x∗ = x1, 1 > x2 = 0 = x∗ > x1,
x2 > 1 = x1 > 0 > x∗, x2 > x1 > 1 > 0 > x∗,
x2 = 1 > x1 > 0 > x∗, x1 = x2 > 1 > 0 > x∗,
x1 = x2 = 1 > 0 > x∗, 1 > x1 = x2 > 0 > x∗,
0 > x1 = x2 and 0 > x∗, 0 > x2 > x1 and 0 > x∗,
there is only one stable state with allele x = 0 in the system.
The population tends to evolve to the state composed of allele
B. Ultimately the population is composed of individuals with
allele B.
ii) Infinite potential in the presence of two stable states
With the three cases such as x2 > 1 > x1 > 0 > x∗,
corresponding to parameters regimes 1 > σ > (2Nμ −
1)/(2Nμ − μ), 1 > α > (1 − μ)/(3 − 2σ − μ), 0 <
β < (1 − σ)/(α(3 − 2σ − μ) + μ − 1) and regimes σ >
(2Nμ − 1)/(2Nμ − μ), 0 < α < (1 − μ)/(3 − 2σ − μ),
1 < β < (σ − σμ)/(1 − μ − α(3 − 2σ − μ)), cases
x2 > 1 > x∗ > 0 > x1, corresponding to parameters regimes
1 > σ > (2Nμ−1)/(2Nμ−μ), 1 > α > (1−μ)/(3−2σ−μ),
1 > β > (1 − σ)/(α(3 − 2σ − μ) + μ − 1), and x∗ >
1 > x2 > 0 > x1, corresponding to parameters regimes
σ > (2Nμ − 1)/(2Nμ − μ), 1 > α > (1 − μ)/(3 − 2σ − μ),
β < (1 − σ)/(α(3 − 2σ − μ) + μ − 1) and regimes 1 > σ >
(2Nμ − 1)/(2Nμ − μ), 0 < α < (1 − μ)/(3 − 2σ − μ),
1 > β > (σ − σμ)/(1 − μ − α(3 − 2σ − μ)), there are two
stable states with allele x = 0, x = 1 and an unstable states
in the system. The population evolves to which stable states
is decided by the initial states. If the initial states with allele
locates the attraction of the state with allele x = 0.
All kinds of shapes for adaptive landscape are inverse V-shape,
S-shape rotated 90 degrees, L-shape and U-shape.

Discussion

The present article presents a new approach to explore
the dynamics of populations with mixed type reproduction.
Inspired by a recent work [21], we connect it to one locus
Wright-Fisher model with mixed type reproduction, the allele
pool is composed of N alleles. Direct classical diffusion
approximation of Wright-Fisher model can reduce complex
calculation to solve matrix equations, this method is functional
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especially when the dimension of the matrix is higher. Our the-
oretical results makes the application of the method proposed
in [22] in the system of mixed type with sexual and asexual
reproduction come true. Our method demonstrate the method
can describe the global dynamical behavior, and does not need
the existence and normalization of stationary distribution. Our
dynamical constructive method is independent of the stationary
distribution.

The previous work [20] used the method of game theory
to indicate the dynamics of a mixed type population. Their
method has the advantage in the presence of inconsistence of
cycles for sexual and asexual reproduction. But the interac-
tion between the two modes is not evident. Compared with
it, we model the dynamics at the allele level. We analyze
the evolutionary process in all parameter regimes based on
Fokker-Planck equation by adaptive landscape. Our method
investigates the global dynamical property of the system more
directly than theirs, though our model is limited at the same
length of reproductive cycle for sexual and asexual reproduc-
tion. In addition, our results demonstrate the condition under
which the two finite and infinite potentials occur. Recently
there is another work about the competition advantage of two
different percentage of asexuals in mixed type of sexual and
asexual populations [19], though they focus on a different
issue. In the future, we consider the proportion of asexuals
in a population affect the dynamical behavior, especially the
transition between two stable states.

To summarize, we first explore the dynamics of population
evolution with mixed type reproduction by adaptive landscape
globally and theoretically. In this framework the conditions
of different dynamical behaviors are investigated. Especially
finite and infinite potential occur. Hence it allows us a new
way to get the dynamics of a mixed type reproduction. In this
perspective our work may be a starting point for comparison
the advantage of different modes of reproduction and exploring
the dynamics and extinction for populations with mixed type
reproduction in more general situations.
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