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Abstract—Understanding of interactions between proteins and
RNAs is essential to reveal networks and functions of molecules
in cellular systems. Many studies have been done for analyzing
and investigating interactions between protein residues and RNA
bases. For interactions between protein residues, it is supported
that residues at interacting sites have co-evolved with the corre-
sponding residues in the partner protein to keep the interactions
between the proteins. In our previous work, on the basis of this
idea, we calculated mutual information (MI) between residues
from multiple sequence alignments of homologous proteins for
identifying interacting pairs of residues in interacting proteins,
and combined it with the discriminative random field (DRF),
which is useful to extract some characteristic regions from an
image in the field of image processing, and is a special type of
conditional random fields (CRFs). In a similar way, in this paper,
we make use of mutual information for predicting interactions
between protein residues and RNA bases. Furthermore, we
introduce labels of amino acids and bases as features of a simple
two-dimensional CRF instead of DRF. To evaluate our method,
we perform computational experiments for several interactions
between Pfam domains and Rfam entries. The results suggest
that the CRF model with MI and labels is more useful than the
CRF model with only MI.

I. INTRODUCTION

Analyzing molecular recognition and specific interactions
between proteins and RNAs is important for understanding
construction and evolution of molecular networks and cellular
systems. Protein-RNA interactions are involved with regu-
latory mechanisms such as RNA splicing, translation, and
post-transcriptional control. Several studies have investigated
tertiary structures of some complexes of proteins with specific
RNAs for analyzing how proteins selectively interact with spe-
cific sites on nucleic acids [1], [2]. The U1A protein, which is a
part of ribosomes, recognizes the same RNA subsequence con-
sisting of seven bases, AUUGCAC, either in the context of a
hairpin loop or internal loop [3]. Most protein-RNA complexes
are formed by some degree of mutual accommodation between
the protein binding surfaces and RNA. A loop of the L11
RNA binding domain is absolutely unstructured without the
partner RNA, but becomes ordered on binding [4]. In protein-
RNA, protein-single(double)-stranded DNA complexes, van
der Waals contacts are more commonly used than hydrogen
bond contacts. In protein-RNA interactions, proteins prefer to
contact the purine guanine and the pyrimidine uracil using
van der Waals contacts and hydrogen bonds, and prefer for

the residues arginine, tyrosine and phenylalanine presented in
the RNA binding site [2].

In our previous work, we proposed a method for predicting
residue-residue contacts between proteins [5]. Also for interac-
tions between amino acid residues, several investigations have
been done to reveal detailed interactions between residues [6]–
[9]. It can be considered that protein residues at important
sites for interactions have been simultaneously mutated to keep
their interactions through evolutionary processes. Otherwise,
such mutated proteins might lose the interactions, and the
individual would disappear by the selection pressure. Thus,
interacting residues have been mutated at the same time.
Mutual information (MI) between protein residues is useful
for predicting interacting residues, which is a quantity rep-
resenting dependent relationship between two residues, and
is calculated from the distribution of amino acids in multiple
sequence alignments for homologous proteins. For interactions
between protein amino acid residues and RNA bases as well
as for those between residues, it can be considered that
interacting residues and bases have a tendency to be mutated at
the same time. Therefore, we make use of mutual information
for predicting residue-base contacts.

Several methods for predicting RNA binding sites in protein
sequences have been developed. Kim et al. performed com-
putational analyses of tertiary structures of protein-RNA com-
plexes, and introduced the residue doublet interface propensity,
which is a measure of residue pairing preferences in the RNA
interface of a protein [10]. Kumar et al. proposed a prediction
method using support vector machine (SVM) and evolutionary
information, position-specific scoring matrix (PSSM) profiles
of protein sequences generated by PSI-BLAST [11]. Liu et
al. proposed a new interaction propensity that represents a
binding specificity of a residue to the interacting RNA nu-
cleotide by taking its two-side neighborhood in a residue triplet
into account, combined with other sequence and structure-
based features, and used the random forest technique for the
prediction [12].

In the fields of image processing and pattern recognition,
Markov random fields (MRFs) have been well studied. Kumar
and Hebert proposed discriminative random fields (DRFs) to
model spatial interactions in images based on conditional
random fields (CRFs) [13]. They claimed that DRFs have
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several advantages compared to conventional MRFs. For ex-
ample, DRFs allow to relax the assumption of conditional
independence of observed data, and have higher discriminative
ability than that of MRFs. Also in the field of bioinformatics,
MRFs and CRFs have been used for protein function pre-
diction from protein-protein interaction networks [14], [15],
for protein-protein interaction prediction based on protein
domain information [16], and for protein residue contacts
prediction [5]. However, DRFs have strong associations with
images, and thus DRFs may not necessarily be appropriate for
predicting residue contacts. Therefore, we propose simple two-
dimensional CRF models instead of DRFs. As in the previous
work, we give the matrix that consists of all mutual informa-
tion between two positions in multiple sequence alignments as
an input of CRFs. Furthermore, we introduce labels of amino
acids and bases as features to our CRF model. We perform
computational experiments, and the results suggest that the
CRF model with MI and labels is more useful than the CRF
model with only MI.

II. METHOD

In this section, we propose a prediction method based
on simple conditional random fields (CRFs) for residue-base
contacts between protein-RNA pairs. A protein with an amino
acid sequence and an RNA with a base sequence are given
as input data. Then, homologous sequences for each sequence
are collected, mutual information between two positions of the
amino acid and base sequences is calculated, and the proba-
bility that a residue interacts with another base is estimated
using our proposed CRF models. For training parameters of
the CRF model, several pairs of protein and RNA sequences
and the interacting pairs of residues and bases are given.

A. Mutual Information

In our proposed method, mutual information for the distri-
bution of amino acids and bases at two positions of protein
and RNA sequence alignments is one of important inputs as
in our previous work. In this section, we briefly review mutual
information for such distributions used in this paper.

Fig. 1 shows an illustration on calculation of mutual infor-
mation between two positions in two multiple sequence align-
ments. Suppose that protein amino acid sequence A, RNA base
sequence B and the information of residue-base contacts in a
protein-RNA complex are obtained. Then, several homologous
sequences for sequences A and B are collected, respective-
ly, and a multiple alignments for each set of sequences is
calculated in some appropriate way. After that, gaps inserted
to sequences A and B by the calculation of the alignment
are removed because only residues contained in sequence A
and bases in B are the target of our contact prediction. Thus,
the length of each multiple alignment becomes the length of
the target sequence. Fig. 1 shows such multiple alignments,
where the sequences at the first lines denote sequence A and
B, respectively. Let A be the set of 20 distinct amino acids
and 1 character that represents a gap, and B be the set of 4
distinct bases and 1 gap character. Let pi(a), pj(b), pij(a, b)

ETLCGSELVDTLQFVCDDRGL

QHLCGSHLVDALY.LVCGP.V

..YCGRHLARTLA.NLCWEAY

UGUGUGGGAGAGUAGGUCGCC

--CGUGUGAAAGUAGGUCAUC

----UGGGAAUGUAGGUCGCU

--CCUGUGAGAGUAGGACGUC

alignment for protein amino 
acid sequence A

i j

alignment for RNA base 
sequence B

Fig. 1. Illustration on calculation of mutual information between position i
in a multiple sequence alignment for protein amino acid sequence A and j in
an alignment for RNA base sequence B, where sequences belonging to the
same species are connected by arrows. Sequences A and B are shown at the
first line of multiple sequence alignments, respectively, and gaps inserted by
alignment algorithms are removed.

be the observed frequency of amino acid a ∈ A at position i,
that of base b ∈ B at position j, and that of amino acid a ∈ A
and base b ∈ B at positions i and j, respectively, where the
frequency is divided by the total number, that is, the number
of sequences in an alignment. It should be noted that amino
acid a and base b are regarded to simultaneously appear in
this paper if both a sequence including a and one including
b belong to the same species. Therefore, each sequence in a
multiple alignment is needed to be assigned to a sequence in
another alignment (see Fig. 1). Then, mutual information mij

between two positions i in protein sequence A and j in RNA
sequence B is calculated as follows.

mij =
∑

a∈A

∑

b∈B
pij(a, b) log

pij(a, b)

pi(a)pj(b)
(1)

= Hi + H ′
j − Hij , (2)

where Hi and H ′
j denote the marginal entropies at positions

i and j, respectively, that is, Hi = − ∑
a∈A pi(a) log pi(a),

H ′
j = − ∑

b∈B pj(b) log pj(b), and Hij denotes the joint
entropy Hij = − ∑

a∈A
∑

b∈B pij(a, b) log pij(a, b).

B. Two-dimensional Conditional Random Field Models for
Residue-base Contacts

In this section, we propose simple two-dimensional CRF
models for residue-base contacts.

Conditional random fields (CRFs) were proposed by Laf-
ferty et al. [17]. Let G(V, E) be a graph with a set of
vertices V and a set of edges E, where each vertex is related
with a random variable xv, and yv is observed from the
corresponding vertex v ∈ V . Then, (x, y) is a conditional
random field if the random variables xv follow the Markov
property under the conditions yv according to the graph G,
that is, P (xv|x{v′∈V |v′ ̸=v}, y) = P (xv|xNv , y), where Nv

denotes the set of vertices adjacent to the vertex v in the graph
G. CRFs require P (x|y) > 0 for all x, and are represented
as

P (xv|xNv
, y) =

1

Zv
exp {−Uv(x, y)} , (3)

where Uv(x,y) is a potential function concerning the ver-
tex v, and Zv is the normalization constant defined by∑

xv
exp {−Uv(x, y)}.
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In our previous work, we used the discriminative random
field (DRF) proposed by Kumar and Hebert [13], which is a
special type of CRFs, and the potential function is defined as
follows.

Uv(x, y) = A(xv, y) + β
∑

v′∈Nv

I(xv, xv′ , y), (4)

where A(xv, y) and I(xv, xv′ , y) are called the associa-
tion and interaction potentials, respectively, xv ∈ {1, −1},
and β is a constant. The potential functions are defined as
A(xv,y) = − log

(
σ

(
xvwT

f fv(y)
))

, and I(xv, xv′ , y) =

Kxvxv′ +(1−K)
(
2σ

(
xvxv′wT

g gvv′(y)
)

− 1
)
, respectively,

where wf and wg are parameter vectors, fv and gvv′ are
vector-valued functions that map observations y to feature
vectors, σ(x) = 1

1+e−x , K (0 ≤ K ≤ 1) is a constant, and wT

denotes the transpose of w. In the field of image processing,
the DRF is useful for extracting specific characteristic regions
from images. The association potential A(xv, y) can be con-
sidered as a gain obtained only from the vertex v and the
observations y. The interaction potential I(xv, xv′ , y) can be
considered as a gain obtained from the relationship between
vertices v and v′, and plays a role of smoothing the truth
assignment for random variables x because neighboring pixels
in images tend to have similar values to each other. However,
the smoothing property is not considered to be desirable for
predicting residue-residue and residue-base contacts. There-
fore, we propose the following potential function for random
variables rij ∈ {0, 1} that represent whether or not the residue
and base at positions i and j interact with each other, where
rij = 1 means there exists some contact between i and j,
otherwise rij = 0.

Uij(r, y) = wT
f f ij(r,y) + wT

g

∑

(k,l)∈Nij

gijkl(r, y), (5)

where terms in the right-hand side are corresponding to the
association and interaction potentials in the DRF, respectively.
It should be noted that the set of parameters θ in our CRF
model consists of wf , and wg.

In order to determine a CRF model, we must design vector-
valued functions f ij and gijkl and the set Nij of vertices
adjacent with the vertex (i, j) corresponding to positions i
and j. In this paper, we use Nij = {(i − 1, j), (i, j −
1), (i, j + 1), (i + 1, j)} as adjacent vertices to (i, j) (see
Fig. 2). Furthermore, we use mutual information mij between
positions i and j as observations y. Then, we define vector-
valued functions f

(1)
ij and g

(1)
ijkl that give local features as

follows.

f
(1)
ij (r, m) =

(
rij

r̄ij

)
⊗

(
1

mij

)
, (6)

g
(1)
ijkl(r, m) =

(
rij

r̄ij

)
⊗

(
rkl

r̄kl

)
⊗

(
1

mkl

)
, (7)

where r̄ represents the negation of r, and ⊗ denotes the

Kronecker product, that is, A ⊗ B =

(
a1B
a2B

)
for matrix A =

 j

i

i-1

i+1

 j+1 j-1

ii-1 i+1

jj-1 j+1

protein sequence A

RNA sequence B

p
ro

te
in

 s
eq

u
en

ce
 A

RNA sequence B

Fig. 2. Adjacent residue-base pairs for (i, j) in two-dimensional random
fields.

ri,j

mi,j mi,j+1mi,j-1

mi-1,j

mi+1,j

si sj si sj+1si sj-1

si-1 sj

si+1 sj

’

’ ’ ’

’

Fig. 3. Relationship between random variable rij and observations, mutual
information mij , and the pair (si, s

′
j) of the i-th amino acid in protein

sequence A and the j-th base in RNA sequence B, in our CRF model.

(
a1

a2

)
, for example, f

(1)
ij (r, m) = (rij , rijmij , r̄ij , r̄ijmij)

T .

In addition to mutual information, we use the protein and
RNA sequences as observations. Let si and s′

j be the i-th
amino acid in protein sequence A and the j-th base in RNA
sequence B, respectively. Then, we define other functions f

(2)
ij

and g
(2)
ijkl as follows.

f
(2)
ij (r) =

(
rij

r̄ij

)
⊗ δ(si,s′

j
) ⊗

(
1

mij

)
, (8)

g
(2)
ijkl(r) =

(
rij

r̄ij

)
⊗

(
rkl

r̄kl

)
⊗ δ(sk,s′

l
) ⊗

(
1

mkl

)
, (9)

where δ(a,b) (a ∈ A, b ∈ B) denotes a 0-1 vector with size
20 × 4 = 80, the element of which corresponds to (a, b) is
1 and the remaining is 0. The relationship between random
variable rij and observations, mutual information mij , amino
acids si, and bases s′

j , is represented in our CRF model as
Fig. 3, that is, rij is related with multiple observations mij

and (si, s
′
j).

C. Parameter Estimation of Two-dimensional CRFs

We estimate parameters θ = {wf ,wg} by maximizing
pseudo-likelihood function as in [5], [13]. Suppose that N

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

154 Xi’an, China, August 18–20, 2012



pairs of multiple alignments for protein and RNA sequences
and residue-base contacts r(n)(n = 1, . . . , N) for each pair of
proteins and RNAs are given. We calculate mutual information
m(n) for each pair. Then, the logarithm of pseudo-likelihood
function is given as

L(θ) = log
N∏

n=1

∏

i

∏

j

P (r
(n)
ij |r(n)

Nij
,m(n), θ) (10)

=
N∑

n=1

∑

i

∑

j

{
−Uij(r

(n), m(n))

− log
∑

r
(n)
ij

∈{0,1}

exp
{

−Uij(r
(n), m(n))

}}
. (11)

In order to find parameters maximizing L(θ), we use
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [18],
which is one of quasi-Newton methods, uses partial differen-
tials, and approximates the Hessian matrix by some efficient
method. To apply the optimization method, by partially differ-
entiating L(θ) with respect to each parameter vector w, we
have

∂L(θ)

∂w
=

∑

n

∑

i

∑

j

{
−∂Uij(r

(n), m(n))

∂w

+
∑

r
(n)
ij

P (r
(n)
ij |r(n)

Nij
,m(n), θ)

∂Uij(r
(n), m(n))

∂w

}
,(12)

where
∂Uij(r

(n), m(n))

∂wf
= f ij(r, m), (13)

∂Uij(r
(n), m(n))

∂wg
=

∑

(k,l)∈Nij

gijkl(r, m). (14)

D. Contact Inference
After estimating parameters, for new pairs of residues and

bases, we decide whether or not each pair interacts with each
other. In our previous work, we used Iterated Conditional
Modes (ICM) [19], which repeatedly updates random variables
by maximizing conditional probabilities until each variable
is not changed. However, the ICM method often converges
to local solutions, for example, also for image processing
benchmark problems drawn from energy functions used for
stereo, image stitching, and denoising [20]. Therefore, in this
paper, we use the sequential tree-reweighted message passing
(TRW-S) algorithm [21], which is an improved algorithm of
the tree-reweighted message passing (TRW) algorithm [22].
The TRW algorithms try to minimize the upper bound of
energy functions for maximization problems by iteratively
updating messages Mvv′;x, that vertex v sends to its neighbor
v′ with state x, and weights w for all decomposed trees.

III. COMPUTATIONAL EXPERIMENTS

A. Data and Implementation
We used seven protein-RNA pairs of chains included in

ribosomes, PDB code ’1yl4’, ’2hgu’, and ’3kcr’ from the PDB

Fig. 4. Protein RS12 THET8, chain ’O’ of PDB code ’1yl4’, and the atoms
of RNA M26923, chain ’A’ of ’1yl4’, within 3 Å of the protein.

databank [23], (RS12 THET8, M26923), (RS17 THET8,
M26923), (RS8 THET8, M26923), (RL33 THET8, X12612),
(RL18 THETH, X01554), (RL27 ECOLI, J01695), and (R-
L35 ECOLI, J01695), to get residue-base contact da-
ta. In addition to the dataset, we used four pairs
of chains included in PDB code ’3kc4’, (RS5 ECOLI,
J01695), (RS7 ECOLI, J01695), (RS15 ECO57, J01695), and
(RS17 ECOLI, J01695). Tables I shows details of the datasets,
for each protein-RNA pair, the PDB code, the identifiers of the
chain, UniProt [24], and Pfam [25], and the length of protein
sequence A, the identifiers of the chain, GenBank [26], and
Rfam [27], and the length of RNA sequence B, and the number
of contacts. We supposed that there exists a contact between a
residue and a base if the Euclidean distance between an atom
of the residue and one of the base is less than or equal to 3
Å. Figure 4 shows protein RS12 THET8 (chain ’O’ of ’1yl4’)
and the atoms of RNA M26923 (chain ’A’ of ’1yl4’) within
3 Å of the protein.

For the calculation of mutual information between two
positions of a residue and a base, we used multiple sequence
alignment data provided in the file ’Pfam-A.full’ from Pfam
database (release 26.0) [25] for protein sequences, and in the
file ’Rfam.full’ from Rfam database (release 10.1) [27] for
RNA sequences. For the calculation of marginal entropies
and joint entropies, we used amino acids and bases without
classification, and supposed 0 log 0 = 0 for pi(a) = 0,
pj(b) = 0, or pij(a, b) = 0 because p log p → 0 for p → 0.

We used libLBFGS (version 1.10) with default parameters
to estimate the parameters θ, which is a C implementation
of the limited memory BFGS method [28], and is available
on the web page, http://www.chokkan.org/software/liblbfgs/.
For inferring contacts, we used MRF energy minimization
software (version 2.1), which provides a C++ implementa-
tion of the TRW-S method [21], available on http://vision.
middlebury.edu/MRF/code/, and modified it depending on our
energy function formulation.

B. Results

In order to evaluate the proposed CRF-based method,
we performed computational experiments using two types
of feature vectors {f

(1)
ij , g

(1)
ijkl}, and {f

(2)
ij , g

(2)
ijkl}, and five

types of classification of amino acids of 2, 4, 8, 10, and
15 groups proposed by Murphy et al. [29] (see Table II).
We performed cross-validation procedures, where a procedure

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

155 Xi’an, China, August 18–20, 2012



TABLE I
DATASET OF SEVEN INTERACTING PROTEIN-RNA PAIRS.

protein sequence A RNA sequence B
PDB chain UniProt Pfam length chain GenBank Rfam length # contacts (≤ 3 Å)
1yl4 O RS12 THET8 PF00164 122 A M26923 RF00177 1515 45
1yl4 T RS17 THET8 PF00366 69 A M26923 RF00177 1515 43
1yl4 K RS8 THET8 PF00410 135 A M26923 RF00177 1515 34
2hgu 5 RL33 THET8 PF00471 48 A X12612 RF01118 108 21
2hgu R RL18 THETH PF00861 110 B X01554 RF00001 117 28
3kcr W RL27 ECOLI PF01016 77 8 J01695 RF01118 108 50
3kcr 3 RL35 ECOLI PF01632 61 8 J01695 RF01118 108 39
3kc4 E RS5 ECOLI PF00333 67 A J01695 RF00177 1530 18
3kc4 G RS7 ECOLI PF00177 147 A J01695 RF00177 1530 25
3kc4 O RS15 ECO57 PF00312 83 A J01695 RF00177 1530 25
3kc4 Q RS17 ECOLI PF00366 69 A J01695 RF00177 1530 20

TABLE II
CLASSIFICATION OF AMINO ACIDS BY MURPHY ET AL. [29]

# amino acid
2 (LVIMCAGSTPFYW),(EDNQKRH)
4 (LVIMC),(AGSTP),(FYW),(EDNQKRH)
8 (LVIMC),(AG),(ST),(P),(FYW),(EDNQ),(KR),(H)

10 (LVIM),(C),(A),(G),(ST),(P),(FYW),(EDNQ),(KR),(H)
15 (LVIM),(C),(A),(G),(S),(T),(P),(FY),(W),(E),(D),(N),(Q),(KR),(H)

’#’ denotes the number of groups in each classification.

TABLE III
RESULTS ON AUC SCORES FOR TEST PAIRS OF THE FIRST DATASET USING
MUTUAL INFORMATION, LABELS OF AMINO ACIDS AND BASES, AND THE

CLASSIFICATION OF AMINO ACIDS.

test pair MI MI+2 MI+4
(RS12 THET8, M26923) 0.584414 0.434911 0.479028
(RS17 THET8, M26923) 0.520389 0.422199 0.465945
(RS8 THET8, M26923) 0.448519 0.637362 0.639753
(RL33 THET8, X12612) 0.458122 0.634749 0.598589
(RL18 THETH, X01554) 0.497109 0.372135 0.484518
(RL27 ECOLI, J01695) 0.554078 0.414698 0.51501
(RL35 ECOLI, J01695) 0.56244 0.683728 0.559783

average 0.517867 0.514254 0.534660
MI+8 MI+10 MI+15 MI+20

0.511932 0.535143 0.555171 0.471759
0.541198 0.564818 0.604454 0.577107
0.618562 0.655294 0.673612 0.611092
0.648907 0.678755 0.573224 0.750755
0.520543 0.492414 0.445005 0.565814
0.610803 0.717221 0.614431 0.57308
0.672034 0.670191 0.685277 0.745234
0.589139 0.616262 0.593024 0.613548

used one protein-RNA pair as test data and the remaining pairs
as training data. We calculated the conditional probabilities
P (rij = 1|rNij , m, θ) and AUC (Area Under ROC Curve)
scores, and took the average.

Table III shows the results on the AUC scores for test pairs
of the first dataset using mutual information mij , labels of
amino acids and bases (si, s

′
j), and the classification of amino

acids. ’MI’ denotes the CRF model with only features of
mutual information, that is, {f

(1)
ij , g

(1)
ijkl}, and ’MI+d’ denotes

the CRF model with mutual information and labels of bases
and amino acids classified in d groups, that is, {f

(2)
ij , g

(2)
ijkl}.

We can see from the table that the average AUC score using
both of mutual information and labels without classification
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Fig. 5. Average ROC curves for test pairs of the first dataset using mutual
information, labels of amino acids and bases, and the classification of amino
acids. ’MI’ denotes the CRF model with only features of mutual information,
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, and ’MI+d’ denotes the CRF model with mutual information and

the amino acid classification by d groups, f
(2)
ij , g

(2)
ijkl

.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
ru

e 
p
o
si

ti
v
e 

ra
te

False positive rate

MI
MI+2
MI+4
MI+8
MI+10
MI+15
MI+20

Fig. 6. Average ROC curves for test pairs of the second dataset using mutual
information, labels of amino acids and bases, and the classification of amino
acids.

denoted by ’MI+20’ was better than that using only mutual
information denoted by ’MI’. Furthermore, the average AUC
scores of the classifications of 8, 10, and 15 groups were
better than those of 2 and 4 groups. It might be considered
that a classification of amino acids of a few groups is not
able to discriminate whether or not a residue and a base

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

156 Xi’an, China, August 18–20, 2012



interact with each other. The average ROC (Receiver Operating
Characteristic) curves for test pairs of datasets using MI and
labels of bases and amino acids classified in d groups are
shown in Fig. 5 and 6. These results suggest that the CRF
model with MI and labels of amino acids and bases is more
useful than the CRF model with only MI.

IV. CONCLUSION

We proposed a simple two-dimensional conditional random
field (CRF)-based method for predicting protein-RNA residue-
base contacts, and introduced labels of amino acids and bases
as features of the CRF in addition to mutual information. We
performed computational experiments for eleven protein-RNA
pairs from PDB to evaluate our models, and calculated the
average AUC scores for test datasets. The results suggest that
the CRF model with MI and labels of amino acids and bases
is more useful than the CRF model with only MI. In our
previous work, the BFGS method for parameter estimation
of the discriminative random field (DRF) did not converge
if the potential function includes interaction potentials, which
represent relationships between neighbor vertices. Our simple
CRF in this paper improved it, and we were able to deal
with interaction potentials for predicting residue-base contacts.
However, the problem of predicting residue-base contacts is
difficult, and the prediction accuracy by our method was still
not good. Although we supposed that a residue and a base
interact if the distance is at most 3 Å, we may need to decide
the contact condition according to more biological meanings.
Furthermore, it is necessary to compare our method with other
existing methods. However, there is room to improve our
method. We can use other correlation values between residues
and bases than mutual information, and modify the feature
vectors and potential functions of the CRF.
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