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Abstract—Mathematical models have been used to understand
the factors that govern infectious disease progression in viral
infections. Many models ignore the loss term of free virus particle
when it enters the target cell. In this paper, we discuss a virus
infection model with the loss term of free virus and the non-
cytolytic loss of infected cells. Stable analysis of our model was
given. If the basic reproduction number R0 < 1, the infection-
free equilibrium is globally asymptotically stable and the virus
is cleared; if the basic reproduction number R0 > 1, then the
virus would persist in the host.
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I. INTRODUCTION

The basic models of within-host viral infection, proposed
by Nowak and May[1] has been widely used in the studies
of HBV and HIV infections. The basic models, describing the
dynamics of interaction between uninfected cells x(t), infected
cells y(t) and free virus v(t), take the form of





ẋ = λ− dx− βvx
ẏ = βvx− ay
v̇ = ky − uv

(1)

uninfected cells are assumed to be produced at the constant
rate λ, die at the rate of dx and become infected at the rate
of βvx. Infected cells are thus produced at the rate of βvx
and die at the rate ay. Free virous are generated from infected
cells at the rate of ky and decay at the rate of uv.

Obviously the rate of infection in model (1) is bilin-
ear between the virus v and the uninfected target cells
x. Xinyu Song et al.[2] pointed that the saturated mass
action βxvp/(1+)xvp/(1 + αvq) can be used for HBV,
HCV and HIV infection, and they discussed the special case
βxv/(1+)xv/(1 +αv), Dan Li et al.[3] also used the special
saturated mass action βxv/(1 + v) for HIV infection, Lequan
Min et al.[4], [5] used the standard mass action incidences
βxv/(x + y) for HBV models with, Xiaohong Tian et al.[6]
used the standard mass action incidences βxv/(x + y) for
a time-delay HBV models. Recently, Beddington-DeAngelis
functional response βxv/(1 + ax+ bv) was used in paper[7],
[8] for HIV infection. Paper [9] used the mass action βvx/(x+
v) to set up an HBV model. Obviously, the saturated mass
action βxv/(1 + αv) and βxv/(1 + v) are only the spe-
cial case of the Beddington-DeAngelis functional response
βxv/(1 + ax + bv) , but the mass action βvx/(x + v) is
not its’ special case.

Obviously, as pointed by Leenheer and Smith[10], Nowak
and May ignore the loss term βvx which should appear in the
v equation, i.e.,

v̇ = ky − uv − βvx (2)

representing the loss of free virus particle once it enters the
target. On the other hand, paper [11] pointed out that the
infected cells can be cured by a non-cytolytic process and
recovery into the uninfected cell population, In this paper,
considering the loss of viral particles when it enters the target
cells and non-cytolytic loss of infected cells, well discuss the
model





ẋ = λ− dx− βvx

x+ v
+ ρy

ẏ =
βvx

x+ v
− ay − ρy

v̇ = ky − uv − βvx

x+ v
.

(3)

wherex, y and v are the same as (1), and infected hepatocytes
are ”cured by non-cytolytic processes at a constant rate ρ per
cell. The basic reproduction number of model (3) is R0 =
β(k − a− ρ)/(a+ ρ)u.

our model has two steady states:

E0 = (λ/d, 0, 0), Ee = (xe, ye, ve).

which

xe =
λ(k − a− ρ)

au(R0 − 1) + (k − a− ρ)d

ye =
λu(R0 − 1)

au(R0 − 1) + (k − a− ρ)d

ve =
λ(k − a− ρ)(R0 − 1)

au(R0 − 1) + (k − a− ρ)d

Note the biological meaning, Ee does not exist if R0 < 1,
and it becomes E0 when R0 = 1. It is easy to see that xe <
λ/d when R0 > 1. This means the infection of the virus will
reduce the total number of uninfected cells in host.

The main purpose of this paper is to discuss the globally
asymptotical stability of E0 and Ee. This paper is organized
as follows. In Section 2, we give the stable analysis of the
infection-free equilibrium of system (3). In Section 3, we give
the stable analysis of the endemic steady state. The paper ends
with a brief discussion in Section 4.
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II. STABILITY ANALYSIS OF THE INFECTION-FREE STEADY
STATE

From the first two equations, we can get

(x+ y)′ = λ− dx− ay ≤ q(x+ y)

which q = min{a, d}, so we can get that x + y ≤ λ/q for
large t,from the third equation, it can be easily be seen that
v ≤ λk/uq, so the positive solution of system (3) is ultimately
bounded. In the following, we can study the system (3) in the
positive invariant set:

D = {(x, y, v) ∈ R3
+ : x+ y ≤ λ/q, v ≤ λk/uq}

Theorem 2.1: If R0 < 1, then the disease-free state E0

is globally asymptotically stable and becomes unstable when
R0 > 1.

Proof: First, we will analyze the locally asymptotical
stability of E0. The Jacobian matrix of the vector field
corresponding to model (3) is

J =




−d− βv2

(x+ v)2
p − βx2

(x+ v)2

βv2

(x+ v)2
−a− p βx2

(x+ v)2

− βv2

(x+ v)2
k −u− βx2

(x+ v)2



. (4)

The above Jacobian matrix evaluted at E0 is

JE0 =



−d p −β
0 −a− p β
0 k −u− β


 . (5)

Here −d < 0 is an eigenvalue, since the trace of the two-by-
two lower right submatrix is negative and the determinant is
(a+p)u(1−R0), if R0 < 1, the remaining two eigenvalues are
also negative, so E0 is locally asymptotically stable. If R0 > 1,
there must exist a positive eigenvalue, so E0 is unstable.

Next, we’ll discuss the globally asymptotical stability. Con-
sider the Lyapunov function

V2 = y(t) +
a

k
v(t).

Calculating the derivative of V2 along the solutions of the
model (7) gives

V ′2(t) =
βxv

x+ v
− (a+ p)u

k
v − (a+ p)

k

βxv

x+ v

=
βxv

x+ v
(1− a+ p

k
)− (a+ p)u

k
v

6 βv(1− a+ p

k
)− (a+ P )u

k
v

= (1− 1

R0
)
β(k − a− p)

k
v 6 0.

Let E = {(x, y, v) ∈ D|V ′2(t) = 0}, it is clear that
E ⊂ {(x, y, v) ∈ D|v = 0}. Let M be the largest positively
invariant subset of the set E,since v(t) ≡ 0 in the set M ,
by the third equation of system (3), we can know y(t) ≡ 0,

so M = {(x, y, v)|v = 0, y = 0}, thus by Lyapunov-Lasalle
theorem[12], we know lim

t→∞
y(t) = 0, lim

t→∞
v(t) = 0. the limit

equation of system (3) is ẋ = λ − dx, and x(t) = λ/d
is globally asymptotically stable. by the theorem on limiting
systems[13] and the locally asymptotical stability, we know
E0 is globally asymptotically stable.

III. STABILITY ANALYSIS OF THE ENDEMIC STEADY STATE

A. Local stability of the endemic steady state
We first consider the local stability of the endemic steady

state Ee:
Theorem 3.1: If R0 > 1 , then the endemic steady state Ee

is locally asymptotically stable.
Proof: Note that

ve
xe + ve

= 1− 1

R0
,

xe
(xe + ve)2

=
1

R0
,

the Jacobian matrix of the vector field corresponding to model
(3) evaluated at Ee is

JEe
=



−d− β(1− 1

R0
)2 ρ − β

R2
0

β(1− 1
R0

)2 −a− ρ β
R2

0

−β(1− 1
R0

)2 k −u− β
R2

0


 .

The characteristic equation associated with JEe
is given by

|lE − JEe
| = l3 + a1l

2 + a2l + a3 = 0, (6)

where

a1 = a+ ρ+ u+ d+
β

R2
0

+ β(1− 1

R0
)2 > 0,

a2 = d(a+ ρ+ u+
β

R2
0

) + (a+ ρ)u(1− 1

R0
)

+βa(1− 1

R0
)2 + βu(1− 1

R0
)2 > 0,

a3 = βau(1− 1

R0
)2 + d(a+ ρ)u(1− 1

R0
) > 0.

Let

a1 = a+ d+ C

a2 = (a+ ρ)u(1− 1

R0
) + βu(1− 1

R0
)2 +D,

which

C = ρ+ u+
β

R2
0

+ β(1− 1

R0
)2 > 0,

D = d(a+ ρ+ u+
β

R2
0

) + βa(1− 1

R0
)2 > 0.

then

a1a2 − a3 = d(βu(1− 1

R0
)2 +D)

+a(a+ ρ)u(1− 1

R0
) + aD + Ca2

> 0.

By Routh-Hurwitz criterion, Ee is locally asymptotically sta-
ble.
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B. Globally asymptotic stability of the disease steady state

In order to prove the global stability, we need to show the
uniform persistence of system (3) when R0 > 1. By the the-
orem 4.3 in paper [14], we choose X = R3 and E = D. The
maximal invariant set N on the boundary ∂D is the singleton
E0 and is isolated, so the uniform persistence is equivalent
to the unstability of E0. Hence, by theorem 2.1, we know if
R0 > 1, the system (3) is uniform persistence. Consequently,
there exists a compact absorbing set K ⊂ D[15].

Theorem 3.2: Suppose that R0 > 1, and β < min (k, a, d),
then Ee is globally asymptotically stable with initial conditions
in intD.

Proof: We will prove the result by the theorem 3.5 in
paper[16]. The uniform persistence can ensure the existence of
the compact absorbing set, combine with the local asymptoti-
cal stability, the condition of H1, H2 and H3 are all satisfied,
we need only to show q < 0 . Let J [2] be the second additive
compound matrix of Jacobian (4). Let

P = diag(1,
y

v
,
y

v
),

then

PfP
−1 = diag(0,

ẏ

y
− v̇

v
,
ẏ

y
− v̇

v
),

where matrix Pf is obtained by replacing each entry pij of p
by its derivative in the direction of solution of (6), furthermore,
we have

B = PfP
−1 + PJ [2]P−1 =

(
B11 B12

B21 B22

)
,

which

B11 = −d− a− ρ− βv2

(x+ v)2
,

B12 = (
βx2v

(x+ v)2y
,

βx2v

(x+ v)2y
)

B21 =




k
y

v
βvy

(x+ v)2


 ,

B22 =

(
b11 b12
b21 b22

)
,

which

b11 =
ẏ

y
− v̇

v
− d− u− β(v2 + x2)

(x+ v)2
,

b12 = ρ,

b21 =
βv2

(x+ v)2
,

b22 =
ẏ

y
− v̇

v
− a− ρ− u− β.x2

(x+ v)2

Let (w1, w2, w3) denote the vector in

R3 ∼= R




3
2




, the vector normal in R3 is chosen as

|(w1, w2, w3)| = max{|w1|, |w2|+ |w3|}.
Let µ denote the Lozinskiı̌ measure with respect to this norm.
Similar to the method used in paper[17], we have estimated
that µ ≤ sup{g1, g2} where

g1 = µ1(B11) + |B12|, g2 = |B21|+ µ1(B22)

here µ1 denote the Lozinskiı̌ measure with respect to l1 vector
norm, |B12|and|B21| are matrix norms with respect to l1
norm, and

µ1(B11) = −d− a− ρ− βv2

(x+ v)2
, |B12| =

βx2v

(x+ v)2y

Because
βvy

(x+ v)2
≤ βy

x+ v
≤ βy

v
,

note that k > β, we have

|B21| = k
y

v

µ1(B22) = max{ ẏ
y
− v̇

v
− d− u− βx2

(x+ v)2
,

ẏ

y
− v̇

v
− a− u− βx2

(x+ v)2
}

=
ẏ

y
− v̇

v
− a− u− βx2

(x+ v)2

g1 = −d− a− ρ− βv2

(x+ v)2
+

βx2v

(x+ v)2y

≤ −d− a− ρ− βv2

(x+ v)2
+

βxv

(x+ v)y

= −d− βv2

(x+ v)2
+
ẏ

y

g2 = k
y

v
+
ẏ

y
− v̇

v
− a− u− βx2

(x+ v)2

=
ẏ

y
− a+

βx

x+ v
− βx2

(x+ v)2

≤ ẏ

y
− a+

βx

x+ v

Consequently,

µ(B) ≤ sup{g1, g2} ≤
ẏ

y
−min(a, d) +

βx

x+ v

Along each solution x(t),y(t),v(t) of (3) with x(0),y(0),
v(0) ∈ D, we thus have

1

t

∫ t

0

µ(B)ds ≤ 1

t

∫ t

0

(
ẏ

y
−min(a, d) +

βx

x+ v
)ds

≤ 1

t

∫ t

0

(
ẏ

y
−min(a, d) + β)ds

=
1

t
lg
y(t)

y(0)
+ β −min(a, d)
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Consequently,

q̄2 = lim
t→∞

sup sup
x∈K

1

t

∫ t

0

µ(B)ds <
β −min(a, d)

2
< 0.

By the theorem 3.5 in paper[16], the disease steady state Ee
is globally asymptotically stable, this completes the proof.

IV. CONCLUDING REMARKS

In this paper, we set up a HBV infection model based on
saturate infection rate, in the model, we didn’t ignore the loss
term of free virus particle when it enters the target cell, on
the other hand, we also consider the non-cytolytic loss of
infected cells. By stable analysis, we can know the infection-
free equilibrium is globally asymptotically stable and the virus
is cleared if the basic reproduction number R0 < 1, and if the
basic reproduction number R0 > 1 and the parameters satisfy
β < min (k, a, d), the endemic equilibrium is also globally
asymptotically stable.
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