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Abstract—With rapid accumulation of functional relation-
ships between biological molecules, knowledge-based networks
have been constructed and stocked in many databases. These
networks provide the curated and comprehensive information
for the functional linkages among genes and proteins, while
their activities are highly related with specific phenotypes and
conditions. To evaluate a knowledge-based network in a specific
condition, measuring the consistency between its structure and
the conditionally specific gene expression profiling data is an im-
portant criterion. In this work, we propose a Gaussian graphical
model to evaluate the documented regulatory networks by the
consistency between network architectures and time-series gene
expression profiles. By developing a dynamical Bayesian network
model, we derive a new method to evaluate gene regulatory
networks in both simulated and true time series microarray
data. The regulatory networks are evaluated by matching a
network structure and gene expressions, which are achieved by
randomly rewiring the regulatory structures. To demonstrate the
effectiveness of our method, we identify the significant regulatory
networks in response to the time series gene expression of
circadian rhythm. Moreover, the knowledge-based networks are
screened and ranked by their consistencies of structures based
on dynamical gene expressions.

Index Terms—Gaussian graphical model, network evaluation,
regulatory structure, time series gene expression.

I. INTRODUCTION

Gene regulatory network provides a basic framework for
the regulation relationship between transcription factors and
their target genes [1], [3]. The network architecture is a lattice
of their relationships. It is a promising way to reconstruct the
gene regulatory network by reverse engineering [24], [25]. The
DREAM (Dialogue for Reverse Engineering Assessment and
Methods) challenge provides evidence for the effectiveness of
the network reconstruction algorithms [12], but there are still
many difficulties in these inferences. It is difficult to assess
the sensitivity and specificity of these inference results beyond
the curse of dimensionality of the problem. Simultaneously,
there is more and more available information about gene
regulations. Evaluating a knowledge-based network with gene
expression data will provide a valuable alternative to study

gene regulatory networks [7], [15]. The documented networks
or pathways are often based on the retrieval information about
their relationships among genes and proteins [9]. The matching
significance between the reference networks and the expression
profiles will indicate the enrichment information and functional
linkages underlying these genes and their networking activities
in the conditional specificity.

The existing approaches of analyzing gene expression gen-
erally start from the identification of differentially expressed
genes by comparing the expressions in different conditions.
They often include statistical tests, such as t-test and SAM
[22]. However, genes perform their functions by interacting
with each other in the form of network or pathway. Then,
there are some methods which have been proposed for the
pathway analysis [4], [14]. GSEA [16] and GSA [6] provide
the significance test for the predefined gene sets in certain gene
expression profiling. Gene set will provide more information
for the interrelationship of genes and imply their regulations
from the system level [21]. However, network structures or
topologies have not been considered in the most of the identifi-
cation methods [19]. Moreover, the analysis has not conducted
to consider the true gene expressions efficiently and there are
lots of constraints for network structures in the assessment
[5], [13]. The relationship of gene regulations defines the core
network architecture underlying these genes during the bio-
logical processes [3]. In response to certain conditions, these
gene regulatory networks will perform very different biological
functions and show obvious structure dynamics [11]. Here, we
aim to provide an evaluation method for the documented gene
regulatory networks based on the consistency between network
structures and time-series gene expression data. The consis-
tency between network structures and measured data is well
known in statistical casual hypothesis [15]. The architecture of
topological linkages will provide regulatory implications which
underlie the gene expression. If we evaluate the functional link-
ages and their responses matching with the gene expressions,
the network activity and importance will be identified. This
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will provide crucial implications for their biological process.
There are some methods have been developed to reconcile
network structure and gene expression. [7] provided a linear
regression method to measure the consistency, but it cannot
handle the amount of large networks in parallel. [5] proposed
a scoring scheme for assessing the significance of pathways
by their ranks corresponding to gene expressions. However, it
ignores the regulatory interactions between genes as well as
fails to detect the correspondence between gene expression and
network structure. We have provided a method to screen the
consistency between network structures and gene expressions,
while the method cannot handle the network with cycles
and loops [15], [26]. To evaluate biological networks with
consideration of general network structures, it is urgent to
develop a new method to identify the consistency between
regulatory network structures and gene expression profiles.

In this work, we proposed a dynamical graphical mod-
el to identify the significant regulatory networks from the
knowledge-based reference networks in response to conditional
gene expressions. Instead of reconstructing gene regulatory
networks from high throughput data, the significant regulatory
networks are identified from the reference network library by
the time-series high throughput data. We validated our method
in both simulated data and true time-series circadian rhythm
data. The documented network structures of transcription fac-
tors and targets are evaluated from the random samplings. The
possibility of graph architectures existing in certain conditions
was measured by the consistency between network structures
and gene expression profiles. In particular, we ranked the
referred regulatory networks by the structural consistency in
response to specific time-series gene expression profiling data.
As shown in the results, the statistical significance as well as
the potential regulation architecture provides detail information
for the regulatory networks responding to gene expressions in
specific conditions.

II. MATERIALS AND METHODS

A. Framework

Figure 1 shows the framework of our method to identify
the significantly responsive regulatory networks by evaluating
the consistency between network structures and gene expres-
sions. For the reference regulatory networks documented in
databases shown in Figure 1(A), we mapped the time-series
gene expression information to these regulatory networks
shown in Figure 1(B). By employing a dynamical Bayesian
network model, we generated a likelihood value to measure
the consistency between the regulatory network structure and
the gene expression data (shown in Figure 1(C)). In Figure
1(D), each of the reference regulatory networks is assigned a
statistical significance of consistency with the time-series gene
expression profiling. The significant networks are the outputs
of these identified responsive gene regulatory networks.

B. Data sets

We implemented our method in both simulated data and
real time-series gene expression data of circadian rhythm. In

the simulation study, we used a gene regulatory network and
its expression from the DREAM in silico network challenge
[12], [17], which is a competition of reverse engineering
to infer the simulated regulatory network from its generated
gene expression data [17]. For the availabilities of standard
regulatory network and its time-series gene expression, we
evaluated the consistency between the network structure and
its gene expression. One regulatory network and one generated
gene expression data were chosen for evaluation. The gene
regulatory network contains 10 genes and 12 regulations as
shown in Figure 2(A). The gene expression profiling of time-
series data contains 21 time points in two conditions, i.e.,
perturbation and normal [17].

The true time-series gene expression data is about circadian
regulation in rat lung which was downloaded from NCBI GEO
database (ID:GSE25612) [2]. The gene expression profiles
were generated from lungs of Wistar rats by Affymetrix
microarray (Rat Genome 230 2.0), which was designed for
examining fluctuations in gene expression in lungs within the
24 hour circadian cycle in normal animals [18]. The data
contains 18 selected time points in the 12:12 (light:dark)
cycle. To build the reference gene regulatory networks for
evaluation, we downloaded the KEGG pathways in rat [9].
We built the regulatory networks by the extracted information
for every interaction between two genes. The linkages of
‘GErel’ relationship with activation and repression information
are used to construct the regulatory relationships between
transcription factors and target genes [9]. In total, there are
207 KEGG pathways which can identify their gene expression
information in the rat time-series gene expression data and
resulted in 37 gene regulatory networks which contain more
than 5 genes. These networks formed the reference regulatory
networks which are used to identify the consistency between
network structures and gene expressions. Compared to in-
ferring gene regulatory networks in reverse engineering, we
identify these significantly responsive regulatory networks in
the gene expression profiles of circadian rhythm in a forward
manner.

C. Significance of networks
In a graphical model, the joint distribution probability of a

certain directed network architecture can be represented as a
product of the individual density functions with conditions on
their parent variables by recursive factorization [8], [15], [20],
i.e. f(G) = f(X1, X2, ..., Xn) =

∏n
i=1 f(Xi|parent{Xi})

in graph G. Let Xt = (Xt
1, ..., , X

t
n)T be the gene expres-

sion vector of n genes at time t. Thus, for the time points
{1, ..., t, ..., T}, under the Markov assumption that Xt+1 is
independent of Xt′

for t′ < t given Xt, we have

f(X1, ...,Xt, ...,XT ) = f(X1)
T∏

t=2

n∏

i=1

f(Xt
i |parent(Xt

i ))

in the time series data. Assume Xt+1 = AXt+E, where A =⎛
⎜⎝

a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n

⎞
⎟⎠ =

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠, ai,j = P (Xt+1

i |Xt
j);
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Fig. 1. Framework to identify significant regulatory networks in response to condition-specific gene expressions.

E ∼ N(0, Σ), and Σ = diag(σ2
1 , ..., σ2

n). According to the
linear Gaussian model and

f(Xt+1
i |Xt) =

1√
2πσ2

i

exp[− 1

2σ2
i

(Xt+1
i − αiX

t)],

we have

f(X1,X2, ...,XT ) = f(X1)
T−1∏

t=1

n∏

i=1

f(Xt+1
i |Xt)

= f(X1)
T−1∏

t=1

n∏

i=1

1√
2πσ2

i

exp[− 1

2σ2
i

(Xt+1
i −

n∑

j=1

ai,jX
t
j)

2].

Then, the log-likelihood function

ln f(X1, ...,Xt, ...,XT ) ∝

−1

2

T−1∑

t=1

n∑

i=1

1

σ2
i

[(Xt+1
i −

n∑

j=1

ai,jX
t
j)

2 + ln(2πσ2
i )].

We then employed a quadratic programming method to cal-
culate the likelihood value by optimizing the coefficients
ai,j , (i, j = 1, ..., n) in graph G (Shown in Figure 1). Thus,
the likelihood value was determined by the time series gene
expression data. Based on the log-likelihood value, the signif-
icance of a specific network architecture was evaluated by a
random sampling process [15]. As shown in Figure 1, for each
regulatory network, we randomly generated N networks by
rewiring the same number of regulations between the nodes of
the evaluating network. After fitting the log-likelihood values
of the random network structures by a Gaussian distribution
function, we calculated the consistency probability between
the evaluating regulatory architecture and the gene expression
profiling for each network individually. The statistical signif-
icance p-value of one regulatory network G

(i)
0 (i = 1, ..., M)

was calculated by a two-tailed test with the null hypothesis
that its log-likelihood is equal to the mean of that of these
randomly generated networks. We set N = 2000 in this work
and the significant threshold of p-value was set as 0.05. All
regulatory networks were implemented in the same process to

get their impacts of consistency with gene expression profiles
individually. The ranking by the significance p-value is clearly
able to provide the enrichment measure of these regulatory
structures in response to the time-series gene expression pro-
filing of circadian rhythm.

III. RESULTS

A. The simulation study

Firstly, we presented the simulation results to demonstrate
our method by evaluating the gene regulatory network in the
DREAM challenge [17], [25]. The simulated gene expres-
sion data were generated by the designed regulatory network
structures shown in Figure 2(A), which contains a cycle of
‘gene5 → gene6 → gene8 → gene7’. We implemented
our method to access the consistency between the simulated
time-series expression data and the gene regulatory network.
After achieving the log-likelihood values of the evaluating
gene regulatory network, each randomly rewired regulatory
structure was also calculated for its likelihood value of mea-
suring its consistency with the gene expression profiling in
the permutation study. For the two conditions of perturbation
and normal in the simulated gene expression profiles, the
standard network structure achieved its significance p-values
of 0.0072 and 0.0034 in the two conditions respectively. In
the perturbation data, the distribution of likelihood value in
these random samplings of network structures is shown in
Figure 2(B). The results provided evidence the high consis-
tency between network structures and its corresponding gene
expression data. Compared to the original goal in the in silico
network challenge of inferring gene regulatory network from
simulated expression data, we evaluated the significance of
the consistency between the regulatory structures and gene
expressions. From the results, we identified the consistency
underlying the structure of regulations with the gene expression
data. The significant gene regulatory network structure respon-
sive to specific gene expression was identified effectively. The
results also indicate the rationale of inferring gene regulatory
networks from expression data.
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Fig. 2. (a) Network architecture of a gene regulatory network in DREAM
challenge. (b) The density distribution of the log-likelihood values between
network structures and gene expressions in the perturbation condition.

B. Significant regulatory networks in real gene expression data

To test the effectiveness of our method in real time-series
gene expression data of circadian rhythm, we implemented
the proposed method to identify the significantly responsive
regulatory networks enrolled from KEGG [9]. Figure 3 shows
the documented regulatory network of circadian rhythm. The
gene expression data of circadian rhythm in rat lungs which
can be divided into two segments, i.e., light and dark, in the
rhythm of 24 hours. Each knowledge-based gene regulatory
network was evaluated by calculating its consistency value
with the gene expression profiling data in the light and black
segments, respectively.
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Fig. 3. The documented gene regulatory network of circadian rhythm in
KEGG.

Table I lists the significance p-values of these reference gene
regulatory networks in response to the circadian rhythm gene
expression profiles. They are simply ranked by the significance
p-values in the light. In the evaluation, these documented
regulatory networks were screened to be significant network
structures by their consistency with the gene expression data.
The enriched regulatory architectures in response to the gene
expression were identified simultaneously. We found that the
regulatory network of ‘circadian rhythm - mammal’ has been
identified as one of the most significant networks in both of the
segments of light and dark. The significant regulatory network
of ’tuberculosis’ indicates the active regulations in this pathway
under the rhythm transition of day and night in lung cells. It is
consistent with the knowledge of circadian oscillation in gene
expression in lungs [18]. The significant ‘pathways of cancer’
illustrates the active regulation associations between genes in
cancer pathways in response to the circadian rhythm, which al-

so indicates the importance of circadian rhythm for cancer [23].
These significant networks as well as the ‘wnt signal pathway’
also imply the interplay among these regulatory networks.
The crosstalk between pathways is often crucial to generate
complex responses to allow the global regulations for specific
mechanisms [10]. The enriched regulatory architectures might
be highly related to the circadian rhythm of rat lung cells
in the light and dark conditions. Interestingly, we found that
‘peroxisome proliferator-activated receptors (PPAR) signaling
pathway’ is significant in the dark, while is not significant
in the light. The pathway is known to be important in the
clearance of circulating or cellular lipids [9]. This indicates
that the specific regulations are related to lipid metabolism
during the night in the rhythm. In contrast, ‘Jak-STAT signaling
pathway’ was identified as significant in the light, while not
in the dark. The different significance of them in the two
segments hints the different active modulation of regulations
in response to the rhythm of different conditions [23].

The architecture of regulations was measured by their
consistency with the time-series gene expression data. Each
knowledge-based regulatory network achieved its significance
evaluated by the p-values of measuring the match between
network structures and expression profiles. In our scheme, we
randomly rewired the regulatory linkages among these genes
by keeping the number of regulations. The significance has
been identified in a statistical test framework. Figure 4 shows
the log-likelihood density plots for the regulatory network of
circadian rhythm in the permutation study. Compared with ran-
dom samples, we found that the likelihood value of the known
regulatory structure is located at the far left of a bell-shape-
like normal distribution. The statistical significance of rejecting
the null hypothesis was calculated for the known regulation
structure. The circadian rhythm regulation relationships are
significant in both segments of the light and the black. This
provided more evidence for the effectiveness of our method
of identifying the consistency between network architecture
and gene expression. The results show the importance of these
gene regulations during the temporal stages of rhythm. Also,
the stability of gene regulation networks has been evaluated
in the permutation processes because there are few structures
which can achieve higher likelihood values in response to the
specific gene expression data.
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Fig. 4. Density distribution of log-likelihood values in the permutation study
for regulatory network of circadian rhythm (a) in the light; (b) in the dark.
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TABLE I
EVALUATION OF GENE REGULATORY NETWORKS IN RESPONSE TO THE GSE25612 GENE EXPRESSION DATA.

KEGG ID Descriptor Node Edge Light Dark
P-value FDR P-value FDR

rno05152 Tuberculosis 42 163 7.59E-08 3.11E-06 1.04E-03 9.40E-03
rno04710 Circadian rhythm – mammal 13 58 1.00E-05 1.37E-04 5.34E-05 1.09E-03
rno05200 Pathways in cancer 82 170 6.99E-05 4.29E-04 9.84E-03 0.0576
rno04630 Jak-STAT signaling pathway 25 90 7.33E-05 4.29E-04 0.9450 0.9587
rno04310 Wnt signaling pathway 13 40 2.52E-03 0.0115 6.61E-03 0.0451
rno05216 Thyroid cancer 7 10 0.0210 0.0860 0.1150 0.2946
rno05213 Endometrial cancer 7 10 0.0252 0.0938 0.1101 0.2946
rno05211 Renal cell carcinoma 13 22 0.0463 0.1582 0.0981 0.2871
rno05212 Pancreatic cancer 9 20 0.0527 0.1661 0.1942 0.3520
rno05143 African trypanosomiasis 6 5 0.0874 0.2561 0.1875 0.3520
rno05215 Prostate cancer 9 7 0.1147 0.2985 0.2408 0.3901
rno04350 TGF-beta signaling pathway 20 26 0.1219 0.2985 0.1865 0.3520
rno04510 Focal adhesion 5 6 0.1238 0.2985 0.0319 0.1191
rno04978 Mineral absorption 6 5 0.1547 0.3375 0.2185 0.3732
rno05217 Basal cell carcinoma 19 38 0.1564 0.3375 0.7837 0.8902
rno04916 Melanogenesis 15 14 0.2001 0.3935 0.3057 0.4643
rno04976 Bile secretion 13 12 0.2102 0.3935 0.4905 0.6487
rno05134 Legionellosis 14 12 0.2244 0.3935 0.4397 0.6217
rno05218 Melanoma 6 5 0.2257 0.3935 0.9124 0.9587
rno04210 Apoptosis 8 12 0.2436 0.3935 0.1367 0.3297
rno04150 mTOR signaling pathway 6 5 0.2560 0.3935 0.7494 0.8778
rno04961 Endocrine and other factor-regulated calcium reabsorption 6 7 0.2614 0.3935 0.8818 0.9514
rno04960 Aldosterone-regulated sodium reabsorption 16 15 0.2645 0.3935 0.1703 0.3520
rno04340 Hedgehog signaling pathway 22 40 0.2773 0.3935 0.7093 0.8778
rno04962 Vasopressin-regulated water reabsorption 7 6 0.2783 0.3935 0.7470 0.8778
rno05031 Amphetamine addiction 13 28 0.2883 0.3941 0.1974 0.3520
rno05222 Small cell lung cancer 25 38 0.2997 0.3964 0.0270 0.1107
rno04910 Insulin signaling pathway 6 5 0.3211 0.4114 0.0200 0.0913
rno04950 Maturity onset diabetes of the young 20 28 0.5106 0.6214 0.9587 0.9587
rno04115 p53 signaling pathway 32 31 0.5153 0.6214 0.4777 0.6487
rno04620 Toll-like receptor signaling pathway 12 11 0.6041 0.7077 0.6175 0.7912
rno05220 Chronic myeloid leukemia 5 3 0.7017 0.7992 0.3982 0.5830
rno04110 Cell cycle 20 26 0.7254 0.8038 0.0495 0.1690
rno04920 Adipocytokine signaling pathway 9 10 0.8524 0.8997 0.8034 0.8902
rno05030 Cocaine addiction 16 22 0.8558 0.8997 0.1461 0.3328
rno03320 PPAR signaling pathway 64 258 0.9756 0.9956 5.26E-13 2.16E-11
rno05221 Acute myeloid leukemia 12 10 0.9956 0.9956 0.2473 0.3901

IV. DISCUSSIONS

In this work, we proposed a novel dynamical Bayesian
network model to identify the consistency between the struc-
tures of regulatory relationship and the gene expression data.
The results show that our method can effectively identify the
significantly responsive regulatory networks both in simulated
data and in real gene expression data. The simulation study in-
dicates the feasibility and efficiency of our method in the gold
standard network and its generated data. The results in real data
provide biological regulations which are consistent with the
knowledge about circadian rhythm and were also validated by
experimental data. Our method can be used to identify large-
scale regulatory networks without any constraints of acyclic
and loop-less regulations. Note that the regulatory cycles and
loops usually exist widely in biological systems.

A. From reconstruction to evaluation

Due to the complexity of gene expression, the methods for
reconstructing gene regulatory network encounter the difficul-
ties not only from the dimensional curse of high-throughput
data, but also from various assumptions underlying these genes
[12]. Based on the knowledge-based regulatory networks,
we measured the consistency between their architectures and
expressions, which provided a powerful alternative to inves-
tigate the regulatory relationships from gene expressions. We

assessed the significance of these reference networks by their
structures. The identified significance of these documented
networks provides the implication of responsive regulations
in ceratin conditions. In our method, the likelihood of net-
work structures meeting the time-series expression information
provides the sequential checks on the architectures of gene
regulations. In contrast, network reconstruction is to infer the
network structure from the condition-specific gene expression
data, which often has inherent barrier of environmental and
phenotype flexibility. Based on the knowledge-based regulato-
ry networks, we can identify the significantly regulatory rela-
tionships in specific conditions by network screening. Clearly,
the forward-like process provide a novel approach to bridge
the relationship with phenotypes and molecular data.

B. Effect of network structure

We measured the consistency between the network structure
and time-series gene expression in a dynamical Bayesian
network formulation. In particular, we tested the significance
of the maximum likelihood score between network structure
and gene expression data by a random sampling process. The
random samples are based on the same gene sets with the
random rewiring of linkages between these genes, i.e., the same
number of regulations will be assigned in the same gene set.
Each generated network was also evaluated for its likelihood
of the connection architecture in response to gene expression
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profiling data. From the likelihood values of each random
sample, we got the evaluation value between network struc-
tures and expressions, and the documented regulatory networks
achieved their consistency measurement with gene expression
data. However, in certain gene expression, the significance of
gene regulatory network indicates its higher consistency with
the gene expressions compared to these random networks with
rewiring linkages.

C. Improvement of directed network

The proposed method of Gaussian graphical model in this
paper improves our former methods for network screening
on acyclic and loop-free networks of gene regulations [15],
[26], and it certainly can cover more types of networks for
evaluation. Apparently, it is necessary in the future to develop
new theoretical model to consider the undirected networks
and hybrid networks with both directed and undirected edges.
As another research topic, the random samples can also be
extended to identify more reasonable network structures and
potential regulatory relationship by assessing the generated
networks with higher significance given the available gene
expressions. The network structure coherent with the expres-
sion indicates possible crucial biological meanings, which will
provide valuable information for disease mechanism and drug
target design.

V. CONCLUSION

In this work, we developed a novel graphical model to as-
sess the consistency between regulatory network structures and
gene expressions. We identified the significant regulatory net-
works from the documented reference networks in response to
circadian rhythm conditions. The directed regulatory networks
achieved their significance measurement by the consistency
possibility between the network architectures of regulations
and gene expression profiles. Clearly, our method provides
an alternative way to detect responsive biomolecular networks
corresponding to certain conditions and phenotypes. Our model
can handle large-scale regulations as well as general directed
networks. Moreover, our method can provide potential regula-
tions in the networking genes. The analysis of the dynamics
underlying the regulatory networks in circadian rhythm related
data provides evidence for the effectiveness of our method as
well as biological insights for the rhythm mechanism.
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