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Abstract—Network module (community) structure has been a
hot research topic in recent years. Many methods have been
proposed for module detection and identification. Hierarchical
structure of modules is shown to exist in different kinds of
biological networks. Compared to the module identification
methods, less research is done on the hierarchial structure of
modules. In this paper, we propose a method for constructing
the hierarchical modular structure in networks based on the
extended random graph model. Statistical tests are applied to
test the hierarchial relations between different modules. We give
both artificial networks and real data examples to illustrate
the performance of our approach. Application of the proposed
method to yeast gene co-expression network shows that it does
have a hierarchical modular structure with the modules on
different levels corresponding to different gene functions.

I. INTRODUCTION

Network has been widely applied for modeling complex
systems, including biological systems, social organizations,
World-Wide-Web, and so on. In a network, the nodes (vertices)
represent the members in the system, while the edges represent
the interactions among the members. If two nodes have
interactions in a network, there will be an edge connecting
them. With such a representation, the complex systems can be
analyzed by computational methods.

Module (community) structure iS a common property of
many different types of networks. Modules are the dense
subgroups of a network, where the nodes in the same module
are more likely to connect each other than the other nodes.
In general, the members in the same module share some
common properties or play similar roles. For example, in a
gene co-expression network, the genes in the same module
may belong to the same functional category such as lipid
metabolism and acute-phase response [1]. Since the paper
published by [2], module detection and identification becomes
a hot research topic in several different areas such as computer
science, physics, and statistics. A large number of related
works have been published with the physicists making the
most contributions [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. Among these methods, modularity optimization has
attracted much attention [7], [8], [14], [13]. In the paper by
Newman [7], [8], modularity measures the difference between
the number of edges within groups in the network and the
expected number of such edges in an equivalent network where

the edges are placed at random. By optimizing modularity,
the partitioning of the network into modules is obtained. One
important problem with this modularity is on the resolution
limit [6]. When the size of the module is smaller than certain
value, it cannot be resolved, which depends on the size of the
subnetworks to be divided and the interconnectedness of the
subgroups. Several modifications are presented to improve this
modularity later on [19], [20], [21], [22], [11]. Some statistical
property of this modularity is analyzed in [13]. There the
author shows that this modularity cannot identify the modules
consistently. At the same time, a novel modularity is proposed
in the paper, which can consistently recover the modules in
dense networks. However, the computation of maximizing this
modularity is very time-consuming. Li et al. proposed another
modularity in [11]. This modularity is shown to perform better
than the modularity proposed by Newman and it can improve
the resolution. However, resolution limit is still a problem with
their proposed criterion of choosing the number of modules.
Besides these methods based on modularity, some other pro-
posed methods also give good identification of modules. For
example, [12] gives an information-theoretic framework for
module identification, and the method works well. Several
recent review papers provide details and comparison of the
module identification methods [16], [6], [9]. [16] compares the
performance of several existing methods for both computation
time and output. [6] is a thorough, more recent discussion. [9]
contrasts different perspectives of the methods and sheds light
on some important similarities of several methods.

Although so many related works are published, how to
choose an appropriate number of modules keeps being an
open problem. Different methods output different solutions
of the number of modules when they are applied to the
same network. In reality, all of the different choices may
be reasonable since different choices of this number may
correspond to the modules on different levels. As explained in
[17], some modular networks may have hierarchical structure.
For example, in a friendship network, on the large scale, the
modules may correspond to people from different countries.
If we look at the modules on the smaller scales, people in the
same module may graduate from the same university, grow
up in the same community, or even be born in the same
family. Such hierarchical modular structure appears in different
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Fig. 1. Example of hierarchial modular network structure.

kinds of networks. For example, Meunier and colleagues
gave an example on hierarchical modular structures in human
brains [23]. Fig. 1 shows an example of hierarchical modular
network. There are two levels of the modules. We can identify
three modules corresponding to different shapes of nodes on
the lowest level or two modules with nodes represented by
cubes and circles being combined together on the higher level.

Compared to the module identification in a partitional way,
there are much fewer works on computational methods for hi-
erarchical modular structure analysis [24], [25], [26]. Although
these papers present some methods to construct the hierarchial
modular structure, they do not give a clear picture on how
these modules are organized, what the relationship among the
modules is. In this paper, we mainly consider the problem
of hierarchical modular structure in unweighted networks. We
give our proposed method in section II, where we give the
methods on how to find all the possible modules in a network
and how to construct the hierarchical structure from these
modules. Numerical experiments for both simulated networks
and real data networks are presented to show the performance
of our proposed method in Section III. The application of the
proposed method to yeast gene co-expression network shows
that it does have a hierarchical structure, which corresponds
to the different levels of gene functions. Conclusion remarks
are given finally.

II. METHODOLOGY

Before going to the details on how to construct the hier-
archical structure, we give its definition first. We consider a
network G(V, E') with n nodes, where V' denotes the set of
nodes and F denotes the set of edges. The adjacency matrix
is denoted as A with each entry being O or 1. The hierarchical
structure of a network is defined based on the random modular
network model, which is a direct extension of the Erdds-Rényi

satisfies Zfil i = 1. Then any two nodes w,v € V
and u € M;,v € M; are connected with probability P; ;
depending on M;, M;, and P is symmetric. If there is the
modular structure in the network, then P; ; < min{P;, P;}.
For a network composed of three modules M;, M;, and M,
if P; ; > max{P;,Pj}, then we say there is hierarchical
structure among these three modules. If there are K modules
in the network, the hierarchical structure can be defined
recursively.

To construct the hierarchical structure, we look at the
partitional case first, that is all the modules are on the same
level. We suppose the number of modules K is given and
we aim to find all the possible modules. We let N}, denote the
number of nodes in subnetwork Vj, L, denote twice the total
number of edges in subnetwork Vj, and Lj; denote the total
number of connections between the subnetworks V. and Vj,
where k,l = 1,2,---, K. The module identification problem
is formulated as:
= &(P) —

max o(P) oy (P),

where

ZZL’”

k=1 I#k

K
L
>N,

k=1

®(P) =

Here P is a partition of the network. This metric has been
presented in [11].
In matrix form, if we let

| 1, ifnodeieVy .
St = { 0, otherwise i=12-n.
Then, the problem is formulated as:
T kAS i kAS 1
T S IR
k=1 l#k
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Here 1 is a vector with all elements being 1.

The function @ (P) defines the sum of the average degrees
in each subnetwork and ®5(P) defines the sum of the average
number of connections between one subnetwork and other
subnetworks. The objective function aims to both maximize
®; and minimize ®, since $; and $» may lead to inconsistent
results when applied separately. By maximizing ®(P), we
expect to achieve a good balance and make correct inference
on the modules.

To solve the problem (1), an approximate method is applied.

random graph model [27]. A random graph is obtained by [Let S‘k i 5 IS the function W(S) can be approximated as
starting with a set of n nodes and adding edges between them Tr(STAS) Tr(STLSv) _ Tr(SvT(QA _ D)S‘) and we aim
in a probabilistic fashion. The presence of an edge between i < ive the optimization problem:

any two nodes is a Bernoulli event where the probability may [ - -

be vertex-pair dependent. Suppose any node has a probability max (S) = TY(STQA - D)S)

1; to be in the module M;, where u = (u1,p2, -, i) subject to : STS =1.
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The problem of maximizing W(S) is the standard form of a
trace optimization problem. Its solution can be obtained from
the Rayleign-Ritz theorem. The solution can be approximated
by the eigenvectors corresponding to the K largest eigenvalues
of the matrix 24 — D. To obtain a binary matrix S, which
defines the partition of the network, the K eigenvectors are
applied to do the k-means clustering for module assignments.
By adding maximization of the sum of the average degrees
in each subnetwork, the network can be divided into com-
paratively large modules. The algorithm is summarized in the
following:

Algorithm:

Input: Adjacency matrix A, ,,, and K, which is the number
of modules.

1) Compute the matrix 24 — D;

2) Compute the last K eigenvectors uj,us,---,Uux Of
matrix 24 — D;

3) Construct a new matrix T € R"*X, with columns
up,uz, - ,UxK,

4) Cluster the points constructed from each row of
matrix 7 with k-means clustering into modules
My, Mo, -+, Mk;

Output: Index of nodes in each module.

With the above algorithm, we can get a partition of the
network into modules. Now, we discuss how to determine the
lowest level of all the possible modules. For any node 7 € V,
the degree can be written as:

=> di(Vi

k=1

V):ZAij7

JEVK

where

which defines the connections that node ¢ has in the sub-
network Vj. To determine the number of possible modules,
we consider the average connectivity within a subnetwork
and that between it and any other subnetwork. If the average
connectivity within a subnetwork is greater than that between
subnetworks, we take it as a module, that is:

>iev, (Vi) - >iev, di(V1)
N, N,

1 F# k. 2)
Alternatively, it can also be written as:
Ly > Ly,

if we multiply both sides with N (V).

We do the clustering for K increasing from two until the
condition (2) does not hold. Now we get all the possible
modules. The efficiency of the above algorithm for identifying
partitional modules can be seen in [31]. The details of the
above method can be found in [31].

Based on the above results, we construct the hierarchial
structure in an agglomerative way (bottom-to-up). The distance

between any two modules is defined as one minus their con-
nection probability, which is computed from the clustering re-
sults through maximum likelihood estimation. This connection
probability matrix is denoted as PO, First the maximum con-
nection probability between different modules is found, and
we assume it is P0 o.jo- The corresponding two modules i, jo
are recorded. The second largest connection probability for
these two modules i, jo are also found, and we assume they
are P0 . and PO0 1~ The corresponding modules ko, ly are
also recorded To test whether there is a hierarchial structure
for these modules, we use Fisher exact test to see whether the
connection probability ]50 ky» and }5 , are the same as PO

10,j0°
That is, we need to test Pl% o = P0 &, and PO = PY

T El
Here we take a p-value threshold to be 0.05. Tflrjge dlffé[l)‘el(‘Jlt
cases may occur. (1) Both of these two null hypotheses are
rejected. Now we say there is hierarchical structure and the
modules ig,jo are on the lower level than kg and [y. We
combine the two modules 7, jo and take them as one module.
(2) Only one of P . = P% g, and PO . = PJOOJ0 is
accepted. Now the corresponding modules havmg the same
connection probability are combined together. We look for the
next large connection probability for these three modules, and
test the relationship again. If the null hypothesis is accepted,
the corresponding module is enrolled into this group, and
the same step is implemented again. Otherwise, we combine
the modules having the same connection probability together.
(3) These modules are taken as on the same level. In this
case, we search the next large connection probability to these
four modules and do the statistical test until the hierarchical
structure occurs or all the modules are combined together.
After the above steps are finished, the connection probability
between different modules is recalculated and recorded as P?.
The above search and test steps are repeated for P!, Such
steps are implemented recursively until all the modules are
combined into one big module/network. For the statistical
tests, we can also use t-test to test the relations between the
connection probabilities if the distribution of the connections
between different modules can be approximated by normal
distribution.

III. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed
method through its application to several examples. We first
start with two artificial networks having comparatively clear
module structures. We then apply our method to two real
networks to evaluate its performance. The first real network is
the well-known karate club network and the second one is a
yeast gene co-expression network.

A. Artificial Networks

1) A network composed of cliques: We consider a network
with 200 nodes, which is composed of 4 cliques. The sizes of
the cliques are 90, 30, 40, and 40. The connections between
different cliques are randomly generated with the following
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Fig. 2. Example of hierarchial modular network structure.(a) Pattern of the
adjacency matrix, (b) The hierarchical structure of the network

probability:
1.000 0.200 0.002 0.003
p_ 0.200 1.000 0.005 0.010
| 0.002 0.005 1.000 0.030
0.003 0.010 0.030 1.000

The pattern of the adjacency matrix is shown in Fig. 2(a).
From upper-left to lower-right, we denote the four modules
as My, Mo, M3, and My, which correspond to the position in
the connection probability matrix. We can see the hierarchical
structure of the network from the adjacency matrix. We apply
our proposed method to this network. The condition (2) is
satisfied until K = 4. The estimated connection probability
matrix is:

1.000 0.205 0.003 0.003
p_ 0.205 1.000 0.006 0.009
0.003 0.006 1.000 0.029
0.003 0.009 0.029 1.000

We apply statistical tests to the corresponding modules, and
finally we get the hierarchical structure as shown in Fig.2(b).
The values on the hierarchial tree is the estimated connection
probability of the corresponding modules. On the lowest level,
there are four modules. If the tree is cut between 0.205 and
0.029, there are three module while if the cutoff is greater than
0.029, there are only two modules. These results are consistent
with the network generation strategy.

2) A randomly generated network: In this example, we also
consider a network with 200 nodes and 4 modules. The size
of each module is 10, 45, 45, and 100. We set the degree

0 50 100 150 200
Vertex

Fig. 3. Pattern of the adjacency matrix for the randomly generated network.

of each node within its module to be 6, 15, 15, and 30.
Then the connections between different nodes are randomly
generated. We keep all the edges generated for each node. So
finally the average degree within each module is greater than
the pre-specified number. The connection probability between
different modules is 0.002. The pattern of the adjacency matrix
is shown in Fig. 3. From upper-left to lower-right, the four
modules are My, My, M3, and M,, respectively. With our
proposed method, the network is partitioned into four modules
correctly on the lowest level and the estimated connection
probability is:

0.298 0.002 0.002 0.003
p_ 0.002 0.328 0.002 0.004
0.002 0.002 0.321 0.000
0.003 0.004 0.000 0.560

By using the statistical tests, these four modules are de-
termined as parallel modules, which is consistent with our
network generation strategy.

B. Karate Club Network

We consider the Zachary’s network of karate club members
[18] in this example. There are 34 nodes in this network
corresponding to the members in a karate club. This dataset
has been applied as a benchmark to test many module iden-
tification algorithms since the true modules are known in
this network. The people in the club were observed for a
period of three years. The edges represent connections of the
individuals outside the activities of the club. At some point, the
administrator and the instructor of the club broke up due to a
conflict between them. The club was separated into two groups
supporting the administrator and the instructor. The question
is whether it is possible to infer the composition of the two
groups from the original network structure recorded during
the three years. Fig.4 shows the network. Originally, there are
two modules, which have 16 nodes (squares and pentagons in
the figure) and 18 nodes (circles and triangles in the figure),
respectively.

We apply our proposed method to this network. The crite-
rion (2) is satisfied until K = 4. The result is shown in Fig.4,
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Fig. 4. Zacharys karate club network. Different shapes show the modules.
M : pentagon, Ma: square, M3: triangle, My: circle.

with different shapes of the nodes denoting different modules.
The estimated connection probability matrix is:

0.364 0.073 0.056 0.036
0.073 0.480 0.000 0.000
0.056 0.000 0.237 0.108
0.036 0.000 0.108 0.480

P:

From this matrix, it is easy to see that M3 and M, are more
likely to connect each other. With statistical tests, we can get
that the connection probability among M3, My, and M; is the
same. Although M5 has no connections to M3 and My, it has a
larger connection probability to M; than M3, M, to M;. Thus
these four modules are on the same level. In [25], the authors
considered constructing the hierarchical modular structure of
this network too. At first, they also found four modules on
the lowest level. Then they found that this network has two
modules with some nodes (3, 9, 10, 14, 31) belonging to both
of them. We did not consider the overlapping nodes in this
article. However, we can see that because these overlapping
nodes belong to both M7 and M3, and they connect both parts
closely, our method detect My and M3, M3 and M, having
the same connectivity.

C. Hierarchical Modular Structure in Yeast Gene Co-

expression Network

In this section, we apply our proposed approach to analyze a
gene co-expression network of yeast. The data set we use was
generated by Brem and colleagues from a cross between two
distinct isogenic strains BY and RM [28]. As described in [28],
a total of 5740 ORFs were obtained after data preprocessing.
In our analysis, we only use the 1,800 most differentially
expressed genes as input to construct co-expression network
and derive modules. When constructing the adjacency matrix
of the network, we use the hard thresholding, that is: if the
coefficient between two genes is greater than some given
value, we assign an edge between them; otherwise, there is
no edge. We compute the linear regression coefficient between
the log 10 transformed degree d (log 10(d)) and the frequency
of d (log10(f(d))), and choose the threshold that leads to
approximately scale free property of the network as described

in [30]. Finally, the threshold is set to be 0.705, R is about
0.75. By such a setting, this gene co-expression network is
divided into 690 unconnected parts with the largest part having
size 788. Here, we only analyze the hierarchical modular
structure of the largest connected network.

Starting from K = 2, we apply our proposed method to
this network, and the condition (2) holds until K = 10. To
make the solution of partitioning the network into 10 modules
more accurate, starting from the solution of our proposed
approximation method, we do a global maximization changing
the module index of boundary nodes. Since the approximate
solution is already good, this step is very fast. The structure
of the network is shown in 5(a), with different colors and
shapes denoting different modules as described in Table I.
Then we construct the hierarchical modular structure as shown
in Fig. 5(b). On the lowest level, there are ten modules, while
on the highest level, there are four modules.

Since co-expressed genes tend to be co-regulated and pos-
sibly have similar functions, genes in the same module are
expected to be enriched for some function categories. In order
to understand the biological basis of the network modules, we
consider each identified module for enrichment of annotations
from gene ontology (GO) [29]. In our analysis, the enrichment
analysis was performed by GOstats from Bioconductor. For
each module, the statistically most significant GO categories
are analyzed. Table I shows the enrichment results for the
ten modules. ‘M-size’ and ‘G-size’ are the size of both the
modules and the GO categories, respectively. ‘Overlap’ is the
overlap size of the module and the GO category. Table II
shows the enrichment results for the modules on different
levels. From the tables, it is easy to see that different gene
function categories are enriched most on different levels. For
example, module M5 enriches the GO category “Translation”
most significantly, while the combined module M, Mg en-
riches “Ribonucleoprotein complex biogenesis” most signif-
icantly, with M, containing 42 genes having this function.
The combined module Ms, Mg, M, and M; also enriches
this function, while M, itself enriches “Cellular respiration”
significantly. On the uppermost level, the module composed
of My, Mg, My, My, M3, and M enriches four GO function
categories most significantly, and all the genes are overlapped.
Three (“Cellular component biogenesis”, “Cellular component
biogenesis at cellular level”, and “Ribosome biogenesis”) of
them are different from the most enriched gene functions
for each of these six modules. All these results indicate that
hierarchial modular structure do exist in gene co-expression
networks and different gene functions are enriched most on
different levels.

We use the software REViGO to check the hierarchical
structure of the enriched GO categories [32]. We considered
the enriched GO categories in Table. I and Table. II except the
category “Regulation of translational termination” because its
G-size is very small and the p-value is comparatively large.
Fig. 6 shows the tree map of the most enriched GO categories.
Here the modules Mg, My and other modules are parallel to
each other, which is consistent with our results. M3 and M~
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Fig. 5. Yeast gene co-expression network.(a) The network structure, (b) The
hierarchical structure.

belong to a large category, which is “Branched chain family
amino acid metabolic process”. This large category is different
from the most enriched category for the combined module M3
and M7. This may come from the fact that since M7 is very
small, it does not cover a large part of its enriched category.
M and M, are parallel to each other which is also consistent
with our analysis. All these results show that our proposed
method can explain some of the hierarchical structure of the
GO categories. Due to the network size, we did not handle all
the genes of yeast. This may be a reason why some of our
computational results are not consistent with the GO function
tree map.

IV. CONCLUSION

Module identification problem has attracted much attention
from different fields and it continues being a hot research
topic. How to determine the number of modules in a modular
network has been an open problem during the study of module
identification methods. Different identification methods may
give different numbers. This problem may come from the
hierarchical structure of modular networks. These different
numbers correspond to the different levels of the hierarchial

structure and they may be all reasonable. In this paper, we
proposed a method for constructing the hierarchical modular
structure of networks. With statistical tests, we can identify
both the parallel modules and the hierarchical structure. Ac-
cording to different cutoffs of the hierarchical tree, different
number of modules can be identified. This may solve the
problem of the number of network modules to some extent.
Several examples are given to demonstrate the efficiency of our
method. Application of this method to gene co-expression net-
works shows that there are hierarchical modules in yeast gene
co-expression network. On different levels of such networks,
the genes in the module belong to different gene functions
most. Thus studying the gene function through constructing
the hierarchical modular structure instead of specifying the
number of modules should perform better. Application of such
algorithms to other kinds of networks may also contribute to
other research fields.
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