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Abstract—Gene expression microarray enables us to measure 

the gene expression levels for thousands of genes at the same 

time. Here, we constructed the non-negative matrix 

factorization analysis strategy (NMFAS) to dig the underlying 

biological pathways related with various diseases by factorizing 

the pathway expression matrix, which was extracted from 

microarray matrix using pathway membership information, 

into the product of row and column vectors. We defined row 

vector as the pathway activity and column vector as the gene 

contribution weight. Via comparing the pathway activity of two 

different sample groups, we can identify significantly expressed 

pathways. We applied this strategy on two different cases: 

smoking and type 2 diabetes (DM2). We found 152 differentially 

expressed pathways by the comparison of pathway activity 

between smoker and never smoker, including pathways that 

have been validated in literature, such as “O-Glycans 

biosynthesis” and “Glutathione metabolism”. We also found 

important genes related to smoking phenotype, such as NQO, 

HSPA1A, ALDH3A1. As for DM2 analysis, our results 

suggested 9 pathways were significantly expressed, including 

typical pathways like “Oxidative phosphorylation” and “mTOR 

signaling pathway”, and found genes like CAPNS1, APP, 

COX7A1, COX7B, which might play important roles in the 

cellular regulations of DM2. In conclusion, Our strategy can be 

efficiently used to integrate gene expression profiles and 

biological pathway information to identify the key processes 

underlying human disease and can identify gene pathways 

missed by alternative approaches. 

Keywords-non-negative matrix factorization; pathways; 

microarray; smoking; type 2 diabetes 

I.  INTRODUCTION 

The development of high-throughput technologies 
including microarray experiments have triggered an explosion 
of large amounts of genome-wide expression profiles. 
Currently, a common challenge is to search for the expression 
patterns and uncover the underlying biological meaning of the 
massive data. Particularly, the identification of differentially 
expressed genes and pathways associated with the phenotypes 
of special diseases or therapy responses has attracted 
extensive attention [1, 2]. 

Various methods have been developed to identify genes 
and pathways for this purpose. Most of these methods could 
be divided into two groups: single gene analysis and gene set 

analysis. The former analysis strategies include clustering 
algorithm [3, 4] and some statistical analysis for differentially 
expressed genes [6, 7]. The common goal of these single gene 
analysis methods is to find some genes with coordinated 
expression patterns or a small group of genes to predict the 
response outcome. They did not consider the inherent 
relationships of genes. The second group combined the 
microarray dataset and pathway databases or GO annotations. 
By using dimension reducing method, e.g. singular value 
decomposition (SVD) [5], or statistic test, e.g. gene set 
enrichment analysis (GSEA) [10], researchers obtained a rank 
of pathways that were probably related to disease phenotypes, 
and a sorted list of genes in each pathway that have the 
biggest impact on the whole pathway. Using predefined 
canonical pathways, these methods identified easily-
interpretable biological meanings of the genes and pathways. 
Based on the combination of expression profiles and 
information on pathways, we noted that SVD is a kind of 
dimension reducing methods firstly used in the face 
recognition technology, which could extract the predominant 
component of the full structure. One of the drawbacks of 
using such methods is that the factorized matrix will have 
negative components, which is not suited to the interpretation 
of the textual representation or biological meanings behind 
microarray data. 

To address this issue, a novel dimension reducing method 
named non-negative matrix factorization (NMF) was 
presented by Lee and Seung [11] in 1999. It could generate 
non-negative parts-based representation as the low rank 
approximation of original data matrix and keep data locality in 
dimensional reduction. It has been reported that NMF 
performed better than SVD and PCA [11, 12] on face 
recognition and latent semantic analysis. As the original data 
matrix of microarray is non-negative, NMF has been proved a 
natural method to cluster genes and samples for its 
nonnegative constraint during the factorizing process, which 
can provide a more intuitive partial view of the whole data 
matrix. Brunet et al. [13] has adopted NMF to elucidate tumor 
subtypes and data substructure of the cancer microarray data. 
Similar work to identify molecular patterns of microarray data 
has been done by Gao and Church [14]. NMF could also be 
regarded as a tool to cluster genes and predict functional 
cellular relationships in gene expression data [15]. More 
improvements and applications of NMF in computational  
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biology have been introduced by Devarajan [16]. 

Figure 1.  Work flow of NMFAS 

In this work, we firstly adopted NMF algorithm to process 
the combined datasets of expression profiles and pathways 
information, trying to explore the ability of NMF algorithm to 
discover disease related pathways.  

II. RESULTS 

A. Using NMFAS to identify the pathway underlying 

phenotype 

For microarray data, we averaged the expression levels of 
probes for the same gene and then divided the microarray data 
into two groups (Figure 1): control group and experiment 
(case) group. For pathways we downloaded, member genes of 
pathway that are not represented on microarrays are not 
included for further analysis. As a result, we obtained 453 
biological pathways. For each pathway, we generated two 
data matrix, control group pathway gene expression matrix 
and experiment group pathway gene expression matrix for 
NMF factorization by selecting the gene expressions of its 
member genes from the microarray data of the two groups 
according to the gene Entrez IDs. After that, we utilized 1-
dimension NMF (k=1) to factorize the two group pathway 
expression matrixes simultaneously  (See method section for 
details) and obtained two row vector H, which were defined 
as control group pathway activity vector and experiment 
group pathway activity vector. Then, we adopted two sample 
t-test to test the significance of difference between two 
activity vectors and obtained a P-value. The pathway is 
considered differentially expressed if the corresponding p-
value is less than 0.05. We prioritized the candidate 453 
pathways according to their P-value and obtained a potentially 
phenotype related pathways list. Meanwhile, column vector 
W is actually a vector of weights (the sum of its elements is 1), 
which could be treated as the gene contribution scores. By 
ranking the weight value of each gene, we can sort out genes 
that have great impact on the whole pathway. 

B. Identification of smoker related pathways and genes by 

NMF analysis  

Cigarette smoking is the main cause of pulmonary 
diseases and lung cancer. The effect of smoking on gene 

expression has been a hot subject recently. We use the gene 
expression profiles obtained by research group at Boston 
University [17] which contained three groups of volunteers 
from 34 current smokers, 18 ex-smokers and 23 non-smokers. 
And here we identified the differentially expressed pathway 
between current and non-smoking groups. 

We first calculated the activity levels for 453 pathways by 
using NMF analysis, and then used the two sample t test (see 
methods section for details) to identify the differentially 
expressed pathways (P-value<0.05). We obtained a list of 152 
differentially expressed pathways between the current 
smoking group and non-smoking group, and listed the top 15 
significantly expressed pathways (all up-regulated) in TABLE 
I.  

Among the 152 differentially expressed pathways listed, 
we found that several pathways were reported to show altered 
activity in response to cigarette smoking in vivo or in vitro. 
For example, O-Glycan biosynthesis (P = 1.281×10

-8
) is 

linked to the increased sputum production observed in 
smokers [18]. Gamma-Hexachlorocyclohexane degradation 
pathway (P =8.463×10

-8
) is known to contain several 

cytochrome P450 genes with polymorphisms that are known 
to alter lung cancer risk for smokers [19]. Pentose phosphate 
pathway (P = 4.681×10

-6
) of glucose metabolism was 

previously found to be activated in the endothelial cells of 
plasma during the treatment of exposure to cigarette smoke in 
vitro [20]. As known, cigarette smoking is the most common 
oxidant stress in daily life and can affect the antioxidant 
capacity in human lung cells [21]. The antioxidant function 
related pathways or genes may play a key role in smoking-
induced human diseases. And we found that glutathione 
metabolism (P = 6.950×10

-4
), which is known to be a notable 

antioxidant pathway, may be impaired by chronic cigarette 
smoking and was also found altered in the endothelia cells 
while exposed to the cigarette smoke [20, 22].  

Among these pathways, the most significantly expressed 
pathway is “Biosynthesis of steroids”. It was seldom 
mentioned by foregoing methods. Steroid biosynthesis is a 
basic anabolic metabolic pathway, which is a common target 
for antibiotics and cholesterol-lowering drugs. Research 
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groups found that cigarette smoking could alter the pattern of 
steroid levels and inhibit steroidogenesis by reducing the 
interactions of the voltage-dependent anion-selective channel 
(VDAC) and the Steroidogenic acute regulatory protein 
(StAR) [23].  

 

TABLE I.  TOP 15 SIGNIFICANTLY EXPRESSED PATHWAYS IDENTIFIED 

BY NMFAS.  

PATHWAY RANK 
CATEGORY 

SIZE 
1 

P-VALUE 

BIOSYNTHESIS OF STEROIDS 16/17 6.006×10-12 

HYPOXIA AND P53 IN THE CARDIOVASCULAR 

SYSTEM 
21/23 2.407×10-10 

TRYPTOPHAN METABOLISM 58/84 2.880×10-9 

LIMONENE AND PINENE DEGRADATION 19/28 3.518×10-9 
FATTY ACID METABOLISM 41/51 4.627×10-9 

BETA-ALANINE METABOLISM 23/24 5.634×10-9 

UREA CYCLE AND METABOLISM OF AMINO 

GROUPS 
24/30 5.648×10-9 

VALINE, LEUCINE AND ISOLEUCINE 

DEGRADATION 
40/50 6.464×10-9 

TYROSINE METABOLISM 41/59 7.381×10-9 

HISTIDINE METABOLISM 28/41 1.070×10-8 

BILE ACID BIOSYNTHESIS 33/39 1.121×10-8 
O-GLYCAN BIOSYNTHESIS 13/26 1.281×10-8 

PHENYLALANINE METABOLISM 23/29 1.526×10-8 

ASCORBATE AND ALDARATE METABOLISM 11/14 2.054×10-8 
GLYCEROLIPID METABOLISM 49/60 2.619×10-8 

1
 RIGHT NUMBER OF CATEGORY SIZE COLUMN IS THE TOTAL NUMBER OF GENES IN ONE 

PATHWAY. LEFT NUMBER REPRESENTS THE GENE NUMBER WE USED IN THE ANALYSIS (ONLY THE 

GENES WITH EXPRESSION INFORMATION WERE CONSIDERED IN OUR ANALYSES). 

For a specific pathway, NMF analysis can also rank the 
importance of genes according to the NMF weights of each 
gene. As TABLE II listed below, NQO1, FDFT1 and SQLE 
are ranked in top three in the biosynthesis of steroids pathway. 
Among them, NQO1 is an important flavoenzyme involved in 
xenobiotic metabolism, which protectscells from oxidative 
damage and has been reported to play important role in the 
tumorigenesis of bladder cancer induced by smoking [24]. 
FDFT1 and SQLE also play important roles in the 
oxygenation process in sterol biosynthesis [25]. Functions of 
these three genes also support that biosynthesis of steroids 
pathway is a smoking-related pathway. 

The second significant pathway is “Hypoxia and p53 in 
the Cardiovascular system”, and this pathway is related to 
hypoxic stress and induction of p53 protein accumulation and 
p53-dependent apoptosis. The gene with the highest 
contribution weight in this pathway is HSPA1A, which is a 
member of the heat shock protein 70 family and plays a 
crucial role in endothelial cell apoptosis [26]. NQO1, which is 
also included in biosynthesis of steroids pathway, is notably 
related to antioxidant function of cells [27].  

The third significant pathway, tryptophan metabolism, is 
linked to smoking initiation and progression (SI/P) and 
nicotine dependence [18, 28] . Aldehyde dehydrogenase 
isozymes 3 (ALDH3A1) is shared by several pathways with 
top rank, and may be upregulated in lung tissue as a result of 
exposure to carcinogenic aldehydes found in cigarette smoke 
[29]. CYP1A1 encodes a member of the cytochrome P450 
superfamily of enzymes, and is involved in the metabolic 
process of tobacco carcinogens and could be implicated in 
smoking-induced lung cancer [30]. 

Our application of NMF to gene expression datasets of 
current smokers and non-smokers strongly suggested that our 
method is capable of identifying and characterizing the 
genome expression difference between two different sample 
groups. NMF has identified a series of pathways and genes 
that were also suggested by GSEA and SVD as the phenotype 
related molecular sets, such as glutathione metabolism, O-
Glycan biosynthesis. GSEA did not found “Biosynthesis of 
steroids” as a notable smoking related pathway, while SVD 
found it a related pathway with ranking 13th. We also noted 
that NMF found the most effective gene in this pathway, 
NQO1, a well reported antioxidant gene, while SVD did not 
mention this gene [5].  

TABLE II.  TOP 5 RANKING CONTRIBUTION WEIGHTS FOR GENES IN THE 

THREE MOST SIGNIFICANT PATHWAYS SORTED OUT BY NMF ALGORITHM 

FROM SMOKING DATASET.  

Pathways Genes NMF 

Weights 

P-value1 

Biosynthesis of steroids 

NQO1 4.012×10-1 4.809×10-11 

FDFT1 1.264×10-1 8.797×10-3 

SQLE 6.330×10-2 9.602×10-1 

IDI1 5.419×10-2 3.950×10-1 

PMVK 4.900×10-2 5.745×10-3 

Hypoxia and p53 in the 

Cardiovascular system 

HSPA1A 3.026×10-1 3.415×10-4 

NQO1 2.864×10-1 4.809×10-11 

IGFBP3 7.036×10-2 2.378×10-1 

CSNK1A1 6.728×10-2 3.989×10-3 

CDKN1A 5.907×10-2 8.979×10-1 

Tryptophan metabolism 

ALDH3A1 4.791×10-1 1.863×10-9 

ECHS1 5.600×10-2 2.303×10-1 

WARS 3.446×10-2 4.941×10-1 

DHCR24 3.418×10-2 5.631×10-1 

CYP1A1 2.605×10-2 1.846×10-3 

1 INDIVIDUAL P-VALUES CORRESPONDING TO T-TEST RESULTS BETWEEN THE EXPRESSION VALUES 

OF THE GENE IN THE SMOKER VS. NON-SMOKER SAMPLES. 

C. Application of NMF analysis on the type II diabetes 

research  

Type 2 diabetes mellitus is a common chronic disease 
which will induce atherosclerotic vascular disease, blindness 
and kidney failure. Mootha et al. [31] took use of microarrays 
to profile expression of 43 age-matched males, 17 with 
normal glucose tolerance (NGT), 8 with impaired glucose 
tolerance (IGT) and 18 with type 2 diabetics (DM2), in 
skeletal muscle tissue. 

We also adopted our methods to analyze this dataset. By 
comparing the pathway activity of skeletal muscle tissue 
samples from the patients with DM2 and with NGT, GSEA 
found a pathway with significantly decreased expression, 
oxidative phosphorylation [31], while SVD reported no 
significant results. Using our method, we found 9 pathways 
with P-value less than 0.05 after multiple comparison and 

these pathways did make biological sense (see TABLE III, ↑
represent up-regulated).  

The first ranking pathway is “Deregulation of CDK5 in 
Alzheimers Disease”, which is seldom reported to be related 
to DM2 by current machine learning methods. However, 
ranking results of our methods suggested that this pathway 
might be differentially expressed in type 2 diabetic skeletal 
muscle tissue samples. It was reported recently that 
Alzheimer’s disease (AD) and DM2 share several molecular 
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processes [32]. Multiple studies report that patients with 
diabetes have a 50-75% increased risk of developing AD 
compared with age- and gender-matched patients without 
diabetes [33]. Disturbances in insulin secretion appear to be 
the main common impairment that increases the risk of AD 
and DM2. Actually, CDK5 promotes insulin secretion and is 
deregulated in AD brains [34]. We also found the oxidative 
phosphorylation pathway differentially expressed as the 2nd 
rank in our results, which is consistent with the discovery by 

GSEA. The pathway that ranked 3rd, “ Skeletal muscle 

hypertrophy is regulated via AKT/mTOR pathway” and the 
pathway that ranked the 7th,“mTOR signaling pathway” were 
recently recognized as playing critical roles in insulin 
resistance and glucose metabolism [35].  

TABLE III.  TOP 10 SIGNIFICANTLY EXPRESSED PATHWAYS IDENTIFIED 

BY NMFAS.  

Pathway Rank Size 
Up/ 

Down 
P-value 

Deregulation of CDK5 in Alzheimers 

Disease 
10/11 ↑ 9.878×10-3 

Oxidative phosphorylation 93/129 ↓ 1.602×10-2 

Skeletal muscle hypertrophy is regulated  

via AKT/mTOR pathway 
20/20 ↓ 1.608×10-2 

Limonene and pinene degradation 19/28 ↓ 3.055×10-2 

Blockade of Neurotransmitter Relase by 

Botulinum Toxin 
4/5 ↑ 3.739×10-2 

Activation of cAMP-dependent protein 

kinase, PKA 
6/6 ↑ 3.743×10-2 

Selenoamino acid metabolism 21/34 ↓ 3.802×10-2 

mTOR signaling pathway 44/50 ↓ 3.997×10-2 

Presenilin action in Notch and Wnt 

signaling 
13/14 ↑ 4.391×10-2 

Activation of Csk by cAMP-dependent 
Protein Kinase Inhibits Signaling 

through the T Cell Receptor 

19/24 -- 5.304×10-2 

TABLE IV.  TOP 5 CONTRIBUTION WEIGHTS FOR GENES IN THE TOP 2 

PATHWAYS SORTED OUT BY NMF ALGORITHM FROM DM2 DATASET.  

Pathways Genes NMF 

Weights 

P-value1 

Deregulation of CDK5 in 

Alzheimers Disease 

CAPNS1 5.791×10-1 1.608×10-2 

CSNK1A1 1.076×10-1 8.411×10-1 

CSNK1D 6.922×10-2 6.029×10-1 

APP 6.878×10-2 7.943×10-1 

MAPT 5.746×10-2 4.736×10-2 

Oxidative phosphorylation 

COX7A1 6.340×10-2 1.578×10-2 

ATP5A1 4.333×10-2 9.545×10-2 

NDUFA4 4.302×10-2 2.376×10-1 

COX7B 4.202×10-2 3.964×10-2 

COX6A2 3.712×10-2 5.969×10-1 

1 INDIVIDUAL P-VALUES CORRESPONDING TO T-TEST RESULTS BETWEEN THE EXPRESSION VALUES 

OF THE GENE IN THE DM2 VS. NGT SAMPLES. 

By viewing the global NMF weights of all the genes in the 
top 2 pathways (see TABLE IV), we found that most of genes 
in these two pathways were not significantly differentially 
expressed according to the comparisons. In the first pathway, 
CAPNS1 is the most important gene that affects the pathway 
activity according to its contribution weight and the only gene 
which is differentially expressed. It was reported CAPNS1 
had been implicated in neurodegenerative processes after 
oxidative stress stimulation and modulated the cell survival 
and migration [36]. The increased activity of calcium 
activated neutral proteinase has been previously reported to be 

linked with diabetic amyotrophy in mouse skeletal muscle 
[37]. Regulated proteolysis of APP (amyloid beta precursor 
protein) has been report as a possible link between DM2 and 
AD [38].  

Genes in the pathway “oxidative phosphorylation”, such 
as COX7A1, COX7B and NDUFA4, have great impact on the 
whole pathway activity. COX7A1 was previously reported to 
be down-regulated in skeletal muscle from patients with DM2 
[39]. COX7B, which is a subunit of the terminal component 
of the respiratory chain complex, is involved in the regulation 
of insulin secretion [37]. An interesting discovery is that 
CAPNS1 and COX7A1 are located immediately adjacent to 
each other on chromosome [40]. 

III. DISCUSSION 

Applications of NMFAS found not only some potentially 
phenotype associated pathways between two different sample 
groups, but also some important genes which impact pathway 
activity greatly. By using the same gene expression datasets, 
we compared the performance of our algorithm with that of 
others on the DM2 dataset, and we found the following results. 
Firstly, NMF can identify more pathways than other methods. 
NMF has identified 9 pathways that were potentially related 
with DM2 while SVD and GSEA only 0 and 2 pathways 
respectively. By literature mining, NMF has identified 3 
literature-reported DM2 related pathways, while SVD and 
GSEA only 0 and 1 pathways respectively. Secondly, NMF 
algorithm can rank the importance of each gene in the 
pathways, for example, gene CAPNS1and gene COX7A1, 
which are located immediately adjacent to each other on 
chromosome. Finally, the online documentation of GSEA 
suggests that this method may produce inflated scores when 
the size of gene set analyzed is smaller than 25. And the NMF 
method doesn’t have such limitation. 

We also evaluated the performance of NMFAS using an 
ovarian cancer dataset [43]. 16 pathways was confirmed 
respectively to be related with ovarian cancer survival by two 
groups [43,44], which were regarded as the gold standard 
dataset. 261 pathways were identified by NMFAS 
significantly related with survival (P<0.001), of which 10 
were confirmed by the gold standard dataset, while none of 
pathways is identified by GSEA [45]. 

It is clear that the NMF analysis could suggest candidate 
pathways and genes related with disease phenotype and 
provide important clues for disease mechanism and drug 
response. We would not claim that NMF analysis is much 
'better' than previous useful methods, but it does clearly have 
independent value and could provide valuable complementary 
results that are not suggested by the other methods. 
Furthermore, we noted that Zhang et al. [46] recently adopted 
sparse NMF to integrate gene expression and interaction 
datasets and effectively predicted miRNA-gene and gene-gene 
interactions. Although their work has a different goal and 
application from ours, we are inspired to use the multi-
dimension NMF factorization information in the next step to 
analyze the disease phenotype related pathways. 
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IV. MATERIAL AND METHODS 

A. Gene expression datasets 

The gene expression data for smokers were downloaded 
from the Airway Gene Expression Database 
(http://pulm.bumc.bu.edu/aged). All expression data has been 
pre-processed, including normalization and noise processing. 
More details can be found on AGED website. The DM2 
dataset was downloaded from the Whitehead Institute Center 
for Genome Research website 
(http://www.broad.mit.edu/cancer) along with phenotype data 
and other information. 

B. Pathway gene sets 

453 pathways were downloaded from BioCarta 
(http://www.biocarta.com/) and KEGG (Kyoto Encyclopedia 
of Genes and Genomes) [41], mainly including biological 
processes related to metabolism pathways, biosynthesis 
pathways and signaling pathways, which were assembled by 
PLAGE website [5] . 

C. Nonnegative matrix factorization algorithm 

The gene expression profiles of each pathway were 
abstracted from the original microarray data matrix. Namely, 
we obtained 453 expression sub-matrices for all pathways we 
downloaded from the pathway database. Usually, a pathway 
expression profile consists of the expression levels of M genes 
in N samples. The pathway expression profile is then 

represented by a data M N  matrix V.  

Considering the non-negativity of microarray data matrix, 
we used NMF to factorize the matrix V into the product of 
two positive matrixes. 

m n m k k nV W H                                (1) 

Where, m kW  is k dimensional column vector, and row 

vector k nH  also has k dimension. We define the k nH  as 

metasamples, m kW  as the expression weight for the 
metasamples [13]. Inspired by Tomfohr et al. [5], we set the k 

equal to 1, and define the element of metasample 1 nH  as the 
pathway activity, namely each pathway has a different activity 

in each sample. Each element of 1mW  can be regarded as the 
contribution weight of each gene to the pathway activity. 
Once we determined the contribution weight of every gene in 
a pathway, we could find out which gene impacts the pathway 
activity mostly.  

The NMF algorithm needs an initial vector w and h to start 
the iteration process. We set random initial w and h. The 
divergence function has been proved a more powerful rule for 
updating than residual minimizing equation, and K-L 
divergence function has been proved more effective when 
used it to detect the complex pattern of gene expressions in 
biological systems [13]. We iteratively updated W and H in 
each step to minimize the K-L divergence. 
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Following the multiplicative updating rule listed above, 
NMF would converge to different local optimal matrix 
factorizations after repeated iterations. That is to say, NMF is 
not deterministic and different runs yield different results. 
After looking up to multiple NMF algorithms, we found that 
NMF with repeating the K-L divergence update rules and 
Liu’s normalization [42] during each iteration step could 
eventually yield unique factorization result. Elements of W 
are values in the interval (0, 1) after the iteration in (3), which 
could be regarded as the impact factor of each gene to the 
pathway activity. We define the vector W as the gene weight 
vector and H as the pathway activity vector. We then compare 
the pathway activity vector H of experiment group with the 
control group. Algorithm introduced above is programmed in 
MATLAB m files. 

D. Prioritization of the underlying pathways 

When two pathway activity vectors were obtained from 
two different groups, we adopted the P-value from two sample 
t-test to prioritize the candidate pathways. If the P-value of the 
comparison between the two groups exceeds the alpha level, 
the pathway activities of the two groups would be regarded as 
significantly different. The calculation of the t statistic is 

22
yx

x y
t

ss

n m





                                (5) 

Where x  and y  are sample means, xs  and ys are the 

sample standard deviations of x and y, n and m are the sample 
sizes of x and y, respectively. If the activity means of case 
group are greater than control group, pathway would be 
regarded as up-regulated. 
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