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Abstract—Generalized autocorrelations and complexity pur-
suit are two recently developed methods for extracting inter-
esting component from time series. They are the extensions of
projection pursuit to time series data. In this paper, a fixed-
point blind source extraction (BSE) algorithm for generalized
autocorrelations and complexity pursuit of the desired signals is
presented. The fixed-point algorithm inherits the advantages of
the well-known FastICA algorithm of ICA, which is very simple,
converges fast, and does not need to choose any learning step
sizes. Numerical experiments on electrocardiogram (ECG) data
indicate its better performance.

I. INTRODUCTION

Independent component analysis (ICA) is an active research
field that has attracted great interest in the field of biomedical
signal analysis and processing, geophysical data processing,
data mining, speech analysis and image recognition, etc[1],
[2], [3], [4], [5], [6], [7]. The model of ICA consists of
mixing independent random variables, usually linearly. In
many applications, however, what are mixed are some time-
dependent signals, or time series, which may or may not
be random variables. When the desired source signals are
periodic or quasi-periodic, one convenient way to exploit these
signals is to employ the time-dependent information along.
Many source extraction algorithms have considered such a
case. For example, Barros and Cichocki [8] provided a simple
algorithm (simplified with ”BCBSE” algorithm) which can
quickly extract a desired source signal with a specific period.
This algorithm, in all the cases, could extract the desired
sources, no matter they are colored or not, as long as they
are decorrelated and have temporal structures. However, this
method carries out the constrained minimization of the mean
squared error only, which can not well describe the probability
distribution of the innovations of the signals. In addition, it
needs a prior information about the optimal time delay and
is very sensitive to the estimation error of the time delay.
To overcome these drawbacks, Shi et al. [9] developed a

blind source extraction algorithm (simplified with ”SemiBSE”
algorithm), which is based on the non-Gaussianity and the
autocorrelation of the source signal and contains either the
mean squared error objective function presented by Barros and
Cichocki [8]. This method can improve the performance of
BCBSE algorithm, and its tolerance to large estimated errors
of the period makes that the desired signal can be extracted
robustly. However, it must be noted that its better tolerance lies
the fact that the choice of initial weight is not random but is
determinant, i.e., the unit vector. If the weight is initialized
randomly, SemiBSE algorithm becomes more sensitive to
the estimation error of time delay. An alternative approach,
for extracting desired source signal with linear or nonlinear
autocorrelations, was first introduced in literature [10]. Based
on the generalized (i.e., linear or nonlinear) autocorrelations
of the primary sources, the authors proposed a blind source
extraction (BSE) algorithm (called ”GABSE” algorithm). It
has been shown that this method has good stability and linear
convergence speed. Furthermore, the convergence is global
except for a zero measure region. This method only assumes
the sources are decorrelated with each other and every source
has different temporal structures, but does not necessarily
have to be statistically independent. GABSE algorithm has
been applied to many cases directly and the performance is
satisfying in a certain extent. Whereas, it also suffers some
disadvantages; for example, its tolerance to estimated errors
of time delay is not very robust. Based on literatures [9], [10],
Zhang et al [11] developed an object function, which incor-
porates the generalized autocorrelations and the complexity
pursuit of the desired signals, for extraction of the desired
signal. Based on these priori special characteristics, a gradient
BSE algorithm (simplified with ”GACP” algorithm) for the
approximate optimization of proposed objective function was
given. Numerical computation and theoretical analysis showed
that GACP algorithm both can improve the performance of
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existing algorithms and has better robustness to the estimated
error of time delay. However, we all know that the gradient
algorithm need to choose some learning step sizes, which
increases the number of parameter in GACP algorithm, and
degrade its convergence properties.

In this paper, a fixed-point BSE algorithm for generalized
autocorrelations and complexity pursuit of the desired signals
is presented. This fixed-point algorithm inherits the advantages
of the well-known FastICA algorithm for ICA, which is very
simple, converges fast, and does not need to choose any learn-
ing step sizes. Numerical experiments on electrocardiogram
(ECG) data indicate its better performance.

This manuscript is organized as follows. The next section
describes the objective function and the proposed algorithm.
Section 3 demonstrates the present technique with experiments
using ECG data. The final section provides some discussions
and conclusions.

II. PROPOSED ALGORITHM

A. Objective function

Denote the observed sensor signals x(t) =
(x1(t), · · · , xn(t))T described by matrix equation

x(t) = As(t), (1)

where A is an n × n unknown mixing matrix and s(t) =
(s1(t), · · · , sn(t))T is a vector of unknown temporally corre-
lated sources. We assume that desired source signal si has
specific temporal structures—linear or nonlinear autocorrela-
tions. And it can be modeled by a linear autoregressive model,
which has just one predicting term as

si(t) = bisi(t − τ) + δi(t), (2)

where δi(t) is a zero-mean, independent identically distributed
(i.i.d) time series called innovation[12], bi is a coefficient and
τ is a delay in time.

Because we want to extract only a desired source signal,
for this purpose we design a single neural processing unit
described as

ỹ(t) = wT x̃(t), (3)
ỹ(t − τ) = wT x̃(t − τ), (4)

where ỹ(t) and ỹ(t−τ) are the extracted signals at time t and
(t−τ), respectively. w = (w1, · · · , wn)T is the weight vector.
Here, assume that the measured sensor signals x have already
been followed with an n × n whitening filter V so that the
components of x̃(t) = Vx(t) = VAs(t) = Ãs(t) are of unit
variance and uncorrelated, where the new mixing matrix Ã is
orthogonal[13].

When extracting a desired signal, we are interested in its
temporal characteristics (e.g. autocorrelation) of the interest-
ing signal and the probability distribution of its innovations
(e.g. non-Gaussianity). Then, the extraction of desired signal
can be formulated as the following constrained problem by

maximizing the convex combination between generalized auto-
correlations and the complexity pursuit of the desired signals.

max
‖w‖=1

Ψ(w) = λE{G(ỹ(t))G(ỹ(t − τ))}

−(1 − λ)E{F (ỹ(t) − bỹ(t − τ))}, (5)

where (ỹ(t) − bỹ(t − τ)) represents an innovation of the
extractions, b is a coefficient. λ is a scalar parameter between
0 and 1 for controlling the balance between the generalized
autocorrelations and the complexity pursuit of the desired
signals. For instance, only the generalized autocorrelations are
considered in the extraction for λ = 1, while only the prob-
ability distributions of innovations are optimized for λ = 0.
Generally, the parameter is 0 < λ < 1, depending on the
requirement of extraction. The function G is a differentiable
function which measures the autocorrelation degree of the
desired signal. Examples of choices are G(u) = u, G(u) = u2

and G(u) = log cosh(u). F is a differentiable function too,
which should be determined by the probability distribution of
innovations [12], [14], [15].

B. Learning algorithm

To find the maxima of the objective function (5), we can
use a fixed-point iteration along a similar line of the FastICA
algorithm for maximizing the nongaussianity[6]. The fixed-
point algorithm can be found using an approximate Newton
method. For simplicity of the equations the time index t is
omitted in the following, i.e., x̃ = x̃(t), x̃τ = x̃(t − τ), ỹ =
ỹ(t) and ỹτ = ỹ(t − τ). To derive the approximate Newton
method, we first denote by

z̃ = x̃ − bx̃τ (6)

According to the Lagrange conditions, the optima of Ψ(w)
under the constraint ‖w‖ = 1 are obtained at points where the
gradient of the Lagrangian is zero:

λE{g(ỹ)G(ỹτ )x̃ + G(ỹ)g(ỹτ )x̃τ}
−(1 − λ)E{z̃f(wT z̃)} + βw = 0, (7)

where β is some constant and function g is the derivative of
G. Now let us try to solve this equation by Newton method,
which is equivalent to finding the optima of the Lagrangian
by Newton’s method. Denoting the function on the left-hand
side of (7) by K, we obtain its Jacobian matrix JK(w) as

∂K(w)

∂w
= λE{g′(ỹ)G(ỹτ )x̃x̃T + G(ỹ)g′(ỹτ )x̃τ x̃

T
τ

+g(ỹ)g(ỹτ )(x̃x̃T
τ + x̃τ x̃

T )} − (1 − λ)E{z̃z̃T f ′(wT z̃)}
+βI. (8)
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We obtain the following approximate Newton iteration:

w ← w − K
/∂K(w)

∂w

= w −
[
λE{g(ỹ)G(ỹτ )x̃ + G(ỹ)g(ỹτ )x̃τ}

−(1 − λ)E{z̃f(wT z̃)} + βw
]/[

λE{g′(ỹ)G(ỹτ )x̃x̃T

+G(ỹ) · g′(ỹτ )x̃τ x̃
T
τ + g(ỹ)g(ỹτ )[x̃x̃T

τ + x̃τ x̃
T ]}

−(1 − λ)E{z̃z̃T f ′(wT z̃)} + βI
]
. (9)

This algorithm can be further simplified by multiplying both
sides of (9) by −{λE{g′(ỹ)G(ỹτ )x̃x̃T + G(ỹ)g′(ỹτ )x̃τ x̃

T
τ +

g(ỹ)g(ỹτ )(x̃x̃T
τ + x̃τ x̃

T )} − (1 − λ)E{z̃z̃T f ′(wT z̃)} + βI}.
After straightforward algebraic simplification, this gives:

w ←
[
λE{g(ỹ)G(ỹτ )x̃ + G(ỹ)g(ỹτ )x̃τ}

−(1 − λ)E{z̃f(wT z̃)}
]

−
[
λE{g′(ỹ)G(ỹτ )x̃x̃T + G(ỹ)g′(ỹτ )x̃τ x̃

T
τ

+g(ỹ)g(ỹτ )(x̃x̃T
τ + x̃τ x̃

T )}
−(1 − λ)E{z̃z̃T f ′(wT z̃)}

]
w. (10)

To simplify the resulting algorithm we use the following
approximations.

E{g′(ỹ)G(ỹτ )x̃x̃T } ≈ E{g′(ỹ)G(ỹτ )}E{x̃x̃T } (11)
E{G(ỹ)g′(ỹτ )x̃τ x̃

T
τ } ≈ E{G(ỹ)g′(ỹτ )}E{x̃τ x̃

T
τ } (12)

E{g(ỹ)g(ỹτ )(x̃x̃T
τ + x̃τ x̃

T )}
≈ E{g(ỹ)g(ỹτ )}E{x̃x̃T

τ + x̃τ x̃
T )} (13)

E{z̃zT f ′(wT z̃)} ≈ E{z̃z̃T }E{f ′(wT z̃)}. (14)

First, since x̃ are whitened, we have,

E{x̃x̃T } = I (15)
E{x̃τ x̃

T
τ } = I. (16)

Then

E{g′(ỹ)G(ỹτ )}E{x̃x̃T } = E{g′(ỹ)G(ỹτ )}I (17)
E{G(ỹ)g′(ỹτ )}E{x̃τ x̃

T
τ } = E{G(ỹ)g′(ỹτ )}I. (18)

Second, the innovation as the components of processes s̃ =
s − bsτ are independent each other, then

E{s̃s̃T } = Λ. (19)

That is,

E{ssT } + b2E{sτs
T
τ } − b(E{ssT

τ + sτs
T })

= Λ, (20)

where Λ denotes a diagonal matrix with n×n. Due to source
s is assumed of unit variance, the above equation (20) can be
written as

(1 + b2)I − b(E{ssT
τ + sτs

T }) = Λ. (21)

Multiplying both sides of (21) by A and AT , respectively,
we obtain

E{xxT
τ + xτx

T } =
1

b
[(1 + b2)I − E{z̃z̃T }]. (22)

Then

E{g(ỹ)g(ỹτ )}E{x̃x̃T
τ + x̃τ x̃

T }
= E{g(ỹ)g(ỹτ )}1

b
[(1 + b2)I − E{z̃z̃T }]. (23)

Therefore, a reasonable approximation about (10) is

w ←
[
λE{g(ỹ)G(ỹτ )x̃ + G(ỹ)g(ỹτ )x̃τ}

−(1 − λ)E{z̃f(wT z̃)}
]

−
[
λE{g′(ỹ)G(ỹτ ) + G(ỹ)g′(ỹτ ) + g(ỹ)g(ỹτ )γ}

−(1 − λ)E{z̃z̃T }E{f ′(wT z̃)}
]
w, (24)

where γ is chosen as 1
b [(1+ b2)I− E{z̃z̃T }], g and f are the

derivatives of the function G and F respectively. Notice that
f should be chosen according to the probability distribution
of the innovation. If it is super-Gaussian, f(u) = sign(u) is
suitable, which can be approximated by a smoother function
f(u) = tanh(au), where a ≥ 1. For sub-Gaussian innovation,
one can choose one of f(u) = u − tanh(u) or f(u) = u3,
for example. Note that the coefficient b can be learned by a
least-squares method as

b = wT E{x̃x̃T
τ }w. (25)

Specifically, the proposed fixed-point algorithm, which is
simplified as FastGACP, can be described as follows:

Step 1. Center each observed signal x to make it mean zero
and whiten them as x̃.

Step 2. Choose parameter λ, τ and randomly initialize a
value of unit norm for w; set b = 1.

Step 3. Updata w and b are by (24) and (25) respectively.
Step 4.Let w ← w/||w||
Step 5. If not converged, go back to Step 3.

III. NUMERICAL EXPERIMENTS

In order to verify the efficiency of our algorithm, we
made many numerical experiments with artificial ECG data
and real-world ECG data[17]. Moreover, we compared the
proposed method with several existing techniques– BCBSE
algorithm[8], SemiBSE algorithm[9], GABSE algorithm[10]
and GACP algorithm[11]. In these comparisons, the per-
formance of algorithms for estimating the desired signal is
measured by the performance index (PI), which is defined as
follows

PI =
n∑

j=1

| pj |
maxk | pk | − 1, k = 1, . . . , n (26)

where pj denotes the j element of the global vector p =
wT VA. PI is zero when the desired signal is perfectly ex-
tracted. Besides, the accuracy of the extracted signal compared
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Fig. 1. Five artificial ECG signals. (Sig1) Breathing artifact. (Sig2) Electrode
artifact. (Sig3) FECG. (Sig4-Sig5) Two i.i.d. Gaussian signals.

to the true source is expressed using the signal-to-noise ratio
(SNR) in dB given by

SNR = 10 log10(s
2/MSE), (27)

where s2 denotes the variance of the source signal, MSE
denotes the mean square error between the original signal
and the extracted signal. The higher SNR is, the better
performance is.

A. Experiments on artificial ECG data

We adopted five zero-mean and unit-variance source signals
(2500 samples), which are shown in Fig.1. From the top to
down, they are, one breathing artifact, one electrode artifact,
one fetal ECG (FECG) (τ = 112), and two i.i.d. Gaussian
signals. The observed signals are generated by a 5 × 5
random mixing matrix. The extracted FECG signals are shown
in Fig.2. The accuracies of them are 25.4808 dB(GABSE),
3.2434 dB (BCBSE), 9.9631 dB (SemiBSE), 26.3605 dB
(GACP) and 26.9363 dB (FastGACP). The extracted FECG
signal by FastGACP algorithm is the best, and those extracted
by GACP and GABSE algorithm are also satisfying. However,
the extractions by SemiBSE and BCBSE algorithm are the
worst, in which there are still some or lots of respiration
noise remaining in. Moreover, this experiment is independently
repeated 100 times and the averaged SNRs are 25.4808
dB(GABSE), 3.2434 dB (BCBSE), 9.9630 dB (SemiBSE),
26.4522 dB (GACP) and 26.6406 dB (FastGACP) respectively.
It is worthy of noting that for the proposed algorithm has
the highest SNR index among the five algorithms. For the
comparison of performance index (26) at τ = 112, we test
five algorithms in artificial ECG experiment. The performance
is estimated as the averaged PI values of 100 independent
trials. At every trial, five algorithms are run with 200 iterations,
which seem to be always enough for convergence. Here A and
w are initialized randomly. The results are depicted in Fig.3.
Obviously, FastGACP algorithm performs more efficiently
than the other algorithms and its convergence is the best.
It can converge, on average, within 10 iterations. Note that
the nonlinear functions in SemiBSE and GABSE algorithm
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Fig. 2. Extractions for artificial ECG signals with τ = 112. From top
to bottom, the extracted FECGs by GABSE, BCBSE, SemiBSE, GACP and
FastGACP algorithm.
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Fig. 3. Comparisons of average PIs over 100 independent runs for five
algorithms with τ = 112 on artificial ECG data.

are chosen as log cosh(x) and x3 respectively. In GACP
and FastGACP algorithm, G(x) and F (x) are selected as x2

and log cosh(u) respectively. The learning rates of SemiBSE
algorithm are set to be 0.5 (μw) and 0.0005 (μb), and those
of GACP algorithm are 1 (i.e. μw = 1, μb = 1). Moreover, in
GACP and FastGACP algorithm, the parameter λ all aims to
balance generalized autocorrelation and the complexity pursuit
of the desired signal. λ = 0.15 is used in GACP algorithm[11].
In FastGACP, we obtain an optimal solution when λ = 0.05
by adjusting this parameter. And such a result is actually
robust with the parameter perturbations, e.g. we can obtain
the same corresponding result with another parameter, such as
λ = 0.1, 0.15, · · · , 0.95, 1. Fig.4 gives the comparison of PI
with various values of λ for artificial ECG data. It is shown
that the performance of FastGACP is robust for the majority
of the parameter values between 0 and 1. Therefore, we can
use a value between 0 and 1, which corresponds to the lowest
PI value and in this experiment λ = 0.05 is used. Furthermore,
Fig.4 also shows that FastGACP as the improvement of GACP
has lower PI values, better convergence and performance than
original algorithm when λ varies between 0 and 1. Note that
the performance is estimated as the mean of the PI values
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Fig. 5. The 8-channel of ECG recording obtained from a pregnant woman.

of 100 independent trials for each value of λ. In each trial,
two algorithms are run with 200 iterations, which seems to be
always enough for convergence.

B. Experiments on real ECG data

We have also performed experiments with real-world ECG
data which is distributed by De Moor [17]. This data is a
famous ECG measured from a pregnant woman (in Fig.5).
One can see the heart beating of both the mother (stronger and
slower) and the fetus (weaker and faster). Note that the fetal
influence is stronger in the first channel of Fig.7. The ECG
measurements are recorded over 10s and sampled at 250Hz
(although in De Moor’s homepage he claims the sampling
frequency is 500Hz, Barros et al. [8] assure it is 250Hz).
By using prior information about FECG frequency, we can
estimate the optimal time delay τ = 112. The choice of
nonlinear functions, the learning rates and other parameters of
five algorithms are the same as the foregoing artificial ECG
simulations. Fig.6 provides the extracted FECGs by GABSE,
BCBSE, SemiBSE, GACP and FastGACP algorithm, respec-
tively. It shows that the desired FECGs are well extracted by
all algorithms except BCBSE and GABSE algorithms, which
include much respiration noises. It should be noticed that,
since the mixing matrix A and the pure FECG signal are
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Fig. 6. Comparisons of extracted FECGs by BGABSE, BCBSE, SemiBSE,
GACP and FastGACP algorithm with the optimal time delay τ = 112 for
real-world ECG data.

not available, the performance index, such as SNR and PI
cannot be computed as above. But we can perceive distinctly
the quality of extracted FECG through experience.

IV. CONCLUSION

In this paper, we have presented a fixed-point algorithm
based on the generalized autocorrelations and complexity
pursuit of desired signals. The fixed-point algorithm is ob-
tained by using the similar lines as the FastICA algorithm.
Moreover, in contrast to the gradient-based algorithms, the
proposed algorithm does not need to choose any learning
step sizes, which reduces the number of parameters in the
GACP algorithm, and improves its convergence properties.
It can converge within 10 iterations on average. It is noting
that the parameter λ of FastGACP algorithm, which balances
the generalized autocorrelation of the desired signal and the
non-Gaussianity of its innovations, is actually robust if the
parameter disturbs between 0 and 1, which does not increase
the consumption of calculation of the algorithm and facilitates
its application in practice. As demonstrated in this article, the
proposed method is only applied to ECG data, such as artificial
ECG and real world ECG data. So, as part of the future work,
the applications for other type data will be studied.

ACKNOWLEDGMENT

The work was supported by the National Natural Science
Foundation of China under the Grants 11126057, Shanghai
Leading Academic Discipline Project (J50101), key Disci-
plines of Shanghai Municipality (Operations Research and
Cybernetics, S30104), PhD start funds of University of Shang-
hai for Science and Technology No 1D-10-303-003, Founda-
tion for the Youth Scholars by Educational Commission of
Shanghai(No 51-12-303-105) and Grants-In-Aid for Scientific
Research, Ministry of Education, Culture, Sports, Science and
Technology, Japan, Project (No. 24500280).

REFERENCES

[1] S. Amari and A. Cichocki, Adaptive blind signal processing-neural
network approaches. Proc. IEEE 86 (10) (1998) 2016-2048.

2012 IEEE 6th International Conference on Systems Biology (ISB)
978-1-4673-4398-5/12/$31.00 ©2012 IEEE

77 Xi’an, China, August 18–20, 2012



[2] K. Anand, G. Mathew and V. Reddy, Blind separation of multiple co-
channel BPSK signals arriving at an antenna array. IEEE Signal Proc.
Letters 2 (9) (1995) 176-178.

[3] S. Boudet, L. Peyrodie, P. Gallois and C. Vasseur, Filtering by optimal
projection and application to automatic artifact removal from EEG.
Signal Process. 87 (8)(2007) 1978-1992.

[4] E. Chaumette, P. Comon and D. Muller, ICA-based technique for
radiating sources estimation: application to airport surveillance. IEE
Proceedings-F 140 (6)(1993) 395-401.

[5] A. Cichocki, T. Rutkowski, A. K. Barros and S. H. Oh, A blind extraction
of temporally correlated but statistically dependent acoustic signals. In:
Neural Networks for Signal Processing X: Proceedings of the 2000
IEEE Signal Processing Society Workshop (NNSP2000), IEEE Signal
Processing Society, (Sidney, Australia, 2000), 455-464.

[6] K. E. Hild, H. T. Attias, S. Comani and S. S. Nagarajan, Fetal cardiac
signal extraction from magnetocardiographic data using a probabilistic
algorithm, Signal Process. 87 (8)(2007) 1993-2004.

[7] L. De Lathauwer, B. De Moor and J. Vandewalle, Fetal electrocardiogram
extraction by source subspace separation. In: Proc. HOS’95, (Aiguablava,
Spain, 1995) 134-138.

[8] A. K. Barros and A. Cichocki, Extraction of specific signals with temporal
structure. Neural Comput. 13 (2001) 1995-2003.

[9] Z. Shi and C. Zhang, Semi-blind source extraction for fetal electrocar-
diogram extraction by combining non-Gaussianity and time-correclation.
Neurocomput. 70 (2007) 1574-1581.

[10] Z. Shi and C. Zhang, Blind source extraction using generalized auto-
correlations, IEEE Trans. Neural Networks 18 (5) (2007) 1516-1524.

[11] H. Zhang, Z. Shi and C. Guo, Blind source extraction based on
generalized autocorrelations and complexity pursuit. Neurocomput. 72
(2009) 2556-2562.

[12] A. Hyvärinen, Complexity pursuit: separating interesting components
from time-series. Neural Comput. 13 (4) (2001) 883-898.

[13] A. Hyvärinen and E. Oja, A fast fixed-point algorithm for independent
component analysis. Neural comput. 9(7) (1997) 1483-1492.

[14] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analy-
sis. New York, Wiley, 2001.

[15] Z. Shi, H. Tang and Y. Tang, A fast fixed-point algorithm for complexity
pursuit. Neurocomput. 64 (2005) 529-536.

[16] A. Hyvärinen, Independent component analysis for time-dependent
stochastic processes. In: Proceedings of the InternationalConference on
Artificial NeuralNetworks (ICANN98), Skövde, Sweden, 1998, pp. 135-
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