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Abstract—Identifying binding sites recognized by transcription 

factors (TFs) is one of major challenges to decipher complex 

genetic regulatory networks encoded in a genome. A set of 

binding sites recognized by the same TF, called a motif, can be 

accurately represented by a position frequency matrix (PFM) or 

a position-specific scoring matrix (PSSM).  Very often, we need to 

compare motifs when searching for similar motifs in a motif 

database for a query motif, or clustering motifs possibly 

recognized by the same TF. In this paper, we have designed a 

novel metric, called SPIC (Similarity between Positions with 

Information Contents), for quantifying the similarity between 

two motifs using their PFMs, PSSMs, and column information 

contents, and demonstrated that this metric outperforms the 

other state-of-the-art methods for clustering motifs of the same 

TF and differentiating motifs of different TFs. 

Keywords: transcription factor binding sites (TFBS); information 

contents; motifs, regulatory networks; similarity metric 

I.  INTRODUCTION  

Deciphering complex genetic regulatory networks encoded 
in a genome is a highly challenging problem in the post-
genomic era [1]. Identifying all cis-regulatory binding sites 
(BSs) recognized by the transcription factors (TFs) in a 
genome is the first step towards this goal [2]. A TF binds to a 
5-25 bp (base pairs) DNA sequence called a BS, and changes 
the rate of transcription of a nearby target gene. The BSs of the 
same TF show some level of conservation but can be rather 
degenerate. A set of similar cis-regulatory BSs recognized by 
the same TF is called a motif, which can only be predicted by 
comparing multiple sequences that potentially contain the BSs. 
A motif-finding algorithm identify BSs based on the 
assumption that the BSs are usually more conserved than their 
flanking non-functional sequences [3]. A motif can be 
represented by a n4 position frequency matrix (PFM), which 

consists of nucleotide frequencies at each position of the motif, 
or a n4 position-specific scoring matrix (PSSM), whose 

elements are  the log-odds ratio of  nucleotides at each position 
of the motif over a background model [4]. The PFM of a motif 
is derived from the alignment of its BSs; it largely reflects the 
corresponding TF’s binding preference at each position. Thus, 
given the PFM of a TF, we can predict some new BSs by 
scanning it against the potential sequences in a genome. 

Very often after we obtain some new putative motifs, for 
example using motif-finding algorithms, we hope to either 

compare them with known TFs’ motifs in a database to infer 
their cognate TFs, or cluster them to remove redundancies and 
form unique motifs [5, 6]. In another case, we intend to merge 
motifs of different TFs of a structurally related class to form a 
familial binding profile (FBP) in order to find motifs for a 
particular TF family [7]. In all these applications, we need a 
metric to measure the similarity between any two motifs. The 
majority of current methods for comparing two motifs typically 
contain two components: a similarity metric for column-to-
column comparisons between the PFMs of the two motifs, and 
an algorithm to find the optimal column-to-column alignment 
between the two motifs based on the metric. The column 
similarity metrics used in current methods include Pearson’s 
correlation coefficient (PCC) [8], average Kullback-Leibler 
(AKL), average log-likelihood ratio (ALLR) [9], p-value of 
Chi-square (pCS) [10], and sum of squared distances (SSD), 
etc. [7, 11]. Either the Smith-Waterman [12] or the Needleman-
Wunsch algorithm [13] is usually employed to find the optimal 
alignment. Mahony et al. [14] have evaluated these column 
similarity metrics along with the two alignment algorithms and 
implement them as a web tool STAMP [15]. Additionally, 
Mosta proposed by Pape et al. [16], and KFV by Xu and Su 
[17], are two alignment-free motif comparison methods. Xu 
and Su showed that their KFV method outperforms the Mosta 
and the methods in the STAMP [17].  

In this paper we designed a new column similarity metric 
called Similarity between Positions with Information Contents 
(SPIC). The metric is inspired by our early work used in the 
pipelines GLECLUBS and eGLECLUBS for genome-wide 
binding site prediction in prokaryotes [5, 6]. More specifically, 
to measure the similarity between the columns X and Y  of two 

motifs 
1

M and 
2

M , respectively,  SPIC first uses the column X 

and its information contents (IC) of 
1

M ’s PSSM to match the 

column Y of 
2

M ’s PFM and then uses the column Y and its IC 

of 
2

M ’s PSSM to match the column X of 
1

M ’s PFM. In the 

following sections, we will describe the SPIC metric in details, 
and evaluate its performance using some datasets from STAMP 
[17] and GLECLUBS [5, 6].  
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II. METHODS AND MATERIALS 

A. Previous metrics 

We compared our metric with the following ones for their 
ability to either retrieve motifs from a database or cluster 

relevant motifs. In the definitions of these metrics, 
b

X is the 

probability of base },,,{ TGCAb  in a column X of the 

position frequency matrix of a motif. 

1)  Pearson correlation coefficient (PCC).  
The PCC was first introduced by Pietrokovski [8] for 

computing the similarity of two columns X and Y of two motifs, 
and is defined as, 
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where X  and Y are the averages of
b

X  and 
b

Y , respectively. 

2) Average Kullback-Leibler (AKL, or relative entropy).  
For two columns X and Y, 
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3) Average log-likelihood ratio (ALLR).  
The ALLR formula was proposed by Wang and Stormo [9]. 

For two columns X and Y,  
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where
bX

N and 
bY

N are the counts of base },,,{ TGCAb in 

column X and Y, respectively, and 
b

q  is the background 

probability of },,,{ TGCAb . 

4) 1 p-value of Chi-square (pCS).  
The pCS was proposed by Schones et al. [10]. For two 

columns X and Y, we calculate 1 p-value of 
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Note that NNNN
bX

e

Xb
/)(  , where

X
N is the total number of 

counts in column X, 
b

N is the total number of counts for 

base b in the columns X and Y, and N is the total number of 

counts for all bases in the columns X and Y. e

Yb
N is similarly 

defined. 

5) Sum of squared distances (SSD).  
The SSD formula is a variant of Euclidean distance defined 

as  
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6) Asymptotic covariance (AC).  
The AC formula was recently proposed by Pape et al. [16] 

based on the asymptotic covariance between the frequency 

matrixes of two motifs A containing a set of binding sites }{a  

and B= }{b . Let the number of counts of site a in a background 

sequence of length m is )(mN
a

and the sum of )(mN
a

 

is  


Aa aA
mNmN )()( . Let A and B be the reverse 

complementary sequence sets of A and B, respectively, the 
similarity between motifs A and B is defined as: 

))()(),()(cov(lim),( 1 mNmNmNmNmBAAC
BBAA

m





    (6). 

We used the software package Mosta downloaded from 
http://mosta.molgen.mpg.de to calculate the AC scores. 

7)  KFV (k-mer frequency vector).  
The KFV metric was more recently designed by Xu and Su 

[17].  Each PFM is first converted into a k4 -dimensional 
composition vector called a KFV with each element 
representing the likelihood score for a particular short k-mer 
sequence fitting the PFM model, and then the similarity 
between two motifs is calculated by a distance measure 
between their corresponding KFVs.     

The first five column metrics have been surveyed by Gupta 
et al. [18] and Mahony et al. [14]. The last two alignment-free 
methods have been compared by Xu and Su [17]. 

B. Our Metric SPIC  

For a motif
x

M containing
x

n sequences with length
x

L , let 
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),(  be its position frequency matrix (PFM) 

and
x

P be its position-specific scoring matrix (PSSM) defined 

as 
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where ),( Ybf
x

and ),( Ybp
x

are the count and probability of 

base },,,{ TGCAb appearing at position Y of
x

M (i.e., 

column Y of 
x

P  ), respectively, and )(bq
x

is the probability of 

base b appearing in the background sequences. A pseudo-count 

is added when computing these probabilities. The information 
content (IC) of column X of the PSSM Px is defined as 
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For two motifs 
1

M  and
2

M  with PSSMs P1 and P2, and PFMs 

F1 and F2, respectively, the similarity score between position 

X of 
1

M and position Y of 
2

M is defined as 
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In the function (10), we use the information content of each 
column to attenuate the influence of the low information parts, 
and to enhance the effect of the high information parts of the 
PSSM on the similarity score. Notably, the function (10) 
reflects the likelihood for Px(A) to generate Fy(B).  

C. Pairwise motif alignment and calculation of empirical p-

values 

We use Needleman-Wunsch (NW) global alignment [13] 
and Smith-Waterman (SW) local alignment [12] to evaluate the 
metrics. Both methods allow for affine gap penalties. For this 
study, the gap-extension penalty is set to be half the value of 
the gap-opening penalty. We also implemented an ungapped, 
extended Smith-Waterman alignment method as described by 
Mahony et al. [14]. In order to determine the likelihood of any 
score given the lengths of aligned matrices, Sandelin and 
Wasserman [7] assigned empirical p-values to the alignment 
scores. Following Mahony et al. [14],  we also used the method 
of Sandelin and Wasserman for the calculation of empirical p-
values based on simulated PSSMs [7]. 

D. Datasets of motifs 

1) Dataset-1 
Dataset-1 was originally created by Mahony et al. [14] 

from JASPAR, containing PFMs and PSSMs of 96 motifs with 
known TF structural classes,  25 of them belong to the Zinc-
Finger(ZF) families. The dataset was also used for evaluating 
the KFV metric by Xu and Su [17]. 

2) Dataset-2 
Dataset-2 containing about 10

5
 putative motifs were 

predicted in a total of 2,313 orthologous inter-operonic 
sequence sets from 55 closely-related  -proteobacterial 

genomes including E. coli K12 using phylogenetic foot-
printing during the development of our  GLECLUBS pipeline 
for genome-wide prediction of TF binding sites in prokaryotic 
genomes  [5]. These 105 putative motifs contain 1,411 known 
binding sites belonging to 122 TFs (true motifs) in E. coli K12 
according to the RegulonDB v6.0 database [19]. The dataset is 
available at: http://motifclick.uncc.edu.  

E. Performance evaluation by accuracy and ROC analysis 

We used the ROC (Receiver Operating Characteristic) 
analysis to compare these methods for their ability to identify 
the TFBS motifs of structural and/or evolutionarily related TFs 
in the Dataset-1. The performance “accuracy” is measured as 

the percent of motifs whose structural class are correctly 
recovered via the best hit in database searches. The ROC 
curves were plotted based on the following criteria. Given a 
dataset containing n motifs with known TF structural classes, 
n(n+1)/2 pair-wise comparisons (including self-comparisons) 
were conducted and pair-wise similarity scores were computed 
using our algorithm or the other compared methods. We 
consider a pair of motifs as a match (positive) if “1-similarity 
score” between the two motifs within a threshold, or a 
mismatch (negative), otherwise. We consider a positive as a 
true positive if the two associated TFs come from the same 
structural class, and a negative as a true negative if the 
associated two TFs are from different structural classes. The 
ROC curve plots the true positive rate (TPR) against the false 
positive rate (FPR), computed for different thresholds of pair-
wise scores. 

 

III. RESULTS 

A. Performance evaluation for motif retrieval 

One of the major uses of motif similarity metric is in motif 
database search, where a query motif is compared to all motifs 
in the database by an alignment method and metric, and the 
motifs in database that are similar enough to the query motif 
are returned as the hits.  However, it is well-known that 
structurally and/or evolutionarily related TFs tend to bind 
similar motifs, and because of the highly degenerate nature of 
binding sites, it is often not easy to precisely differentiate these 
similar motifs in database searches. We compared SPIC with 
the PCC, SSD and KFV metrics for their abilities to find the 
same structural class in the database as that of the query motif 
using Dataset-1. We choose these three exiting metrics for the 
comparison, because it has been shown by Mahony et al. [14] 
that PCC and SSD have the best overall performance among 
the five metric evaluated when combined with an appropriate 
alignment algorithm, and that KFV even outperforms the prior 
metrics, both alignment-based or alignment-free ones [17]. As 
in Mahony et al. [14], we computed the accuracy of a metric  
as the percentage of query motifs whose structural classes are 
correctly recovered by the metric as the best hit. 

For the PCC and SSD metrics, we combine them with the 
best alignment algorithm and parameters according to Mahony 
et al. [14], i.e., for PCC, we used  the ungapped Smith-
Waterman  algorithm (PCC/SWU), and for SSD, we adopted 
the gapped Smith-Waterman  algorithm with gap open =1 and 
gap extension=0.5 (SSD/SW). For the alignment free metric 
KFV, we choose the k-mer length k=4 and cosine angle for 
vector comparison for the best overall performance according 
to the authors [17]. We tested our metric using both SW and 
NW alignment algorithms with different gap open and 
extension penalties. As shown in Table 1, our metric combined 
with the SW alignment algorithm with open = 1 achieves the 
best results, and it outperforms PCC/SWU and SSD/SW 
implemented in STAMP and KFV with their best parameter 
settings on Dataset-1.  
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TABLE I.  COMPARISON OF SPIC WITH DIFFERENT PARAMETERS WITH 

THE EXISTING METHODS FOR  MOTIF RETRIEVAL USING DATASET-1. 

Method 

Accuracy 

Non-ZF 

PFMs(71) 

ZF 

PFMs(25) Total(96) 

SPIC(gap open=1.00, SW) 0.921 0.620 0.841 

SPIC(gap open=0.75, SW) 0.918 0.613 0.837 

SPIC(gap open=0.50, SW) 0.916 0.614 0.837 

SPIC(gap open=1.50, SW) 0.916 0.605 0.835 
SPIC(gap open=0.25, SW) 0.915 0.606 0.835 

SPIC(ungapped, SW) 0.916 0.610 0.836 

SPIC(gap open=1.0, NW) 0.792 0.584 0.721 
SPIC(gap open=1000, NW) 0.801 0.592 0.730 

KFV(k=4, cosine) 0.915 0.600 0.833 

STAMP(PCC/SWU) 0.887 0.600 0.813 
STAMP(SSD/SW) 0.859 0.560 0.781 

The results are shown separately for the zinc-finger (ZF) and non-ZF families. The values in bold 

indicate the highest accuracy achieved for each category. The results of STAMP (PCC/SWU and 
SSD/SW) are taken from [14],. The results of KFV are taken from [17]. 

 
To further compare our algorithm with STAMP and KFV 

for retrieving motifs in a database, we conducted Receiver 
Operating Characteristic (ROC) analysis of the performance of 
the three algorithms on Dataset-1 using their respective best 
parameter settings. We chose PCC/SWU in STAMP for the 
comparison as it outperforms SSD/SW on the dataset (Table 1). 
As shown in Figure 1, SPIC largely outperforms both the 
STAMP(PCC/SWU) and KFV algorithms for motif retrieval. 

 

Figure 1.  Evaluation of the three motif comparison algorithms 

using ROC analysis on Dataset-1. 

 

B. Separation of  true motifs from spurious ones 

In genome-scale TF binding site motifs prediction 
applications, redundant and sub-motifs of the same TFs are 
often returned by motif finding programs, and they are required 
to be clustered to form unique motifs [9]. In order to facilitate 
the separation of true motifs from spurious ones in dataset-2, 
we need a motif similarity metric that not only accurately 
measures the similarity between each pair of true motifs, but 
also can be efficiently computed. Specifically, we need a motif 
similarity metric that gives a high score for two relevant motifs, 
i.e., two sub-motifs of the motif of a TF, but a low score for 
two irrelevant motifs, i.e., two motifs for evolutionarily 
unrelated TFs or two spurious motifs. To this end, we compare 

our metric SPIC with seven existing metrics for their capability 
of differentiating between relevant motifs and irrelevant ones. 

In phylogenetic foot-printing based genome-scale TFBS 
prediction algorithms such as PhyloNet [7, 11] and 
GLECLUBS [5, 6], redundant and sub-motifs of the same TFs 
need to be clustered to form unique motifs, and at the same 
time spuriously identified motifs need to be removed [5, 6, 9]. 
To achieve such a goal, a motif similarity metric is needed that 
not only accurately measures the similarity between each pair 
of a large number of predicted-motifs by a phylogenetic foot-
printing procedure, but also can be efficiently computed. 
Specifically, we need a motif similarity metric that gives a high 
score for two relevant motifs, i.e., two sub-motifs of the motif 
of a TF, but a low score for two irrelevant motifs, i.e., two 
motifs for evolutionarily unrelated TFs or two spurious motifs 
(as the chance for two spurious motifs to be very similar to 
each other is usually very low). To evaluate our metric SPIC in 
such applications, we compare it with seven existing metrics 
for their capability of differentiating between relevant motifs 
and irrelevant ones using Dataset-2.  

To this end, we first generated a series of sub-motifs for 
each of the known 122 TF motifs E. coli K12 as follows.  For 
each motif containing n known binding sites (we only consider 
the motifs that have at least 3 known binding sites), we 

randomly selected ( 1 kn ) sub-sets (sub-motifs) of size k 

with replacement from the n binding sites, nk ,...,1 . Therefore, 

there are 2/)1( nn  sub-motifs for each known motif. We then 

used each of the metrics with their best alignment methods and 
parameters for motif clustering and/or retrieval (Table 1) [14, 
17] to compute pair-wise similarity scores among the sub-
motifs of the same motif as well as the pair-wise similarity 
scores of the ~10

5
 putative motifs in Dataset-2. Figure 2 shows 

the distribution of the normalized pair-wise motif similarity 
scores among the motifs in Dataset-2 (labeled by “all pairs”) 
and that of the normalized scores among the sub-motifs of a 
known motif in RegulonDB (labeled by “known inner”), 
computed by each of these metrics. Since the majority of the 
motifs in Dataset-2 are irrelevant to one another, a good metric 
should well-separate the bulk of the distribution of the 
similarity scores among the motifs and that of the similarity 
scores among the sub-motifs of a known motif.  As shown in 
Figure 2, of all the metrics examined, our metric resulted in the 
smallest overlap between the distribution of the similarity 
scores among all motifs in Dataset-2 and that of the similarity 
scores among the  sub-motifs of each known motif, suggesting 
that our metric outperforms these existing metrics in separating 
the relevant motifs from irrelevant ones.  

IV. CONCLUSION 

In this paper, we proposed a new column similarity metric 
SPIC, when combined with  the Smith-Waterman alignment 
algorithm, it outperforms the existing state-of-the-art metrics in  
both retrieving motifs in database search and clustering motifs, 
or separating true motifs from spurious ones. Particularly, the 
SPIC metric can be used in some phylogenetic footprinting 
based genome-wide TF binding sites prediction algorithms, 
such as PhyloNet [7, 11] and GLECLUBS [5, 6].  
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Figure 2.  Comparison of the SPIC metric with seven existing methods for 

separation of true motifs from spurious ones on DataSet-2. 
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