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Abstract—The S-system, which is a set of nonlinear ordinary
differential equations and derived from the generalized mass
action law, is a consistent model to describe various biological
systems. Parameters in S-systems contain important biological
information and yet can not be obtained directly from experi-
ments. Therefore, the parameter estimation methods are a choice
to estimate parameters in S-systems. However, the parameter
estimation for this model turns out to be a complex nonlinear
optimization problem. A novel method, alternating weighted
least squares (AWLS), is proposed in this paper to estimate the
parameters in S-systems. The fast deterministic AWLS method
takes advantage of the special structure of the S-system model
and reduces solving the nonlinear optimization problem into
alternately solving weighed least squares problems which have
analytical solutions. The effectiveness of AWLS is demonstrated
by the simulation studies and the results show that the AWLS
outperforms the existing alternating regression method.

I. INTRODUCTION

Biological systems, such as metabolic pathways and genetic
regulatory networks, consist of many components and the
interactions between them. One task of systems biology is
to reveal the interactions and the biological functions those
interactions may result in [1]. Instead of focusing on individ-
ual components, systems biology applies system engineering
methods and principles to study all components and their
interactions as parts of a biological system. Such a systematic
view provides an insight into the control and optimization of
parts of the system while considering the effects those may
have on the whole system. It may lead to the discovery of
new properties of a biological system, which helps understand
the mechanisms of biological systems, and valuable clues and
new ideas in practical areas such as disease treatment and drug
design [2].

Many mathematical models have been proposed to describe
the molecular biological systems based on biochemical prin-
ciples. Most models are nonlinear in both parameters and
system state variables [1], [3]. Estimation of parameters in
those models are thus formulated as nonlinear optimization
problems which generally have no analytical solutions. One
popular model is the S-system, which is nonlinear and derived
from the generalized mass action law [3].

An S-system with N components is a type of power-
law formalism and typically a group of nonlinear ordinary

differential equations in the following format:

Ẋi = αi

N∏

j=1

X
gij

j − βi

N∏

j=1

X
hij

j , i = 1, . . . , N, (1)

where Xi represents the concentration of metabolite i, whose
changes are the difference between production and degrada-
tion, αi and βi are non-negative rate constants, and gij and hij

are real-valued kinetic orders. It is an effective mathematical
framework to characterize and analyze the molecular biologi-
cal systems and their system dynamics. The representation of
this model maps the dynamical and topological information of
the system onto its parameters.

Parameter estimation and structure identification of S-
system models are extremely difficult and challenging tasks,
where the parameter estimation usually occurs after or in
the process of structure identification. As the estimation of
parameters in S-systems is a nonlinear problem, in principle,
all algorithms for nonlinear optimization problems can be
used, for example, Gauss-Newton iteration method, and its
variants such as Box-Kanemasu interpolation method, Leven-
berg damped least squares method, and Marquardt’s method
[4]. However, these methods are initial-sensitive and most of
them need to calculate the inverse of the Hessian which costs
computation effort.

Several numerical methods have been proposed in the
literature to estimate the parameters in S-systems, most of
which are based on heuristics. For example, Kikuchi et al. [5]
employed a genetic algorithm to infer the S-systems. Gonzalez
et al. [6] showed the effectiveness of the simulated annealing
technique. Voit and Almeida [7] developed an ANN-based
method to identify the structure and estimate the parameters
of S-systems. Ho et al. [8] and Wang et al. [9] respectively
proposed an intelligent two-stage evolutionary algorithm and
an unified approach to estimate the parameters in S-systems.
Those methods are computationally expensive and do not
sufficiently take the special model structure of the S-system
into account.

Wu and Mu [10] introduced a separable parameter estima-
tion method which takes advantage of the structure of the S-
system model, i.e., one group of parameters is linear in model
while the other group is nonlinear. This method has been
extended to the case when system topology is unknown with
a genetic algorithm by Liu et al. [11], [12]. One observation
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of the S-system is that if the parameters in one term on the
right hand side of (1) is known, this term can be moved to the
left side and a linear model is obtained by taking logarithm of
both sides. Based on this observation, an alternating regression
(AR) method was proposed by Chou et al. [13], which reduces
the nonlinear estimation problem into the iterative procedures
of linear regression. However, the objective of the iterations is
vague and the necessary and sufficient criteria for convergence
are not known. Inspired by the idea of AR, Vilela et al. [14]
proposed a novel method based on eigenvector optimization
of a matrix formed from multiple regression equations of the
linearized decoupled S-systems, which, however, involves an
nonlinear optimization problem.

In this paper, an alternating weighted least squares (AWLS)
method is proposed. AWLS is a fast deterministic method and
aims at reducing the nonlinear optimization problem into a
series of easily solved problems, the idea of which is similar
as AR’s [13]. AWLS starts from the nonlinear least squares
objective which can be approximated by a quadratic function
with the assumption that part of the parameters are known. The
approximated function turns out to be a weighted least squares
problem which has an analytical solution. With the solution
of the approximated problem, the other part of the parameters
can also be estimated or further updated by forming another
weighted least squares problem. AWLS takes advantage of the
special form of S-systems and has a more clear objective than
AR.

Briefly, the paper is organized as follows. In Section II, the
AWLS method is introduced and derived. In Section III, the
AWLS approach is applied to estimate the parameters of S-
systems. The performance of AWLS is also compared with
that of AR. Finally, in Section IV, conclusions are drawn and
some future works along this research are pointed out.

II. ALTERNATING WEIGHTED LEAST SQUARES

Consider a biological system with N components described
by an S-system in (1). For each component Xi, time series
data consisting of n time points, xi1, xi2, . . . , xin, are assumed
to be observed. The purpose is to estimate the parameters in
(1) from these observed data. We substitute the derivative of
Xi at each time t with the estimated slope, Sit, so that the
original coupled differential equations are decoupled into n ×
N uncoupled algebraic equations [7], [14]:

Sit = αi

N∏

j=1

x
gij

jt − βi

N∏

j=1

x
hij

jt , (2)

where i = 1, . . . , N and t = 1, . . . , n. The estimation of slopes
is a crucial step and may have effects on the final results.
To increase the accuracy, the five-point numerical derivative
method is employed in this study, i.e.,

Sit =
−xi,t+2 + 8xi,t+1 − 8xi,t−1 + xi,t−2

12Δt
, (3)

where Δt is the length of sampling step.
Generally, the sum of least squares is used as a criterion to

determine the values of parameters, i.e., parameters in each

equation i of (1) are estimated by minimizing the following
objective:

Ji(αi, βi, gi, hi) =

n∑

t=1

⎡
⎣Sit − αi

N∏

j=1

x
gij

jt + βi

N∏

j=1

x
hij

jt

⎤
⎦

2

,

(4)
where gi = [gi1, . . . , giN ]T and hi = [hi1, . . . , hiN ]T . Sup-
pose values of βi and hi are given and let

Dit = Sit + βi

N∏

j=1

x
hij

jt and Pit = αi

N∏

j=1

x
gij

jt .

Then, we have

Ji(αi, βi, gi, hi) =
n∑

t=1

(Dit − Pit)
2

=
n∑

t=1

[
elog Dit

(
1 − elog Pit−log Dit

)]2

=

n∑

t=1

[Dit (log Dit − log Pit + o(log Dit − log Pit))]
2

=
n∑

t=1

D2
it (log Dit − log Pit)

2
+ o

(
n∑

t=1

D2
it (log Dit − log Pit)

2

)
.

From (2), Dit and Pit should be close and in the third equality
above, the first order Taylor approximation is applied. The last
equality shows that Ji(αi, βi, gi, hi) can be minimized if the
first term is small enough. Hence, the last term can be omitted.

This study assumes the structure of the system, i.e., the
positions of nonzero kinetic orders, is available. From this
information, some entries in gi and hi are known to be zeros.
Let g̃i = [gij1 , . . . , gijp ]T and h̃i = [hi�1 , . . . , hi�q ]

T denote
the vectors of nonzero kinetic orders in gi and hi, respectively.
αi and g̃i can be estimated by solving the optimization
problem

minimize
αi,g̃i

n∑

t=1

⎛
⎝Sit + βi

N∏

j=1

x
hij

jt

⎞
⎠

2 ⎡
⎣log

⎛
⎝Sit + βi

N∏

j=1

x
hij

jt

⎞
⎠

− log αi −
p∑

k=1

gijk
log xjkt

]2

,

(5)

which is a weighted least squares problem. Let

W(βi, hi) = diag(D2
i1, . . . , D

2
in),

Y(βi, hi) =
[
log Di1, . . . , log Din

]T
,

Γi = [ζi, g̃
T
i ]T , where ζi = log αi,

and

Xg,i =

⎡
⎢⎢⎢⎣

1 log xj11 . . . log xjp1

1 log xj12 . . . log xjp2

...
...

...
...

1 log xj1n . . . log xjpn

⎤
⎥⎥⎥⎦ .
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Then, (5) becomes

minimize
Γi

‖W(βi, hi)
1
2 [Y(βi, hi) − Xg,iΓi]‖2

2, (6)

and the analytical solution is

Γ̂i = (XT
g,iW(βi, hi)Xg,i)

−1XT
g,iW(βi, hi)Y(βi, hi),

α̂i = exp(ζ̂i).
(7)

Similarly, when αi and gi are given, βi and h̃i can be
estimated from

minimize
Θi

‖W(αi, gi)
1
2 [Y(αi, gi) − Xh,iΘi]‖2

2, (8)

where Eit = αi

∏N
j=1 x

gij

jt − Sit,

Xh,i =

⎡
⎢⎢⎢⎣

1 log x�11 . . . log x�q1

1 log x�12 . . . log x�q2

...
...

...
...

1 log x�1n . . . log x�qn

⎤
⎥⎥⎥⎦ ,

and

W(αi, gi) = diag(E2
i1, . . . , E

2
in),

Y(αi, gi) = [log Ei1, . . . , log Ein]T ,

Θi = [ηi, h̃
T
i ]T , where ηi = log βi.

The corresponding analytical solution is

Θ̂i = (XT
h,iW(αi, gi)Xh,i)

−1XT
h,iW(αi, gi)Y(αi, gi),

β̂i = exp(η̂i).
(9)

Based on the derivations above, we can see that when part
of the parameters in an S-system are known, the rest can be
estimated by solving a weighted least squares problem. Thus,
given the initial values of one part of the parameters, all param-
eters in the S-system can be iteratively estimated by alternately
solving weighted least squares problems. The objective value
Ji is reduced in each iteration and the estimated parameters are
obtained when the iterations converge. The proposed AWLS
method for each equation i is:
Require: The structure of the system and initial values of βi

and h̃i,
1: repeat
2: Estimate αi and g̃i by (7) with known βi and h̃i,
3: Estimate βi and h̃i by (9) with known αi and g̃i,
4: until a stopping criteria is met.

In this paper, the stopping criteria is

‖γ(k) − γ(k−1)‖2

‖γ(k)‖2
< θ, (10)

or the number of iterations is greater than 10,000, i.e.,
not convergent. Here, θ is a preset threshold and γ(k) =

[α̂
(k)
i , β̂

(k)
i , ĝ

(k)T
i , ĥ

(k)T
i ]T , i.e., the parameter estimations in

the kth iteration.
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Fig. 1. Time series data of the 4-dimensional model.

III. SIMULATION AND COMPARISON

A. Parameter Estimation

1) 4-dimensional model: Consider the following S-system
of 4 metabolites [3]:

Ẋ1 = 12X−0.8
3 − 10X0.5

1 ,

Ẋ2 = 8X0.5
1 − 3X0.75

2 ,

Ẋ3 = 3X0.75
2 − 5X0.5

3 X0.2
4 ,

Ẋ4 = 2X0.5
1 − 6X0.8

4 .

(11)

The noise-free time series data are obtained by numerical-
ly solving the S-system with an initial condition X(0) =
[x10, x20, x30, x40]

T . The data are sampled at time points in
the interval [0, 5] with Δt = 0.1.

In this example, the data are generated with X(0) =
[2.7255, 1.8601, 4.7343, 3.7162]T whose elements are ran-
domly chosen in [0, 5]. The time series data are shown in
Fig. 1, from which we can see all states of Xi’s are eventually
in the steady states. The AWLS method is applied to estimate
the parameters from these data with the initial values for βi

and hi chosen by

(βinit
i ; hinit

i ) = (βtrue
i ; htrue

i )(1 + σε), (12)

where ε is a standard Gaussian random variable and σ is
a positive constant. Since (4) is a nonlinear optimization
problem, to avoid falling into the local optimum, we apply
AWLS 100 times initiated with different values and choose
the best one as the final solution. Here, we set σ = 90%,
the objective values J

(k)
i for each equation i in each iteration

k are illustrated in Fig. 2. It can be seen that the objective
values decrease with the increase of iteration steps. Table I
shows the estimated results, from which we can see that the
estimated values are quite close to their true values and the
optimal objective values are all very small.
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Fig. 2. Objective values over various numbers of iterations in AWLS.

TABLE I
ESTIMATED RESULTS OF THE 4-DIMENSIONAL MODEL.

Parameter True Value Estimation Relative Error Objective Value

α1 12 12.0922 0.77% 1.4754 × 10−4

β1 10 10.1040 1.04%
g13 0.8 0.7893 1.34%
h11 0.5 0.4936 1.29%

α2 8 7.9851 0.19% 2.0490 × 10−4

β2 3 2.9830 0.57%
g21 0.5 0.5025 0.50%
h22 0.75 0.7522 0.29%

α3 3 3.0205 0.68% 1.8454 × 10−4

β3 5 5.0550 1.10%
g32 0.75 0.7531 0.41%
h33 0.5 0.4963 0.73%
h34 0.2 0.1996 0.22%

α4 2 2.0081 0.41% 1.0699 × 10−4

β4 6 5.9883 0.19%
g41 0.5 0.5157 3.13%
h44 0.8 0.8045 0.57%

2) 5-dimensional model: A benchmark 5-dimensional mod-
el [14], [15] is considered,

Ẋ1 = 5X3X
−1
5 − 10X2

1 ,

Ẋ2 = 10X2
1 − 10X2

2 ,

Ẋ3 = 10X−1
2 − 10X−1

2 X2
3 ,

Ẋ4 = 8X2
3X−1

5 − 10X2
4 ,

Ẋ5 = 10X2
4 − 10X2

5 .

(13)

The data used in this example are generated with the initial
condition X(0) = [0.1, 0.7, 0.7, 0.16, 0.18]T , the same in Yang
et al. [15]. Fig. 3 shows the time series data that are sampled
in the interval [0, 0.5] with Δt = 0.01. Note that the states
of all variables quickly converge to the steady state. Hence,
only limited information on the dynamics of the system is
contained in the data. We run AWLS 100 times with different
initial values obtained from (12) with σ = 80% and select
the best one as the solution. The results in Table II show the
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Fig. 3. Time series data of the 5-dimensional model.

TABLE II
ESTIMATED RESULTS OF THE 5-DIMENSIONAL MODEL.

Parameter True Value Estimation Relative Error Objective Value

α1 5 4.8473 3.05% 6.0840 × 10−4

β1 10 9.8529 1.47%
g13 1 1.1337 13.37%
g15 -1 -1.0316 3.16%
h11 2 2.0443 2.21%

α2 10 10.0039 0.04% 8.0113 × 10−4

β2 10 9.9626 0.37%
g21 2 2.0049 0.25%
h22 2 1.9898 0.51%

α3 10 9.9699 0.30% 1.5504 × 10−4

β3 10 9.9711 0.29%
g32 -1 -0.9686 3.14%
h32 -1 -0.9684 3.16%
h33 2 2.0411 2.05%

α4 8 7.5653 5.43% 1.1 × 10−3

β4 10 9.5512 4.49%
g43 2 2.1869 9.35%
g45 -1 -1.0490 4.90%
h44 2 2.0824 4.12%

α5 10 9.9910 0.09% 1.4 × 10−3

β5 10 9.9770 0.23%
g54 2 2.0121 0.60%
h55 2 1.9917 0.42%

effectiveness of AWLS: estimated values of parameters are
close to the true values and the optimal objective values are
all very small.

3) 6-dimensional model: In this example, the AWLS
method is applied to estimate the parameters in the following
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Fig. 4. Time series data of the 6-dimensional model.

6-dimensional S-system [15]:

Ẋ1 = 10X−2
3 X5 − 5X0.5

1 ,

Ẋ2 = 5X0.5
1 − 10X0.5

2 ,

Ẋ3 = 2X0.5
2 − 1.25X0.5

3 ,

Ẋ4 = 8X0.5
2 − 5X0.5

4 ,

Ẋ5 = 0.5 − X6,

Ẋ6 = X5 − 0.5.

(14)

The noise-free time series data are generated with the ini-
tial condition X(0) = [1.1, 0.5, 0.9, 0.75, 0.5, 0.75]T which
matches that in Yang et al. [15]. Fig. 4 illustrates the time
series data which are sampled in the interval [0, 10] with
Δt = 0.1. Fig. 4 also shows the periodic oscillating behavior
of the data. The initial values for βi and hi are also chosen by
(12) with σ = 50%. The solution shown in Table III is the best
one among 100 runs of AWLS with different initial values. The
results in Table III indicate that the estimated parameters are
close to their true values and the optimal objective values are
all very small.

B. Comparison

The performances of AWLS and AR [13] are compared
based on the previous 4-dimensional model (11) in the fol-
lowing procedure: (i) Fix a value of σ and randomly generate
an initial condition X(0) in [0, 5]. (ii) Obtain the noise-free
data in the interval [0, 5] with Δt = 0.1. (iii) Generate
100 initial values of (βi; hi) by (12). (iv) Apply AWLS and
AR to each equation i with each initial value, respectively.
Therefore, each method has 100 results for each equation. (v)
Remove those results which do not satisfy αi, βi ∈ [0.1, 12]
or gij , hij ∈ [−2, 3] (cf. [3], [14]) or not converge. Choose the
result which has the the minimum objective value as the best
one. (vi) For each method, put the best results of each equation
together to form the final solution of the S-system. We run
the aforementioned procedure (i)–(vi) with different X(0)’s
and different σ’s. In this experiment, we have 30 different
X(0)’s and for each X(0), σ’s vary from 0 to 1 with step 0.1.
Thus, each method has 30 × 11 results. We denote the results

TABLE III
ESTIMATED RESULTS OF THE 6-DIMENSIONAL MODEL.

Parameter True Value Estimation Relative Error Objective Value

α1 10 10.4440 4.44% 2.0 × 10−3

β1 5 5.5333 10.67%
g13 -2 -1.8332 8.43%
g15 1 0.9163 8.37%
h11 0.5 0.4580 8.40%

α2 5 5.3370 6.74% 7.3143 × 10−4

β2 10 10.3732 3.73%
g21 0.5 0.4793 4.14%
h22 0.5 0.4794 4.12%

α3 2 2.0485 2.42% 1.8097 × 10−4

β3 1.25 1.3000 4.00%
g32 0.5 0.4835 3.29%
h33 0.5 0.4840 3.20%

α4 8 7.9549 0.56% 1.2 × 10−3

β4 5 5.0024 0.05%
g42 0.5 0.4934 1.33%
h44 0.5 0.4932 1.35%

α5 0.5 0.4928 1.43% 1.3908 × 10−5

β5 1 0.9957 0.43%
h56 1 1.0160 1.60%

α6 1 0.9955 0.45% 1.5696 × 10−5

β6 0.5 0.4925 1.51%
g65 1 1.0170 1.70%

for the lth data, which are generated by X l(0), and σ = τ

from AWLS and AR by γ
(l,τ)
AWLS and γ

(l,τ)
AR , respectively, where

l = 1, . . . , 30 and τ = 0, 0.1, . . . , 1.0.
AWLS and AR are compared from two perspectives: the

estimation error (EstErr) and the objective value (ObjVal).

EstErr(l,τ) =
‖γ(l,τ) − γtrue‖2

2

‖γtrue‖2
2

, ObjVal(l,τ) =
N∑

i=1

Ji(γ
(l,τ))

Fig. 5 shows the mean estimation errors of AWLS and AR
with respect to each value of σ, respectively. Fig. 6 describes
the mean objective values with respect to each value of σ.
We can see that both the mean estimation error and the mean
objective value grow with the increase of σ. In addition, both
the mean estimation error and mean objective value of AWLS
are in general less than those of AR, especially for large σ’s.

To further confirm the conclusion, note that there are totally
330 cases (30 Xk(0)’s and 11 σ’s) and in each case, the initial
values for AWLS and AR are the same. Therefore, the 330
EstErr(l,τ)’s and 330 ObjVal(l,τ)’s of AWLS can be compared
with those of AR, respectively, by paired hypothesis tests. The
null hypotheses for the estimation error and the objective value
are:

H0 : EstErr of AWLS ≥ EstErr of AR;

H0 : ObjVal of AWLS ≥ ObjVal of AR.

We perform the paired t-test and paired Wilcoxon signed-rank
test for the estimation error and objective value, respectively.
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Fig. 5. Comparison of AWLS and AR w.r.t. mean estimation errors.
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Fig. 6. Comparison of AWLS and AR w.r.t. mean objective values.

The null hypothesis of paired Wilcoxon test is similar as that
of paired t-test but on medians and no normality assumption
is required. The hypothesis test results are shown in Table IV,
in which the p-values indicate that the estimation error and
objective value of AWLS are significantly less than those of
AR. Therefore, AWLS outperforms AR.

IV. CONCLUSIONS

This paper has proposed an AWLS method to estimate the
parameters in biological S-systems. AWLS takes advantage of
the special structure of S-systems and is a fast deterministic
method with low computational cost. The superb efficiency
comes from the reduction of the complex nonlinear optimiza-
tion problem into alternating weighted least squares problems.
There is no need to compute the inverse of the Hessian matrix
and only part of the parameters require initial values. The
dimension of search space of parameters are hence reduced.
The simulation results show that AWLS can find the values
of parameters in S-systems and AWLS outperform AR, i.e.,
it has less estimation error and objective value than those of
AR.

In this study, the structure of the system is assumed to be
known. One direction of the future work is to extend AWLS

TABLE IV
PAIRED T-TEST (t) AND PAIRED WILCOXON SIGNED-RANK TEST (V ).

t df p-value V p-value

EstErr 3.9859 329 4.143e-05 34151 3.985e-05
ObjVal 5.1832 329 1.907e-07 36958 1.321e-08

with Lasso approach [16], [17] to infer the S-system without
knowing the system structure.
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