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Abstract—High-throughput technologies have produced a large
number of protein-protein interactions (PPIs) for different
species. As protein domains are functional and structural units of
proteins, many computational efforts have been made to identify
domain-domain interactions (DDIs) from PPIs. Parsimony as-
sumption is widely used in computational biology as the evolution
of the nature is considered as a continuous optimization process.
In the context of identifying DDIs, parsimony methods try to find
a minimal set of DDIs that can explain the observed PPIs. This
category of methods are promising since they can be formulated
and solved easily. Besides, researches have shown that they could
detect specific DDIs , which is often hard for many probabilistic
methods. In this paper, we revisit the parsimony model by
presenting two important extensions. First, ‘complex networks’
as an emerging concept is incorporated as prior knowledge into
the parsimony model. With this improvement, the prediction
accuracy increases, which to some extent enhances the biological
meaning of the common property of complex networks. Second,
two randomization tests are designed to show the parsimony
nature of the DDIs in mediating PPIs, which corroborates the
model validation.

Index Terms—Protein-Protein Interaction, Domain-Domain In-
teraction, Complex Networks, Clustering Coefficient, Parsimony
Assumption.

I. INTRODUCTION

Recently, researchers have confirmed that most proteins
perform their functions through physically binding to other
proteins, permanently or transiently. These interactions can
be represented as a protein-protein interaction (PPI) network
with each node corresponding to a protein and each edge an
interaction. The development of high-throughput technologies,
such as yeast two-hybrid screening methods [1], [2] and affin-
ity purification with mass spectroscopy [3], [4], has produced
numerous data of protein-protein interactions of different
species, which provides us an opportunity to investigate the
cellular processes in a systematic view.

In general, proteins consist of one or more domains. PPI
is usually carried out through domain-domain interactions
(DDIs). While the PPIs are not so conserved among species,
the recognition patterns of DDIs are mostly shared within
organisms. Knowledge about the domain recognition patterns
provides us a deeper understanding of the interaction network
of proteins. Since the interactions between domains are dif-
ficult to be determined experimentally, many computational

approaches have been proposed aiming at discovering the DDI
patterns from PPIs.

From a computational perspective, these methods fall into
two categories. In the first category, they try to find pairs of
domains that co-occur significantly more often in interacting
protein pairs than in non-interacting pairs. Association method
[5] computes a score for every domain pair according to the
ratio of its occurrences in interacting protein pairs to non-
interacting pairs. Deng and colleagues [6] extended this idea
to a more sophisticated probabilistic model in which they
applied an expectation maximization algorithm to predict in-
teracting domains consisted with the observed PPIs. Riley and
colleagues [7] found that previous probabilistic models cannot
detect specific interactions. They introduced an E-value, which
measures to what extent a given domain pair could not be
replaced by another pair, to detect specific interactions. The
second category, differing with the probabilistic framework,
often models the issue as a combinatorial optimization prob-
lem. The idea is that an observed PPI can be explained by at
least one pair of domains involved, then they try to explain
the observed interacting protein pairs using the minimal set
of domain pairs (the minimal spanning set), namely, the
parsimony based approaches [8], [9], [10]. Parsimony models
can be formulated as a linear programming which has efficient
algorithms. Besides, they can detect specific interactions and
its extensibility enables us to integrate additional knowledge
easily.

In this work, we make two reexaminations of the parsimony
model. First, although the problem is thoroughly studied these
years, we realize that existing models only make use of the
local information of the PPI network (assembled single inter-
actions). As an important case of complex networks, empirical
studies have confirmed that PPI networks exhibit some general
and global properties such as ‘small-world’ and ‘scale-free’
and have relative higher clustering coefficient compared with
random networks. A ‘small-world’ network is a network with
short characteristic path lengths, like random networks, but
still being highly clustered, like regular lattice network [11].
A ‘scale-free’ network is a network with power-law degree dis-
tribution [12]. The clustering coefficient measures the density
of triangles in a network, and it tends to be a non-zero constant
when the size of the network grows [13]. We ask whether such
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global information can be integrated into the computational
model and take some positive effects. Besides, there are some
more detailed hidden features of the complex networks having
recently been revealed, such as rich-club structure and mixing
patterns (assortative mixing or disassortative mixing) [14]. In
a network, nodes with large numbers of links are called rich
nodes. It is found that the rich nodes are connected to each
other as a close community, called as rich club, in many social
and computer networks. But in PPI network, the rich nodes are
loosely connected, i.e., there is no rich club phenomenon [15],
[16]. Oppositely, rich nodes in PPI networks tend to connect
nodes with low degree, a structure called disassortative mixing
by vertex degree. With these clues, we formulate a weighted
linear programming (WLP) base on our previous model [8],
in which the weights are derived from empirical knowledge
of complex networks and specific properties of PPI networks.
WLP shows an improvement in prediction accuracy, which to
some extent verifies the biological meanings of the common
property.

Second, although the parsimony assumption is widely used
in inferring DDIs, few work has been done to verify its ratio-
nality quantitatively. We investigate the parsimony nature of
the DDIs in mediating PPIs through randomization tests, which
justifies the assumption from a computational perspective.

II. METHODS

A. Parsimony based methods

Zhang et al. [8] developed a protein interaction prediction
method based on the parsimony principle. In the first step of
the method, an integer linear programming model is used to
infer domain-domain interactions from given protein interac-
tion data. Guimarães et al. used a parsimony explanation (PE)
approach to predict domain-domain interactions from protein
interactions [9], in which the model is exactly the same as
the basic parsimony model in [8], although both models were
carried out independently and implemented differently. We
describe the details of the models here.

We denote the observed protein-protein interaction network
as I = (P, E), where P = {P1, P2, . . . , PN} is the set of
proteins in the network and E is the set of edges. D =
{(Di, Dj)|Di ∈ Pm, Dj ∈ Pn, (Pm, Pn) ∈ E} is the set of
all possible domain pairs. Zhang et al. gave a formulation as
follows to determine a parsimonious core of DDIs:

Min :
∑

{i,j}∈D

dij (1)

st :
∑

(i,j)∈(Pm,Pn)

dij + emn ≥ 1, (Pm, Pn) ∈ E (2)

∑

(Pm,Pn)∈E

emn ≤ (1− sd)|E| (3)

dij , emn ∈ {0, 1} (4)

This is a flexible version of parsimony assumption, they
gave every constraint a slack variable emn and introduced a

tuning parameter sd which controls the proportion of protein
interactions that must be explained.

Guimarães et al. gave a model the same as [8], but with
something new:

Min :
∑

{i,j}∈D

dij (5)

st :
∑

(i,j)∈(Pm,Pn)

dij ≥ 1, (Pm, Pn) ∈ E (6)

dij ∈ {0, 1} (7)

They modeled the noise in the protein-protein interaction
data by selecting the constraints randomly according to a re-
liability probability r. For each reliability level, the procedure
was performed 1000 times, then the values obtained were av-
eraged to generate the reported LP-score [9]. Besides the LP-
score, they introduced a statistical measure for each domain
pair, specifically pw-score(i, j) = min{p-value(i, j), (1 −
r)w(i,j)}. P -value is a measure for evaluating the significance
of the LP-score of dij , which is computed through a random-
ization experiment with a set of 1000 random networks as
reference. w(i, j) denotes the number of witnesses (interacting
pairs of single-domain proteins supporting it) for dij . (1 −
r)w(i,j) denotes the probability that all edges corresponding to
witnesses are false positives. This term is useful for removing
promiscuous domain-domain interactions that are scored high
only because of their appearance frequency.

In this paper, we modify the first model to integrate global
information of the protein-protein interaction network, which
improves the prediction accuracy.

B. Motivation

Considering that it is intractable to directly integrate ‘small-
world’ or ‘scale-free’ into the model as they are both statistical
descriptions, we turn to consider the clustering coefficient C,
which has been shown to be an indicator of ‘small-world’
and ‘scale-free’ networks. We describe the definition of C
proposed by Watts and Strogatz [11] here. For each vertex,
we define a local value

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
(8)

For vertices with degree 0 or 1, for which both numerator
and denominator are zero, we put Ci = 0. Then the clustering
coefficient for the whole network is the average

C =
1

n

∑

i

Ci (9)

In terms of social networks, a high clustering coefficient
implies the friend of your friend is likely also to be your friend.
In many real complex networks, the clustering coefficient tends
to be a non-zero number when the size of the network grows,
while in random networks, it tends to be zero.

In the definition above, nodes with low degree contribute
higher values to the global clustering coefficient for they
own smaller denominators (Eq. 8), then we can deduce that
the existence of triangle structures connected to low degree
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nodes plays a crucial role in maintaining relative high C. In
the context of protein-protein interaction networks, proteins
which share a common neighbor with low degree are expected
to be interacting, namely, experimental interactions with this
property are considered more reliable. In the optimization
formula, we give these reliable interactions a priority of being
explained by assigning the corresponding spanning domain
pairs lower weights.

C. Weighted linear programming model

Based on the discussion above, we give every preferential
domain pair dij a weight wij as follows: Suppose dmin

(dmax) is the minimum (maximum) degree of the nodes in
the protein-protein interaction networks. We divide the interval
[dmin, dmax] into K subintervals Ik, k = 1, . . . , K and every
node falls into one subinterval. I1 contains proteins with
low degree while IK contains most of the hubs. Then for a
protein contained in I1, we give the domain pairs between
its neighbors lower weights. We define a set of domain
interactions as follows: S = {dij |dij ∈ (Pm, Pn), Pm, Pn ∈
NP , P ∈ I1, Pm ∈ Is, Pn ∈ It}, where NP contains all the
neighbors of protein P in the PPI network.

wij =

{
1

1+|s−t| If dij ∈ S;

1 Otherwise.
(10)

If dij spans more than one (Pm, Pn), then wij takes the
smallest value. A larger |s− t| in the denominator generates a
smaller weight, which promote the priority of the correspond-
ing domain pair, consisting with that rich nodes in the PPI
network tend to connect nodes with low degree (disassortative
mixing).

Then, we get a weighted linear integer programming model
(WLP):

Min :
∑

{i,j}∈D

wijdij (11)

st :
∑

(i,j)∈(Pm,Pn)

dij + emn ≥ 1, (Pm, Pn) ∈ E (12)

∑

(Pm,Pn)∈E

emn ≤ (1− sd)|E| (13)

dij , emn ∈ {0, 1} (14)

We relax the linear integer programming model to a linear
programming by allowing dij , emn to take values between 0
and 1. It is interesting to notice that our numerical experiments
on real data sets almost always yield integral optimal solutions.

III. RESULTS

A. Data sets

PPIs of S.cerevisiae are downloaded from DIP database
(Scere20101010) [17], in which there are 25180 interactions
underling 5173 proteins. The clustering coefficient of the PPI
network is 0.0970. Then we get protein-domain compositions
from Pfam database (Pfam 25.0) [18], where 4125 of DIP
proteins are defined with Pfam-A domains. Finally there are

20709 PPIs that both proteins are defined in Pfam database.
iPfam and 3did databases are combined as a golden standard
[19], [20].

B. Enrichment analysis

We evaluate the performance of our model through count-
ing the number of confirmed domain pairs according to the
golden domain interactions, specifically, using ’sensitivity’
and ’fold change’ defined below. Our linear programming
has 30394 variables and 20709 constraints, there are 756
variables(domain-domain interactions) in the golden data set,
we take them as ’positives’. Considering the relative low
fraction of known domain-domain interactions, the rate of false
positives may be excessive, but the effect can be ignored in
the context of investigating the role of the weights.

Sensitivity =
True Positives

True Positives + False Negatives
(15)

=
True Positives

756
(16)

Fold Change =
True Positives

Total Predictions× 756
30394

(17)

We compare the weighted model (WLP) with the previous
model (LP) under varying values of the parameter sd. From
Fig. 1, we can see that when K = 50, WLP outperforms LP
under most settings of sd, the detailed values are shown in
TABLE I.
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Fig. 1. Influence of the weights on the performance of the model. Generally,
WLP (K=50) performs better than LP when sd varies between 0 and 1.

For various values of the parameter K, we point out that
the results are robust (Fig. 2). For a larger K, I1 is smaller
and the number of weighted domain pairs is smaller, on the
other hand, the added weights are more precise.
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Fig. 2. Different settings of the parameter K. Performance of the WLP is
not sensitive to different choices of K.

sd Total Predictions True Positives Sensitivity(%) Fold Change
1 12663 (12663) 377 (372) 49.87 (49.21) 1.20 (1.18)

0.9 10592 (10592) 363 (355) 48.02 (46.96) 1.38 (1.35)
0.8 8521 (8521) 333 (340) 44.05 (44.97) 1.57 (1.60)
0.7 6450 (7102) 311 (304) 41.14 (40.21) 1.94 (1.72)
0.6 4379 (5162) 274 (221) 36.24 (29.23) 2.52 (1.72)
0.5 2708 (3091) 198 (175) 26.19 (23.15) 2.94 (2.28)
0.4 1649 (1620) 145 (145) 19.18 (19.18) 3.54 (3.60)
0.3 953 (779) 109 (89) 14.42 (11.77) 4.60 (4.59)
0.2 467 (279) 74 (37) 9.79 (4.89) 6.37 (5.33)
0.1 136 (63) 31 (16) 4.10 (2.12) 9.16 (10.21)

TABLE I
WLP V.S. LP: NUMBERS IN PARENTHESES ARE RESULTS OF THE LP

MODEL.

C. Significance of the weights

We have shown that the weights computed from empirical
global knowledge indeed improve the prediction accuracy,
though the positive signal is relative weak. Considering our
evaluation is based on the relative few known golden domain-
domain interactions and the added knowledge is just statistical
observation, the effect of the weights deserves further analysis.
In this section, we design a randomization test to show that
the improvement is not obtained by chance. We randomly
choose domain pairs and give them a weight from the standard
uniform distribution on the open interval (0,1), the number of
weighted domain pairs is the same as WLP model. As shown
in Fig. 3, when we choose the weights randomly, the numbers
of true positives never exceed LP model and WLP model in
500 runs (mean=320.0660, sd=7.9712, P -value< 10−5).

D. The parsimony essential of the PPIs

Although the parsimony assumption is widely used in
computational biology, few work has been done to show to
what extent the biology data are organized in a parsimonious
way. In this section, we perform two randomization tests to
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Fig. 3. Performance of the model under random weights

show there is indeed a parsimony phenomenon in explaining
observed PPIs using minimal number of DDIs. We use the
size of minimal spanning set of DDIs as the characteristic of
parsimony degree. We shuffle the interactions of the proteins
and the protein domain compositions separately. Under the
parsimony assumption, we expect a larger size of minimal s-
panning set for the shuffled data set. We run the randomization
procedure 100 times for each strategy, and the histograms are
shown in Fig. 4. Considering that the size of minimal spanning
set is 12663 under real PPIs and protein domain compositions,
we verify the parsimony essential of the PPIs quantitatively
(P -value< 10−10 for both cases).
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Fig. 4. Size of the minimal spanning set under randomization

IV. CONCLUSION

Knowledge about the domain recognition patterns could
provide insights of the organization of PPIs and protein func-
tion. While the DDIs are difficult to determined experimental-
ly, many computational approaches have been proposed aiming
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at discovering the patterns from PPIs. Parsimony based models
show their advantages in easy implementation and detection
of specific DDIs. In this article, we make two reexaminations
of the parsimony model.

First, we show that general property of complex networks
could be integrated into the model and the predict precision
is improved, which to some extend convinces the biological
meanings of the property. In this work, we choose ‘clustering
coefficient’ as a trial, further work should be done to investi-
gate the possibility of using ‘small-world’ and ‘scale-free’ and
we expect a similar effect.

Second, we verify the parsimony assumption in a computa-
tional perspective. Results show that there is indeed a parsimo-
nious organization in PPIs and protein domain compositions,
which corroborates the computational assumption.
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