
The Early Warning Signal of Complex Diseases
Based on the Network Transition Entropy

Rui Liu1, Luonan Chen1,2 and Kazuyuki Aihara1

1.Collaborative Research Center for Innovative Mathematical Modelling,
Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan

2.Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Center for PreDiabetes,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Abstract—Many evidences suggested that during the progres-
sion of complex diseases, the deteriorations are generally not
smooth but abrupt, which may cause a critical transition from
one state to another at a tipping point, corresponding to a
bifurcation of the dynamical system for the underlying organism.
A pre-disease state is assumed to exist before reaching the tipping
point between a normal state and a disease state. Since the pre-
disease state is defined as a limit of the normal state, which
represents an early-warning signal of the disease, it is crucial to
identify such a state so that remedial actions can be executed to
avoid the abrupt transition to the disease state. Although most
complex diseases are model free, and usually only small samples
are available due to clinical limitations, we propose that an index
called the network transition entropy (NTE) may serving as
an early-warning indicator for predicting the critical transition.
Although the theoretical deviation is based on the dynamical
network biomarker (DNB), the application of NTE is DNB free.

I. INTRODUCTION

It has been identified that a sudden change of a system
state exists widely in ecosystems[1], [2], climate systems[3],
[4], economics and global finance[5], [6]. The occurrence of
such a change often corresponds to the critical threshold, or
the so-called tipping point, at which the system shifts abruptly
from one state to another. This is well known in dynamical
systems theory as a bifurcation which results in a qualitative
transition in states or attractors [7], [8]. Recently, evidences
showed that the similar phenomena exist in clinical medicine,
that is, during the progression of many complex diseases, e.g.
chronical diseases such as cancers, the deteriorations are not
smooth but abrupt[9]– [13]. In other words, there exists a
sudden catastrophic regime shift during the process of gradual
health deterioration which results in a drastic transition to the
disease state. In order to describe the underlying dynamical
mechanism of complex diseases, their evolutions are often
modeled as time dependent nonlinear dynamical systems,
in which the abrupt deteriorations are viewed as the phase
transitions at bifurcation points, e.g. for prostate cancer[14],
asthma attacks[9] and epileptic seizures[15]. According to the
progression levels of illness, we divided the process into three
stages, i.e. a normal state, a pre-disease state (or critical state),
and a disease state (Fig.1b-d). The normal state is a steady
state, representing a relatively healthy stage where the disease
is under control or in an incubation period or in a chronic
inflammation period. The pre-disease state is defined as a limit
of the normal state just before the tipping point is reached. At

Fig. 1. | Progression of a complex disease with sudden deterioration
A schematic illustration of dynamical features for disease progression from
a normal state to a disease state through a pre-disease state by potential
functions.

this stage, the process is usually reversible to the normal state
if appropriately treated, implying the instability of the pre-
disease state. However, it becomes usually irreversible to the
normal state if the system passes the critical point and enters
another stable state, i.e. the disease state (Fig.1a-d). Hence,
it is crucial to detect the pre-disease state so as to prevent
the qualitative deterioration by taking appropriate intervention
actions.

To detect the pre-disease state, we have proposed a new
prediction method. Specifically, based on time-course high-
throughput data, it is possible to observe many molecules at
the same instant, from which we may screen out a group
of observables of the following dynamical properties. Firstly,
each of the molecules tends to increasingly fluctuate when
the system approaches to the pre-disease state, which results
in the sharply increasing standard deviation (SD). Secondly,
these molecules are correlated closely when the system ap-
proaches to a critical transition point. Thirdly, the correlations
between any member of the group and other molecules tends
to decrease while near a critical transition point. Based on
the above three generic properties, we have proposed a new
indicator, the dynamical network biomarker (DNB), whose
drastic change in dynamics show the imminent deterioration
of complex diseases.(see [16]) Our previous work not only
overcomes the difficulties due to lack of accurate models, but
sheds light on the prediction even with small samples.

Although the DNB-based detection does provide the early-
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warning signal from the collective behavior of the DNB
members, the accuracy of such detection highly relies on the
chosen members of DNB. However, sometimes it is not easy
to precisely select such DNB members due to the scale of
datasets. In such cases, it requires to construct the DNB-free
indicator, which may also provide early-warning signals when
the system approaches to a transition point. In this paper, we
propose that the network transition entropy (NTE) may serve
as such DNB-free indicator. By calculating the NTE value
during each sampling time period, we may obtain the dynam-
ical tendency of system. The theoretical analysis is based on
the protein-protein interaction networks, the backbone along
which various biological signals can propagate in response
to external stimuli and hence received particular attentions.
Actually, the application of entropy is inspired by many
previous works. Cover considered the random walk process on
the connected graph by introducing the concept entropy rate
[17]. Demetrius et al. proposed the concept network entropy,
to describe the network topology and robustness [18],[19],
see also [20] for further application. Teschendorff suggested
that a metastatic cancer phenotype could be characterised by
an increase in the randomness of the local information flux
patterns, which is measured by entropy [21]. Wieringen et al.
suggested cancer cells molecular entropy may increase while
cancer evolves [22].

II. PRELIMINARY

For a given regulatory network evolving along a time
series, such as protein-protein interaction network, protein-
DNA interaction network and global gene expression graph,
the expression value of each node may vary from time to time
since the regulation effects or external stimuli. It is nature to
regard such variations as state transitions, that is, the whole
network transit from one state to the other. Suppose there are
n nodes in a regulatory network, and for node i the expression
value is zi (i = 1, · · · , n). Assume one state transition is

Z(t) = (z1, · · · , zn)
transit
===⇒ Z(t+1) = (· · · , ẑi, · · · , ẑk, · · · ),

(1)
where symbol ẑi represents that the value of node i changes
in the new state. There may be several reasons causing such
state transition, that is, the randomly changes of some nodes
regulates the others and thus drive the network into a new state.
Each reason results in a possible state transitions. Therefore,
we employ the transition rate to describe the probability of
such ”possible state transition”. Without loss of generality,
such state transition process represents the Markov process
of the network evolution along a time series.

Suppose a transition rate matrix

P = (pi,j),

which represents the probabilities of possible state transitions.
Specifically, for given node index i, pi,j is the jth possible
state transition case that involves value variation of node i.
By discussing how these transition probabilities change as
the system progresses from normal state to pre-disease state,

we intend to construct a composite index which may reflect
the underlying mechanism in dynamics and provide the early-
warning signal to detect the pre-disease state.

We introduce the following notations.
For a given node i, if the jth possible transition process is

presented as (1), which involves the value variation of nodes
i and k, etc., then the corresponding transition probability is

pi,j = p(ẑi, ẑk | zk ),

which means, while under the condition that the changes on
zk drives the network into such possible state transition, the
value of nodes i and k vary in a collective manner.

Besides, assume that the state-transition graph of the net-
work is weighted by Wi,j , the weight of the jth transition case
based on node i. And denote

Wi =
∑

j

Wi,j

as the weight of node i,

W =

n∑

i=1

Wi

as the total weight of the state-transition graph. There are the
following two assumptions about the transition weight. Firstly,
the total weight W is a constant. Secondly, the weight Wi,j

is positively related to the correlations of nodes.
In what follows, we use the weight of the transition to

describe the the proportional probability, that is,

pi,j =
Wi,j

Wi
.

Through such conditional probability, we are able to describe
the critical behavior in dynamics of the network as it approach-
ing to the tipping point, which is arranged in the next section.

For a given regulatory network, one may obtain all the
possible state transitions. Generally, these state transitions
could be orderly listed for each node zi (i = 1, 2, · · · , n)
respectively. As an intuitive illustration, we introduce a 6-
nodes regulatory network (see Fig.2), in which nodes z1, z2,
z3 are supposed to compose the DNB. From this network,
we could get all the possible state transition processes, which
together with the corresponding transition possibilities are
listed in Table 1. In order to simplify the analysis, we claim
that only the direct regulation relationships (the edges between
adjacent nodes) are considered as the possible reasons for state
transition, that is, if there is an edge between nodes i and k,
then in the state transition (1), zj is the condition under which
p(ẑi, ẑj | zj ) is meaningful. Otherwise, p(ẑi, ẑj | zj ) ≡ 0.

III. MAIN RESULTS

In this section, we appeal to certain ideas from ergodic
theory and statistical mechanics to characterize the critical
properties of the transition graph in terms of an n-nodes
network, which is often used to describe the regulation re-
lationship among genes or proteins. Suppose that the basic
regulation is represented by the undirected links between
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Fig. 2. | A 6-nodes illustrative network Each node represents a molecule in the biochemical regulation process. The undirected links between adjacent
nodes show the regulation relationship between them. In this network, nodes z1, z2, z3 are supposed to compose the dynamical network biomarker (DNB).

TABLE I
THE TABLE OF THE STATE TRANSITION RATE.

Nodes States number State transition rate Conditional probabilities

1 p1,1 p( none | none )∗

z1 2 p1,2 p( ẑ1, ẑ2 | z2 )
∑
j

p1,j = 1

3 p1,3 p( ẑ1, ẑ3 | z3 )
4 p1,4 p( ẑ1, ẑ2, ẑ3 | z2, z3 )

1 p2,1 p( none | none )
2 p2,2 p( ẑ1, ẑ2 | z1 )
3 p2,3 p( ẑ2, ẑ3 | z3 )

z2 4 p2,4 p( ẑ2, ẑ4 | z4 )
∑
j

p2,j = 1

5 p2,5 p( ẑ1, ẑ2, ẑ3 | z1, z3 )
6 p2,6 p( ẑ1, ẑ2, ẑ4 | z1, z4 )
7 p2,7 p( ẑ2, ẑ3, ẑ4 | z3, z4 )
8 p2,8 p( (ẑ1, ẑ2, ẑ3, ẑ4 | z1, z3, z4 )

z3 the case of z3 is similar to case z2
∑
j

p3,j = 1

1 p4,1 p( none | none )
z4 2 p4,2 p( ẑ2, ẑ4 | z2 )

∑
j

p4,j = 1

3 p4,3 p( ẑ4, ẑ6 | z6 )
4 p4,4 p( ẑ2, ẑ4, ẑ6 | z2, z6 )

z5 the case of z5 is similar to case z4
∑
j

p5,j = 1

1 p6,1 p( none | none )
z6 2 p6,2 p( ẑ4, ẑ6 | z4 )

∑
j

p6,j = 1

3 p6,3 p( ẑ5, ẑ6 | z5 )
4 p6,4 p( ẑ4, ẑ5, ẑ6 | z4, z6 )

* p( none | none ) represents the probability of the invariant state while under condition ”none of the nodes changes”.

adjacent nodes. And we claim that the discussions below are
in the ideal cases.

Definition For a gene regulatory network with n nodes
(z1, z2, · · · , zn), the network transition entropy is defined as
index

H =

n∑

i=1

μiHi,

and

Hi = − 1

Ti

∑

j

pi,j log pi,j ,

where Ti = SD(zi) is the standard deviation, μ =
(μ1, · · · , μn) is the stationary distribution satisfying μj =∑
i

μipi,j for all j.
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This index is based on the system changes among many
possible states, called network transition entropy (NTE) on
account of the formal similarities with various entropic con-
cepts which arise in ergodic theory. It is worthy noting that
although the NTE index relates to the network, it is different
from the ”network entropy” mentioned in [18], in which the
network entropy is actually based on the random walk on the
network, from nodes to nodes. The NTE reflects the possible
transitions among different states of the network. Through the
variation of conditional transition rate pi,j , the NTE tendency
describes the collective changes of nodes in dynamics when
the system approaches to the tipping point.

According to the theoretical derivation of [16], we know
that when the system approaches to the tipping point, or
equivalently, is in pre-disease state, there are the following
generic properties:

• If both zi and zj are in the dominant group (or DNB),
then

PCC(zi, zj) → ±1,

while SD(zi) → ∞ and SD(zj) → ∞,
• if zi is in the dominant group but zj is not, then

PCC(zi, zj) → 0,

while SD(zi) → ∞, and SD(zj) approaches to a bounded
value,

• if neither zi nor zj is in the dominant group, then

PCC(zi, zj) → a, a ∈ (−1, 1) \ {0}

while both SD(zi) and SD(zi) approach to bounded
values respectively,

where PCC is short for the Pearson’s correlation coefficient,
SD for the standard deviation.

In the light of the above generic properties when near the
transition point, the nodes in a regulatory network could be
divided into four groups according to the network structural
features: (1). DNB nodes which are linked with DNB nodes
only, e.g. z1 (see Fig.2). (2). DNB nodes which are linked with
outside nodes, e.g. z2 and z3). (3). Non-DNB nodes which has
linkage with DNB nodes, e.g. z4 and z5. (4). Non-DNB nodes
that has no linkage with DNB nodes, e.g. z6.

Although under the stochastic perturbation, the expression
of each node zi may differ from instant to instant, we illustrate
that the index Hi for each node zi progresses steadily as the
system approaching to the critical tipping point as following
cases.

A� For the Type 1 nodes (e.g. DNB member z1, which is
linked with other DNB members z2 and z3 only), since in the
pre-disease state, the correlations among the DNB members
(e.g. z1, z2, and z3) increase sharply, the expressions of these
nodes fluctuate in strongly collective manner, inferring that if
any one of them changes, then most probably the other two
nodes change accordingly. Therefore, the state transition that
all the expression of DNB members changes collectively, takes

the most probability, while the other possible state transitions
are unlikely to happen. For the specific example,

p1,4 = p( ẑ1, ẑ2, ẑ3 | z2, z3 ) → 1,

while other p1,i → 0. Besides, T1 = SD(z1) → ∞, which
leads to

H1 = − 1

T1

∑

j

p1,j log p1,j → 0.

B� We focus on the Type 2 nodes, e.g. DNB member z2 (and
z3), which not only linked with DNB members z1 and z3 (z2)
but also with non-DNB node z4 (z5). In the pre-disease state,
since the correlations between DNB members and non-DNB
nodes decrease drastically, it is unlikely that perturbations on
non-DNB nodes would influence the DNB members. It follows

p2,4 = p( ẑ2, ẑ4 | z4 ) → 0.

The same case holds for p2,6,p2,7 and p2,8. Besides, p2,1,p2,2

and p2,3 are also approaching to 0 due to the same reason in
A�. The exception is

p2,5 = p( ẑ1, ẑ2, ẑ3 | z1, z3 ) → 1

due to the strongly collective behavior of DNB (z1, z2, z3) in
dynamics, while others approaches to 0. Considering T2 =
SD(z2) → ∞, we have

H2 = − 1

T2

∑

j

p2,j log p2,j → 0.

Obviously, the same case holds for z3 and H3.
C� Then we discuss the Type 3 nodes, e.g. z4 (and z5) which

is outside the DNB but has linkage with DNB member z2 (z3).
In the pre-disease state, since the correlations between DNB
members and Type 3 nodes decrease drastically, it is unlikely
that the variation of DNB members would influence the Type
3 nodes. It follows

p4,2 = p( ẑ2, ẑ4 | z4 ) → 0.

On the other hand, since there are no significant changes
in the correlations among non-DNB nodes, the probability of
the state transition that perturbations on some non-DNB nodes
drive the other non-DNB nodes change, is no less than that
in normal state, e.g. p4,1, p4,3 are no less than their values in
normal state. Considering p4,1 + p4,3 + p4,4 = 1, and T4 =
SD(z4) has little changes comparing with its value in normal
state on account of SD(z4) approaching to a bounded value,
it infers that the value of H4 in pre-disease state is no larger
than that in normal state. Moreover, we can estimate the upper
bound of H4, that is, when the system is in the pre-disease
state, it holds

H4 = − 1

T4

∑

j

p4,j log p4,j

= − 1

T4
(p4,1 log p4,1 + p4,3 log p4,3 + p4,4 log p4,4)

< − 1

T4
log

(
1

3

)
.
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Fig. 3. | Sketch of the network transition entropy As the disease
progressing, the NTE changes from high level (the normal state), to low level
(pre-disease state), then back to high level again (disease state). The sketch
shows that the sudden change in NTE may serve as an early-warning signal
to detect the pre-disease state.

The last inequality holds as a result of the conditional extreme
value. Actually, denote f = f(a1, a2, a3) = − ∑

k

aklog(ak),

where
∑
k

ak = 1. From

{
fa1 = log(a1) − log(1 − a1 − a2) = 0,
fa2 = log(a2) − log(1 − a1 − a2) = 0,

we know that a1 = a2 = a3 is the necessary condition for the
minimal value of f , which with the boundary condition leads
to the above inequality. Obviously, the same case holds for z5

and H5.
D� For the Type 4 nodes (e.g. non-DNB node z6 which has

no linkage with any DNB member), since even in the pre-
disease state, there are no significant changes in correlations
between Type 4 nodes and other nodes, the probability of
each possible state transition remain invariant, e.g. proba-
bilities p6,j have no large-scale fluctuates. Besides, in view
of T6 = SD(z6) approaching to a bounded value, H6 =
− 1

T6

∑
j

p6,j log p6,j has the similar value as its expression

in the normal state and could be viewed as an invariant.
Now we consider the stationary distribution μ, which pos-

sesses the following expression

μi =
Wi

W
,

since
∑

i

μipi,j =
∑

i

Wi

W

Wi,j

Wi

=
∑

i

1

W
· Wi,j

=
Wj

W
= μj .

The stationary probabilities are proportional to the transition
weights. Remind the assumptions that the total weight W
is a constant, while the weight Wi,j is positively related
to the correlations of nodes. We now have the qualitative

changes in Wi as the system progressing into pre-disease state,
that is, W1 increases because the average correlation of z1

with other nodes increase sharply, inferring μ1 increases; W4

decreases because the correlation of z4 with z2 approaches
to 0, while the correlations of z4 with other nodes have
no significant changes and remain low levels, inferring μ4

decreases (the same case holds for W5 and μ5); W6 keeps
invariant since no significant changes occur in the correlations
of z6 with its neighbors, inferring μ6 keep invariant. Cases
for W2 and W3 are complex, since there are correlations
decreased (corr(z2, z4), corr(z3, z5), etc.), while other corre-
lations increased (corr(z2, z1), corr(z3, z2), etc.). However,
since H2 → 0 and H3 → 0 as the system approaching to the
tipping point, it is simple for the pre-disease state.

Considering all the discussions above, we have

Hpre−disease =

6∑

i=1

μiHi

→ μ1 · 0 + μ2 · 0 + μ3 · 0 + μ4 · H4 + μ5 · H5 + μ6 · H6,

and thus Hpre−disease < Hnormal, which provides the early-
warning signal we need (see Fig.3).

IV. NUMERICAL SIMULATION

To demonstrate the effectiveness and applicability of NTE,
we carried out numerical simulation. We propose the following
equations representing gene regulations among a five-gene
network:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz1(t)
dt = (90|P | − 1236) + 240−120 |P |

1+z3(t)
+

1488z4(t)
1+z4(t)

− 30|P | z1(t) + ζ1(t),
dz2(t)

dt = (75|P | − 150) + 60−30 |P |
1+z1(t)

+
(240−120 |P |)z3(t)

1+z3(t)
− 60 z2(t) + ζ2(t),

dz3(t)
dt = −1056 + 1488 z4(t)

1+z4(t) − 60z3(t), +ζ3(t)
dz4(t)

dt = −600 + 1350 z5(t)
1+z5(t)

− 100z4(t) + ζ4(t),
dz5(t)

dt = 108 + 160
1+z1(t)

+ 40
1+z2(t)

+ 1488
1+z4(t)

−
300 z5(t) + ζ5(t),

,

where P is a scalar control parameter, ζi(t) (i = 1, 2, · · · , 5)
are Gaussian noises with zero means and covariances κij =
Cov(ζi, ζj). zi (i = 1,··· , 5) respectively represents the
concentration of mRNA-i. The gene regulations are repre-
sented by the Michaelis-Menten form except degradation rates,
which are linearly proportional to the concentrations of the
corresponding genes. The degradation rates for mRNAs are
(30P, 60, 60, 100, 300).

For the calculation of conditional probability

p( �X|�Y ) =
p( �X, �Y )

p(�Y )
,

where both �X and �Y are vectors, we employ the Gaussian
Kernel Estimator. Specifically, if �Y = (y1, · · · , yn) and there
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Fig. 4. | Numerical simulation The horizontal axis represents the control
parameter P , which varies from 0.44 to -0.04 and the critical threshold is
P = 0 corresponding to the bifurcation point. The vertical axis is the network
transition entropy. From the simulation curve, when the system approaches to
the tipping point (P = 0), the NTE decreases sharply.

are N samples (�S1, · · · , �SN) for Y , then

p(�Y ) =
1

N

N∑

i=1

1

(2 π)n/2|C|

· exp

(
−1

2
(Sj − Si)

T C−1 (Sj − Si)

)
,

where C is the covariance matrix of Si (i = 1, · · · , N), each
Si is an n-dimensional vector.

From the numerical simulation, we see that the change
in index NTE indicates the approaching of tipping point.
Therefore, NTE may serve as an early-warning signal for
detecting the abrupt catastrophic change of the network (see
Fig.4).

V. CONCLUSION

In this work, from both view of theoretical analysis and
numerical simulation, we proposed that the drastic change
in network transition entropy (NTE) may provide an early-
warning signal as the system approaching to the critical tipping
point (see Fig.3 and Fig.4). Since the decrease of NTE index
occurs when the system approaching to the tipping point,
the critical decrease is sudden and may be abrupt, which
makes the signal distinguishable. Besides, we point out that
the application of NTE could be straightforward, by simply
calculating Hi corresponding to each node zi. Therefore, the
application of NTE is DNB-free, although the theoretical
derivation is based on the characteristics of DNB members.
Clearly, this work is merely a first step towards accurately
detecting pre-disease state through NTE, since calculating the
state transition probability is still a tough task when there are
massive regulation relationships.
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