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Abstract—More and more gene expression data are available
due to the rapid development of high-throughput experimental
techniques such as microarray and next generation sequencing
(NGS). The gene expression data analysis is still one of the
fundamental tasks in bioinformatics. In this paper, we propose
a new profile-state hidden Markov model (HMM) for analyzing
time-course gene expression data, which gives a new point of
view to explain the variation of gene expression and regulation
in different time. This model addresses the bicluster problem in
time-course data efficiently and can identify the irregular shape
and overlapping biclusters. The comprehensive computational
experiments on simulated and real data show that the new
method is effective and useful.

I. INTRODUCTION

High-throughput experimental techniques such as microar-
ray and next generation sequencing (NGS) have been widely
used for measuring expression levels of thousands of genes
simultaneously. The gene expression data analysis is one of the
fundamental tasks in bioinformatics in the post-genomic era.
For example, clustering gene expression data has been applied
for predicting gene functions [1], discovering transcription
regulations [2], revealing cell populations [3], understanding
disease processes [4]. The underlying assumption is that the
expression levels of genes with similar functions, on the same
pathway, or regulated by same transcriptional factors may
be highly correlated. On the other hand, using the clusters
instead of individual genes can greatly reduce the curse of
dimensionality in downstream studies. Many approaches have
been proposed for clustering gene expression data in the past
decades.

However, a cellular process is active only under some
conditions and a single gene may participate in multiple
pathways [5]. Therefore, it may be difficult to find the genes
that correlate with each other in all conditions or time points.
Instead of clustering genes only, we need simultaneously find
out the genes and the conditions under which these genes have
similar expression profiles. This problem is called biclustering.
There are already many biclustering methods such as spectral
biclustering [6], Cheng and Church’s algorithm [7], iterative
signature algorithm [8], high-dimensional linear geometries
method [9], non-negative matrix factorization [10], nonpara-
metric bayesian biclustering [11].

In this paper, we propose a novel temporal biclustering algo-
rithm based on profile-state hidden Markov model (HMM) for

(a) (b)

Fig. 1. (a) A gene expression matrix with ten genes that have the same
expression profiles under six continuous time points. The blue cells are other
irrelevant expression values. (b) The rows of gene expression matrix are
reordered to show the bicluster clearly.

analyzing time-course gene expression data. As an important
and useful tool for bioinformatics, HMM has been widely
adapted to analyze gene expression data [12], [13], [14], [15].
However, to the best of our knowledge, there is no method
based on HMM for biclustering problem. Using a hidden state
to represent an expression profile, we can deal with any type
of profile in a bicluster. Several computational experiments on
the simulated and real data are conducted to show that the new
method can find biclusters in time-course data efficiently and
accurately.

II. METHOD

A. Biclustering Problem

Here we briefly give a description of the biclustering
problem on time-course gene expression data. Given a gene
expression matrix with n genes (rows) and m time points
(columns), the temporal biclustering problem is to find a subset
of genes I and a continuous segment of time points J , such
that the expression values of genes I follow a desired profile
under time points J , as shown in Figure 1. More detail of the
biclustering problem can be found in [16].

B. Profile-State HMM

A standard HMM is characterized by the following elements
[17]: 1) N , the number of hidden states. 2) M , the number
of distinct observation symbols, which is only valid for the
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discrete HMM and not used here since the gene expression
values are continuous values. 3) A = {aij}, the state transition
probability distribution, where aij is the transition probability
from state i to j. 4) B = {bj(l)}, the emission probability
distribution, where bj(l) is the emission probability to observe
l in state j. In gene expression data analysis, l is the gene
expression value. 5) π = {πi}, the initial state distribution,
where πi is the start point probability of the state i. An HMM
is often simply notated as λ = (A, B, π).

In order to model the time-dependence of the time-course
gene expression data, we assume that expression values of
each gene are from a Markov process, which is widely used
by many existing clustering methods [14]. Each gene stays
in one state at a time point. The gene can stay in the same
state or switch to other states in the next time point. The
genes in the same state have similar expression pattern which
is modeled by the state profile. For example, the genes in
the same state may participate in the same pathway, and the
transition to other states may indicate the gene no longer takes
part in the pathway associated with the old state. Generally,
the transitions between different states only happen at a few
of time points. In other words, the probability of staying in
the same state is often larger than that of transiting to other
states.

The profile of state k can be parameterized as: Pk =
{(μk1, σk1), · · · , (μkj , σkj), · · · , (μkm, σkm)}, where m is
the number of time points in the gene expression data, μkj is
the mean expression value and σkj is the standard deviation
of the genes in state k at time j. The expression value of each
gene in state k at time j follows a normal distribution defined
by the corresponding profile Pk, that is, xij ∼ N(μkj , σkj)+ε,
ε ∼ N(0, σ), where σ is unknown. In order to reduce the
model complexity and risk of overfitting, in this study we
assume that the Markov chain is time-homogeneous, that is,
A = {aij} is same during all time points. To model the
genes which are different from all state profiles, we add an
background (outlier) state.

C. Biclustering with Profile-State HMM

Given the gene expression data with n genes and m time
points, the profile-state HMM is firstly trained by using EM
algorithm [18]. Then Viterbi algorithm [17] is applied to infer
the hidden state sequences for all genes. Finally, the genes are
reordered to show the biclusters clearly.

Initialization Given the gene expression matrix G, the
number of states N in profile-state HMM is set as K + 1,
that is, K biclusters with one background state. K should
be less than the upper bound of possible biclusters and
larger than the actual number of biclusters. The transition
probabilities are initialized uniformly except the self transition,
i.e. aij = (1 − aii)/(N − 1) for j �= i. The initial state
probabilities are set as πi = 1/N . The initial state profiles
are generated by hierarchical clustering genes into N clusters.
Then the means and standard deviations of N clusters are
assigned to the state profiles. The emission probability for
the gene with expression value l in the state k at time j

is computed as bkj(l) = Pr(x = l|N(μkj , σkj)), while the
emission probability for the gene in background state is set as
b0(l) = σ0, where σ0 is a predetermined parameter.

Parameters update The parameters are updated by EM
algorithm as follows.

aij =
the number of transitions from state i to state j in all genes

the number of transitions from state i in all genes
;

μkj =the mean of expression values of genes in state k at time j;

σkj =the standard deviation of expression values of genes in

state k at time j.

Post process The hierarchical clustering algorithm is
applied to show the bicluser clearly. For each state k of
HMM (i.e. bicluster), we construct the state index matrix Sk

as follows. The matrix has the same dimension as the gene
expression matrix, i.e. n rows and m columns. Each row
denotes a gene and each column represents a time point. If the
gene i is in the state k at time point j, Sk

ij is set as 1, otherwise
0. Then the rows of state index matrix are reordered by using
hierarchical clustering. By this way, we get a reordered state
index matrix for each bicluster, which can clearly show the
structure of the bicluster.

III. RESULTS

The proposed profile-state HMM method was implemented
by using Matlab. The Matlab toolbox HMMall1 is used to
train the HMM model and infer the state labels. We set all the
initial self transition probability aii = 0.9.

The computational complexity of HMM method is
O(InmK2) where I is the iteration number, and the data
matrix is n rows by m columns. In all experiments, HMM
method stops in less than 50 iterations.

A. Simulated data

In order to investigate the performance of profile-state
HMM, we run the computational experiments on the simulated
data with different patterns, different noise levels and different
number of biclusters.

The first example contains 100 genes and 20 time points
with two simulated biclusters. The first bicluster is 10 gens
in time points from 6 to 15 with mean expression values
[0.2, 0.5, 0.8, 0.9, 1, 1, 0.9, 0.8, 0.7, 0.6]. The second bicluster
is 15 genes in time points from 3 to 13 with mean ex-
pression values [1, 0.7, 0.4, 0.3, 0.3, 0.5, 0.7, 0.9, 0.8, 0.7, 0.6].
Other gene expression values are randomly drawn from the
uniform distribution on the interval [0, 1]. Noise is imitated
by random values drawn from a zero-mean normal distri-
bution with different standard deviations 0.01, 0.02, 0.03,
respectively. Figure 2 (a) and (b) shows the simulated gene
expression values with noise level 0.03. The HMM method
with K = 4 and σ0 = 0.27 get the correct results for all the
noise levels, as shown in Figure 2 (d).

1http://www.cs.ubc.ca/∼murphyk/Software/HMM/hmm.html
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Fig. 2. The simulated data with two biclusters. (a) The expression values of
all genes. (b) The heat map of expression data with noise level 0.03. (c) The
state labels output by CCC biclustering. (d) The state labels output by HMM.

We also test five existing clustering methods with the default
parameters based on the software platform BiCAT [19] for
clustering-based data analysis on the same data. All methods
fail to find two biclusters while the noise is increasing.

The second example contains one bicluster with irregular
shape (non-rectangle) as shown in Figure 3 (a). The result of
HMM with K = 7 and σ0 = 0.05 shows that the bicluster is
clearly identified (Figure 3 (c–d)).

The third example is similar as in [9], which contains four
overlapping biclusters with a cos curve in 7 time points, a sin
curve in 10 time points, a linear increasing curve in 12 time
points and a linear decreasing curve in 9 time points, as shown
in Figure 4 (a). The noise is drawn from a normal distribution
with standard deviation 0.1. The result of HMM with K = 7
and σ0 = 0.05 is shown in Figure 4 (c–h).

To compare with the temporal biclustering methods, we test
the CCC biclustering [20] on the same simulated examples. We
set the parameter of overlapping as 0.25. The CCC biclusters
are firstly sorted by the statistical significance p-value and
then filtered by the parameter of overlapping. The results are
shown in Figure 2 (c) (Only the result with noise level 0.03 is
shown here), Figure 3 (b) and Figure 4 (b), respectively. These
results show that our method is more accurate for identifying
biclusters.

B. Real data

The profile-state HMM is applied to the time-course gene
expression data obtained from a well-established model of
T-cell activation process in [21] with 58 genes and 10 time
points, as shown in Figure 5 (a). Firstly, the expression values
of each gene are normalized to zero median. By applying
HMM method with K = 20, three time-lapse biclusters
are found with different expression profiles. The result is
shown in Figure 5 (b). We use the g:profiler [22] tool to
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Fig. 3. The simulated data with irregular shape biclusters. (a) The heat map
of expression data. (b) The state labels output by CCC biclustering. (c) The
state labels output by HMM. (d) The bicluster identified after post-processing.

analysis the enrichment of GO terms for the three biclusters.
The enrichment terms are corresponding to three phases:
macrophage activation, G1 phase, activation of immune re-
sponse, respectively, which are clearly described in the T-cell
activation process. This result shows that our method can find
the dynamic functional variation in actual biological processes.

IV. DISCUSSION AND CONCLUSION

In this paper, we developed a profile-state HMM for an-
alyzing time-course gene expression data. The profile-state
HMM addresses a special case of biclustering problem in
which the columns are not interchangeable. Each state of
HMM is a profile that represents a bicluster center. The major
advantage of new method is that it can find the irregular shape
and overlapping biclusters, while most of existing biclustering
methods focus on discovering regular shape biclusters. For
biological data such as gene expression, the bicluster means
that the genes have similar expression pattern in some time
interval. But this time interval may not be exactly same for
all genes in the bicluster. In other words, the genes in the same
bicluster may not enter or leave the mode at the same time,
so that the bicluster does not necessary have regular rectangle
shape. Therefore, the new method is more suited for analyzing
time-course gene expression data.

There are two important parameters in the new method.
The first is the number of biclusters K . A large K can
reveal more small biclusters, but may bring the risk that the
large bicluster is divided into several parts. The second is the
emission probability of background state σ0. Increasing σ0

will let more gene expression values are filtered out from
any bicluster. That is, the sizes and standard deviations of
biclusters will decrease, and the biclusters will become more
tight. However, how to adaptively determine the parameters
K and σ0 is still an ongoing research.
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Fig. 4. The simulated data with overlapping biclusters. (a) The heat map of
expression data. (b) The state labels output by CCC biclustering. (c) The state
labels output by HMM. (d)(e)(f)(g)(h) Five biclusters identified after post-
processing. (f) and (h) are small fake biclusters due to noise. Two overlapping
biclusters are merged in (d) since they have similar expression values in the
overlapping time points.

The proposed HMM method is only for biclustering time-
course gene expression data instead of more general gene
expression data in time independent conditions [6]. Another
limitation is that the current model assumes all genes in the
same cluster have similar gene expression values at the same
time point. The assumption that all genes in the same cluster
have similar gene expression trend at the same time point will
be more reasonable. One simple way to do this is using the dif-
ferences between the expression values at two consecutive time
points. The assumption of time-homogeneous Markov chain is
also not very reasonable. But simply removing this assumption
may lead overfitting and fragmentation of biclusters. This will
be one of the major challenges of further research.
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Fig. 5. Real data. (a) The T cell expression data with 58 genes and 10 time
points. (b) The profiles of three biclusters with different expression values.
The gene expression values before normalization are used.
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