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Abstract—Many networks are proved to have community
structure. Dense communities have been intensively investigated
in recent years, oppositely seldom attention has been paid to
sparse ones, which refer to those communities induced by low
or middle-degree nodes rather than high-degree components.
Recently, it has gradually been recognized that sparse community
is also an important structure in biological networks because
most disease genes and drug targets are within it. In this paper,
we propose a dynamical method to extract sparse communi-
ties in complex networks by constructing local synchronization
properties of phase oscillators. Compared to dense communities,
sparse ones provide more general building and functional blocks
in the networks without emphasis on the dominance of internal
degrees over outside ones as well as the constraints of high degree
connectors.

Index Terms—Complex network; sparse community structure;
dynamical method; local synchronization.

I. INTRODUCTION

In complex network study, community structure refers to a
group of nodes with denser linkages internally and sparser
connections between groups. Often, the difference between
the internal degrees and those of intragroup is used to de-
fine the network structure from topology only. Identifying
communities within a network is a rather difficult task. The
number of communities, if any, within the network is typi-
cally unavailable. And the communities are often of various
density, size and practical meaning. A number of methods have
been developed and achieved various level of success. Most
community detection methods focus on directly partitioning
the entire network into communities, without considering that
some nodes may not fit in with any of them, and forcing
every node into a community can distort the truly underlying
results. Very recently, Zhao et al. [1] proposed an approach
that extracts only dense communities, allowing for arbitrary
structure in the remainder of the network. The dense subgraphs
in a network are generally identified as the communities, while

the other particular subnetwork structures also have particular
implications.

Different from the existing works to detect dense com-
munity structures in complex networks, in this paper our
attention focuses on the sparse communities. Compared to
these dense communities, the communities considered here
do not have the constraints of components with high degrees
or of hubs in the network. They refer to the communities of
functional implications without the preference of nodes of the
highest degree. These communities correspond to more certain
functionally important building blocks without constraints of
dense topological structure.

Generally, the dense communities in a complex network are
regarded as important blocks from topological perspective. The
dense subgraph tends to contain nodes with high degrees and
many of them are hubs and connectors. While in many cases,
hub nodes should not highly relate to certain functions. The
building blocks of a community in the complex network are
not singly referred to the dense subnetworks. For instance,
disease genes are usually not hubs in a protein interaction
network because it would be mortal for individuals [2]. Also,
from the controllability perspective, driver nodes in a network
tend to avoid hubs and the fraction of driver nodes is signif-
icantly higher among low-degree nodes than among the hubs
[3]. Those important disease and driver genes do not show the
preference of hubs in the networks. Hence, to identify these
important functional components, we need to focus on these
communities with low or middle-degree nodes, i.e., sparse
communities, which are functional blocks of the network in
which those driver nodes performing critical functions are
contained.

By constructing a local synchronization strategy of phase
oscillators, in this paper we propose a dynamical method
to extract communities induced by low or middle-degree
nodes in complex networks. Without special requirements
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and constraints of high degrees and linkage densities in the
communities, we identify sparse communities in the network
with particular implications and functional importance. More-
over, instead of decomposing nodes into certain communities,
we extract sparse communities by synchronization strategy
directly. Specifically, we identify these interesting sparse com-
munities in two social networks as well as one protein-
protein interaction network. The results show that these sparse
communities play important roles with both practical and
functional implications.

II. METHODS

To extract sparse communities in the network, our attention
will be focused on the area with low or middle-degree nodes.
The methodology adopted here is based on synchronization
properties of phase oscillators, for which a local synchroniza-
tion strategy is constructed for the considered nodes.

A. The dynamical model

Synchronization is one of the most captivating cooperative
phenomena in nature. It is widely observed in biological,
chemical, physical, and social systems, and it has attracted the
interest of scientists for centuries. The dynamics of complex
networks has been largely studied in recent years [4], [5]. The
emergence of synchronization patterns in these networks has
been shown to be closely related to the underlying topology
of interactions. For example, some researchers demonstrated
that the dynamical process towards synchronization shows
different patterns over time intrinsically connected with the
hierarchical organization of communities in complex networks
[6]. The ubiquity of synchronization phenomena in the real
world makes this approach appealing from a physical and
biological perspective.

One of the most successful attempts to understand synchro-
nization phenomena was from Kuramoto [7], who analyzed a
model of phase oscillators coupled through the sine of their
phase differences. The model is rich enough to display a large
variety of synchronization patterns and sufficiently flexible
to be adapted to many different contexts [8]. The Kuramoto
model consists of a population of n coupled phase oscillators
where the phase of the ith unit, denoted by θi, evolves in time
according to the following dynamics:

dθi

dt
= ωi +

∑

j

Kijsin(θj − θi) i = 1, . . . , n (1)

where ωi stands for its natural frequency and Kij describes
the coupling between units. The original model studied by
Kuramoto assumed mean-field interactions Kij = K, ∀i, j.
Some algorithms for community detection have been devel-
oped based on Eq. (1) [9].

In this paper our goal is to extract low or middle-degree
modules, so we construct a local synchronization strategy
of phase oscillators for this purpose. In detail, consider an
undirected network G(V, E) with the node set V , the edge set
E depicted by the symmetric adjacency matrix A = [aij ]n×n,
where aij = 1 if nodes i and j are connected and otherwise

aij = 0, and n is the size of the network. The modified
Kuramoto model is used as:

dθi

dt
= σ

∑

j

aijeijsin(θj − θi), i = 1, . . . , n (2)

where σ is the coupling strength, and E = [eij ]n×n is another
0-1 matrix whose elements can be determined based on the
topological structure of the low or middle-degree nodes which
will be introduced in the next subsection.

The coefficient aij means that only the two connected nodes
could be coupled, and eij assigns real coupling such that only
the low or middle-degree nodes satisfying certain conditions
can be coupled. These two terms jointly ensure that the sparse
communities can be extracted by this model.

B. The algorithm for extracting sparse communities

Based on Eq. (2), an iterative algorithm is proposed here.
Because the goal is to extract sparse communities in the
area of the low to middle-degree nodes in the network, two
parameters d1 and d2 are introduced, which are the minimal
and maximal degrees of the nodes considered, respectively. A
local synchronization strategy of phase oscillators is realized
by properly defining the eij , which ensures that the extracted
sparse communities are relatively dense in the sparse area
of the network. In detail, the algorithm for extracting sparse
communities is as follows:

1) Choose d1 and d2, respectively, according to the degree
distribution of the network.

2) Let S denote the set of nodes with degrees in the
interval [d1, d2]. For i, j ∈ S, if i, j have common
nearest neighbors in S, or the intersection of i′s nearest
neighbors in S with j′s second nearest neighbors in S
is nonempty and vice versa, eij = 1; otherwise, eij = 0.

3) Initially, θi is randomly and uniformly distributed in the
intervals [0, 2π]. In this paper we choose the coupling
strength σ as 10. Numerical results are obtained by
integrating Eq. (2) using the Runge-Kutta method with
step size 0.01.

4) The iteration will be stopped if the number of steps
reaches some preassigned number, where 1000 is used
in this paper.

5) If the difference of the phases of the nodes is less than
0.0001, they are in the same sparse communities.

III. EXPERIMENTS

We test the performance of the proposed method by ap-
plying it to three real-world networks. At first, two small
social networks are employed and the corresponding results
can provide us an intuitive understanding about the sparse
community. Then a large biological network, i.e., the human
protein-protein interaction network, is introduced and the
distributional properties of middle-degree drug targets and
disease genes in the sparse communities are also investigated.

For the coupling strength σ in Eq. (2), if it is too low or high,
the number and the size of the extracted sparse communities
usually tend to small. For the experiments in this paper the
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value between 8 and 30 is considered to be appropriate, here
σ = 10 is used. On the other hand, because of the randomness
of the initial phases of the oscillators, the results may be
different for different runs. Here the results are obtained by
picking out all the largest different subgraphs through three
runs. Without special statement, only the sparse communities
with more than three nodes are presented in the following
experiments.

A. The karate club network

The famous karate club network analyzed by Zachary [10]
is widely used as a test example for benchmark of detecting
communities in complex networks [11]. The network consists
of 34 members of a karate club as nodes and 78 edges
representing friendship between members of the club which
was observed over a period of two years (Fig. 1). Due to a
disagreement between the club’s administrator (node 34) and
the club’s instructor (node 1), the club split into two smaller
ones, which are represented by circles and squares in Fig. 1,
respectively.

a)

b)

Fig. 1. The karate club network and the sparse communities (the groups of
red nodes) extracted by Eq. (2) and the proposed algorithm. Two situations
are investigated: a) d1 = 2 and d2 = 6, and b) d1 = 3 and d2 = 6.

A huge number of the existing methods intended to uncover
the actual division of the original club, and therefore a proper
partition of the network is a solution of these methods. Our
goal is not to partition the network into communities, but just
to extract the sparse ones induced by low or middle-degree
nodes. From Fig. 2, we know that most nodes in the karate
club network have degrees from 2 to 6 (about 82%). Although
high-degree nodes (or hubs) (now with degrees not less than 9)
are important in the network (for examples, nodes 1 and 34 ),
we concentrate here on the low to middle-degree nodes only
for our purpose of detecting interesting communities. Using
Eq. (2) and the proposed algorithm, two sparse communities
were extracted. The results are displayed in Fig. 1, where a)

Fig. 2. The degree distribution of the karate club network.

and b) correspond to d1 = 2 and d2 = 6, and d1 = 3 and
d2 = 6, respectively.

For each of the sparse communities in Fig. 1, although any
node’s degree is not too high, close relationship is held among
the members of the community. For practical implications,
they may usually as a whole form a sparse community to
carry out the commands of the administrator or the instructor
in the karate club.

B. The scientific collaboration network

The scientific collaboration network collected by Girvan and
Newman [12] is another widely used test example for methods
of detecting communities in complex networks. This network
consists of 118 nodes (scientists) and 200 edges (representing
the collaboration among these scientists). It is rather a sparse
network because the average degree of each node is only about
1.7. The degree distribution of the network is displayed in Fig.
3.

Fig. 3. The degree distribution of the scientific collaboration network.

Naturally the scientists belong to four groups according
to their research interests, i.e., structure of RNA, statistical
physics, mathematics ecology and agent-based models, which
are represented by different colors in Fig. 4 and Fig. 5. Some
collaboration is observed between the last two groups, but it is
very little between other groups. Usually scientists cooperated
with others in the same group, especially many members
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worked with the hubs (very large-degree nodes) in the first
three groups.

Structure of RNA

Statistical Physics

Mathematics
Ecology Agent-based Models

Fig. 4. The scientific collaboration network and the extracted sparse
communities encompassed by dashed lines (d1 = 2 and d2 = 8).

Fig. 3 indicates that the network has many leaf nodes (one-
degree nodes). Its degrees are gathered in the interval [1, 8].
Ignoring the leaf nodes, those with degrees 2 to 8 have a
proportion of about 73%. Using Eq. (2) and the proposed
algorithm, when we chose d1 = 2 and d2 = 8, seven sparse
communities were extracted (Fig. 4); and when d1 = 3 and
d2 = 8 were used, five sparse communities were obtained
(Fig. 5).

Structure of RNA

Statistical Physics

Mathematics
Ecology Agent-based Models

Fig. 5. The scientific collaboration network and the extracted sparse
communities encompassed by dashed lines with d1 = 3 and d2 = 8.

Fig. 4 and Fig. 5 demonstrate that, in the area of low
to middle-degree nodes in the network, we extracted the
subgraphs although each member in them has not so much
collaboration with others like the hubs, there are still much
collaboration within the subgraphs relative to outside parts. For
each interest group, because of the wide collaboration between
the hub with others, the research interest may be influenced

by the hub. But on the other hand, the hub’s interest may also
be influenced by the sparse communities connecting to it due
to the close collaboration within the communities.

C. Simple applications to drug target and disease gene anal-
ysis in the human protein-protein interaction network

There is a growing awareness that networks of protein
interactions and gene regulations are the keys to understand
diseases and find accurate drug targets [13]. There have been
several studies on the structure and statistical properties of
protein interactions and how disease genes and drug targets
are distributed over the protein-protein interaction (PPI) net-
works [2], [14], [19]. Here we further investigate the possible
modules to which disease genes and drug targets may belong
in the human PPI network, with the expectation that it should
provide us a clue to find other disease genes and get possible
drug targets in the future.

The human PPI data here used are from [2], [14], which
is obtained by using two high-quality systematic yeast two-
hybrid experiments [15], [16] and PPIs from literature by man-
ual curation [15]. The integrated set of PPIs contains 22,052
non-self-interacting, nonredundant interactions between 7,496
genes, of which 1,203 are associated with diseases by the
Online Mendelian Inheritance in Man (OMIM; [17]) and 263
are targets of FDA-approved drugs [18].

Hase et al. [19] studied the architectural properties of the
PPI network structures, and revealed that there are extensive
interconnections among middle-degree nodes that form the
backbone of the networks. Further analysis on the degree
distribution of human drug targets and disease genes indicated
that there are advantageous drug targets and disease genes
among nodes with low to middle-degree nodes.

Our analysis focuses on middle-degree nodes, i.e., the
nodes with degrees from 6 to 30 in the human PPI network
according to [19]. There are 89 middle-degree drug targets and
396 middle-degree disease genes respectively in the network.
Using Eq. (2) and our algorithm, four sparse communities
were extracted, in which there is a very large community with
1357 nodes. We found that 73 of 89 (i.e., about 82%) middle-
degree drug targets are in this community. That is to say, these
middle-degree target genes are mostly on the backbone of
the network. Such network properties provide the rationale
for combinatorial drugs that target less prominent nodes to
increase synergetic efficacy and create fewer side effects.

Furthermore, if the nodes with degrees 6 to 10 are consid-
ered, 27 sparse communities with the size of not less than three
are extracted. Most of them are with sizes 3 to 6, except one
with size 10. Seven of the sparse communities are displayed
in Fig. 6, where the red nodes represent disease genes.

IV. CONCLUSION

In this paper, a dynamical method was proposed to extract
communities induced by low or middle-degree nodes in com-
plex networks by constructing a local synchronization strategy
of phase oscillators. The results on two small social networks
validated the effectiveness of the proposed method. Then for
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Fig. 6. The human PPI network with seven of the extracted sparse
communities by using d1 = 6 and d2 = 10, where the red nodes represent
disease genes.

the human PPI network, we investigated the possible modules
to which disease genes and drug targets may belong, and some
interesting sparse communities were extracted.

The main idea of the program proposed here is to extract the
relatively dense subgraphs in the sparse area of the network,
i.e., the area of nodes with low to middle degrees. Therefore in
some cases the extracted communities may not be quite sparse
in linkages. For the human PPI network, although we found
some interesting sparse communities containing drug targets
and disease genes, there are also some sparser communities
not extracted. That is the problem worthy to be further studied.
In any case, these findings in this paper may provide us a clue
to find other disease genes and get possible drug targets in the
near future.
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