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Abstract—Identifying biomarkers for acupuncture treatment
is crucial to understand the mechanism of acupuncture effect at
molecular level. In this study, we investigate the metabolic profiles
of acupuncture treatment on several meridian points in human.
To identify the subsets of metabolites that best characterize
the acupuncture effect for each meridian point, a linear pro-
gramming based model is proposed to identify biomarkers from
the high-dimensional metabolic data. Specifically, we use nearest
centroid as prototype to simultaneously minimize the number of
selected features and leave-one-out cross validation error of the
classifier. As a result, we reveal novel metabolite biomarkers for
acupuncture treatment. Our result demonstrates that metabolic
profiling might be a promising method to investigating the
molecular mechanism of acupuncture. Comparison with other
existing methods shows the efficiency and effectiveness of our
new method. In addition, the method proposed in this paper is
general and can be used in other high-dimensional applications,
such as cancer genomics.

I. INTRODUCTION

Acupuncture, an important therapeutic method in Tradi-
tional Chinese Medicine (TCM), has been used to treat var-
ious diseases for thousand years in China. However, how
the acupuncture works remains an open question though
acupuncture exists as one of the oldest continuous systems
of medicine dating back 4,000 years. Extensive researches
have been conducted on the mechanism of acupuncture to
explain the effects of acupuncture on various systems and
symptoms [1]. Compared to acupuncture, systems biology is a
relatively new term to describe the recent trends in bioscience
research. It emphasizes the high-throughput measurement of
biological systems and focuses on the complex interactions
in biological systems[2], [3]. We highly expect that systems
biology, a biology-based inter-disciplinary study field, will
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provide tremendous opportunities for revealing acupuncture
mechanism at the molecular level.

In this paper, we study the acupuncture treatment effect by
identifying a subset of important molecules. Towards this aim,
we utilize 1H nuclear magnetic resonance (1H NMR) to inves-
tigate the effects of acupuncture at several meridian points on
plasma metabolites. Then metabolite profiles (vectors) are gen-
erated from a collection of case (with acupuncture treatment
in meridian point) and control samples (without acupuncture
treatment). These high-dimensional profile data is very similar
to SNP (sequence data), gene expression (transcriptome), mass
spectrum (proteome), and small molecules (metabolome) data
in different levels. Then the straightforward task is to identify
differentially expressed molecules and further classify and
predict the diagonostic category of a sample, based on its
metabolite profile [6].

Generally speaking, there are two difficulties in analyzing
these high-dimensional profile data. First, large number of
features (metabolites) are available to predict classes for a
relatively small number of samples. The presence of a sig-
nificant number of irrelevant features that are unrelated to
the case status makes such analysis somewhat prone to the
curse of dimensionality. Second, predictive accuracy is not
the only goal and further biological validation and mechanism
understanding call for intuition other than black box predic-
tive results. Thus it is especially important to know which
molecules contribute towards the classification. Ideally we can
improve the generalization performance of our classifier by
identifying only the molecules that are relevant to the classifier.
This effect is attributable to the overcoming of the curse of
dimensionality. For example, if it is possible to identify a
small set of metabolites that is indeed capable of providing
complete discriminatory information, inexpensive diagnostic
assays for only a few metabolites might be developed and be

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

319 Zhuhai, China, September 2–4, 2011



widely deployed in clinical settings. Knowledge of a small set
of diagnostically relevant metabolites may provide important
insights into the mechanisms responsible for acupuncture ef-
fect itself. Those molecules are usually termed as biomarkers.
The procedure to reveal them is referred as feature selection,
biomarker identification, or feature ranking.

If we treat the feature selection task in a brute force way.
Given n features, we need to select m features which can
get the best classification accuracy (m < n) regarding to a
predefined cost function. Usually in classification or prediction
problem, the cost function is selected as the accuracy of the
prediction. The exhaustive search method goes through all
the possible combinations, with the computation complexity
O(nm). Thus, the method is not practical for realistic appli-
cations.

Existing feature selection strategies can be roughly catego-
rized into three types. Exploiting the partial ordering properties
of the space of subsets, we can either start with an empty
set and successively add features, or start with the set of all
features and successively remove them. The former type is
referred to as forward selection while the latter is referred to as
backward elimination. The third type is the combination of the
two approaches. As an example of forward feature selection,
we might first look for the single most discriminative feature
using any classifier design algorithm. Then we could search the
single additional feature that gives the best class discrimination
when considered along with the first feature. By keeping
augmenting the feature set iteratively in this greedy fashion
we stop until cross-validation error estimates are minimized.

However we cannot obtain the global optimal solution
by adopting the above greedy strategies. In this paper, we
proposed a novel linear programming (LP) model to address
this important problem. Feature selection problem is cast
into an optimization problem with two objectives, one is
to minimize the number of chosen features and the other
is to maximize the predictive accuracy. In other words, our
feature selection method simultaneously improving classifi-
cation accuracy and selecting features based on the centroid
classification framework. We then apply our method to analyze
the metabolite profile data. We identify important molecules
(biomarkers) related to the acupuncture treatment for several
meridian points. Further characterization of the biomarkers and
the common and difference among several meridian points
provide biological insights for acupuncture mechanisms at
molecular level.

II. METHODS

A. Metabonomics data generation

To investigate the acupuncture treatment effects, we orig-
inally generated metabonomics data for Yangming meridian
points and other meridian points on plasma metabolites in
healthy males using Proton NMR. Proton NMR (also named
as Hydrogen-1 NMR, or 1H NMR) applies nuclear magnetic
resonance in NMR spectroscopy with respect to hydrogen-
1 nuclei within the molecules of a substance, in order to
determine the structure of the molecules. As a result, most

ST36
BL40GB34
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ST21

Fig. 1. Metabolite profiles are originally generated by 1H NMR from five
meridian points.

organic compounds are characterized by chemical shift values,
which are usually expressed in parts per million (ppm) by
frequency and are in the range +14 to -4 ppm. Chemical shift
values are not precise, but typically they are to be regarded
mainly as orientational. The exact value of chemical shift
depends on molecular structure and the solvent in which
the spectrum is being recorded. These chemical shift values
can be mapped to eight metabolic subsets (amino acids,
carbohydrates, energy, glycans, lipids, nucleotides, secondary
metabolites/xenobiotics, vitamins, and cofactors). In our exper-
iment, in total 400 chemical shift values are measured for their
concentration in plasma, and mathematically every sample is
represented by a vector in 400 dimensional space.

Fifty healthy young males were randomly allocated to
Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan
(GB34), and Weizhong (BL40) groups (the locations of the
meridian points are shown in Figure 1. Among the five points,
Zusamli, liangmen,and juliao are on the same meridian.). Each
group contains 10 personsInside each group the corresponding
meridian points were separately acupunctured for 5 consecu-
tive daysIn addition, twenty healthy young males are recruited
as the blank control groups. All the twenty people are mea-
sured before the start of 5 consecutive days and additionally
ten of them are measured after 5 consecutive days. Fasting
venous blood was taken in all the subjects. Plasma metabolites
were measured by 1H NMR to derive metabolic profilesFur-
thermore to exclude possible noises, all the seventy males
are strictly trained to make sure their metabolic profiles are
measured in very similar conditions. The detailed experimental
method can be found in [4]. In summary, we have 80 samples
grouped into Zusanli (10 samples, acupuncture point ST36),
Liangmen (10 samples, acupuncture point ST21), Juliao (10
samples, acupuncture point ST3), Yanglinquan(10 samples,
acupuncture point GB34), Weizhong (10 samples, acupuncture
point BL40), Control I (10 samples, normal people measured
after the consecutive 5 days), and Control II (20 samples,
normal people measured before the consecutive 5 days).
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Fig. 2. Overall design of the biomarker identification experiments.

B. Classification experiments design

With the data, we design experiments to identify biomark-
ers for the acupuncture treatment of each meridian point.
The overall design of biomarker identification experiments is
shown in Figure 2. We categorize eighty samples into 8 groups
shown as the circles in Figure 2). ST36, ST21, ST3, GB34,
and BL40 each has 10 samples. The 20 samples in Control
II are naturally decomposed into two groups with equal
size, Pre1 (10 samples with follow-up measurement after 5
days) and Pre2 (10 samples without follow-up measurement).
Treating Pre1 as the common control set, we have seven binary
classification tasks (Exp1 to Exp7) shown as the lines in
Figure 2. For example, task Exp1 tries to identify a subset
of metabolites to classify Pre1 as the control and ST36 as the
case. In this way, Exp1 to Exp5 aim to identify the biomarkers
for acupuncture treatment on ST36, ST21, ST3, GB34, and
BL40 respectively. While Exp6 tries to capture the metabolite
change by 5 consecutive days. And Exp7 tries to test if there
are significant metabolite change for the people under similar
condition. Exp6 and Exp7 serve as the control studies to
guarantee the significance of our result.

C. Centroid classification prototype

A fast and simple algorithm for classification is the centroid
method [6], [7]. This algorithm assumes that the target classes
correspond to individual (single) clusters and uses the cluster
means (or centroids) to determine the class of a new sample
point. A prototype pattern for class Cj is defined as the
arithmetic mean:

µCj
=

1

|Cj |
∑

si∈Cj

xi (1)

where si is the i-th training sample labeled as class Cj . Recall
that the training sample is a metabolite spectra represented
as a multi-dimensional vector (denoted in bold). In a similar
fashion, we can obtain a prototypical vector for all the other
classes. During classification, the class label of an unknown
sample s is determined as:

C(s) = argminCj
dis(µCj , s) (2)

where dis(x,y) is a distance function or:

C(s) = argmaxCj
sim(µCj , s) (3)

where sim(x,y) is a similarity metric. This simple clas-
sifier will form the basis of our studies. It works with any
number of features. Its run-time complexity is proportional to
the number of features and the complexity of the distance or
similarity metric used. According to the experiments in [8],
we select L1 distance metric, which is most appropriate for
the centroid classification algorithm. It is defined by:

L1(s,µ) = ‖s− µ‖1 (4)

with ‖y‖1 =
∑

i |y(i)|, and y(i) being the value of the i-th
feature. The value L1(s,µ) has a linear cost in the number
of features. In this study, data sets contain two classes and
hence the number of calls to the distance metric is also
two. Therefore, the centroid classifier, at run-time, is linear
in the number of features. During training, two prototypes
are computed and the cost of computing each prototype is
O(mN), where N is the number of features and m is the
number of training samples which belong to a given class.
Note that m only varies between data sets and not during
training or feature selection processes. Thus, we can view m
as a constant and the centroid classifier has O(N) cost in the
training phase.

D. Feature selection by linear programming

Suppose we have two groups in the training dataset, the
case group and the control group as the gold standard to
classify new samples. We denote them T and F respectively.
Supposing |T | = m1, |F | = m2, and the computed centroids
are µT and µF respectively. A simple classification scheme
is as follows. Given a normalized new sample s, we want to
decide which group it belongs to. The L1 discrepancy between
the sample s and the groups T and F can be calculated as
‖s− µT ‖1 and ‖s− µT ‖1. Thus a simple rule is

s ∈ T if ‖s− µT ‖1 < ‖s− µF ‖1 (5)
s ∈ F if ‖s− µT ‖1 > ‖s− µT ‖1 (6)

Let the feature number be n. We introduce the variables for
feature section as x = (x1, x2, · · · , xn), where xi = 0, 1.
When xi = 1, it means feature i is selected in the biomarker
set. Otherwise it is note selected.

Suppose the test dataset is U . And it is composed by
the case group UT and control group UF . U = UT

⋃
UF .

And |UT | = l1, |UF | = l2 With the preparation, we can
introduce the constraints. If there is a case sample sl =
(sl1, sl2, · · · , sln), l ∈ {1, 2 · · · , l1}, if we want it to be
classified correctly, we should have

n∑

i=1

|sli −
m1∑

j=1

tji/m1|xi <
n∑

i=1

|sli −
m2∑

j=1

fji/m2|xi (7)

where tk = (tk1, tk2, · · · , tkn) ∈ T, k = 1, 2, · · · ,m1 and
fk = (fk1, fk2, · · · , fkn) ∈ F, k = 1, 2, · · · ,m2.

Similarly if there is a control sample sl =
(sl1, sl2, · · · , sln), l ∈ {l1 + 1, l1 + 2 · · · , l1 + l2}, if
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we want it to be classified correctly, we should have
n∑

i=1

|sli −
m1∑

j=1

tji/m1|xi >
n∑

i=1

|sli −
m2∑

j=1

fji/m2|xi (8)

And the object function is to choose as few as features, i.e.,

min
x1,x2,··· ,xn

n∑

i=1

xi (9)

Thus the feature selection problem is formulated as an
integer linear programming problem in Equation (10).

When we consider the noise in the measured data, not all
the test samples can be classified exactly. We introduce the
tolerable error y = {yi, i ∈ 1, 2, · · · , l1 + l2} for every sample
in UT

⋃
UF . And yi ≥ 0. When yi is large, it means sample

i is wrongly classified. Otherwise this sample is correctly
classified.

If there is a case sample sl = (sl1, sl2, · · · , sln), l ∈
{1, 2 · · · , l1}, we should have the following constraint con-
sidering the tolerable error
n∑

i=1

|sli −
m1∑

j=1

tji/m1|xi − yl <
n∑

i=1

|sli −
m2∑

j=1

fji/m2|xi (11)

Similarly if there is a control sample sl =
(sl1, sl2, · · · , sln), l ∈ {l1 + 1, l1 + 2 · · · , l1 + l2}, we
should have the following constraint considering the tolerable
error
n∑

i=1

|sli −
m1∑

j=1

tji/m1|xi + yl >

n∑

i=1

|sli −
m2∑

j=1

fji/m2|xi (12)

Thus the objective function composes two parts, i.e., we
want to choose as few as features minx1,x2,··· ,xn

∑n
i=1 xi

and at the same time we want to reduce the classification
error (loss function) miny1,y2,··· ,yl1+l2

∑l1+l2
i=1 yi. In general,

there is a trade-off relation between the classification error
and the number of features. Hence, the feature selection
problem can be formulated as a multi-objective optimization
problem with discrete variables x = (x1, x2, · · · , xn) and
y = (y1, y2, · · · , yl1+l2) as shown in Equation (13).

The first term of objective function in Equation (13) is to
minimize the number of chosen features, and the second one is
to minimize the total classification error. The optimal solutions
of the two-objective optimization problem consist of a Pareto
set, which can be solved by transforming the two objectives
of (13) into a single objective. One typical technique is the
ε-method, which alternates a positive scalar parameter λ to
obtain the Pareto set, with the formulation in Equation (14).

The objective function in (14) is
∑n

i=1 xi + λ
∑l1+l2

i=1 yi.
Theoretically, we can obtain all optimal solutions belonging
to the Pareto set by changing the parameter λ for the single-
objective optimization problem (14). Clearly, λ transforms the
number of chosen features into equivalent classification error
in (14), and controls the balance between them.

By solving the proposed linear programming model (14),
we can get the solutions for the feature selection variables

xi, i ∈ {1, 2, · · · , n}, and classification error variables
yj , j ∈ {1, 2, · · · , l1 + l2}. Checking if xi is equal to 1, we
can know if the corresponding feature should be involved in
the classification. Meanwhile checking the values of all the yj ,
we can give the classification accuracy. For example, suppose
the number of all j such that yj = 0 is N1 and the number
of all j such that yj > 0 is N2. We can simply estimate the
classification accuracy by N1/l1 and N2/l2.

The above model (14) is based on the general idea of
cross validation, thus it depends on the choice of T and F .
Specifically we can choose a model for leave-one-out cross
validation (resubstitution test) in Equation (15).

We adopt leave-one-out experiment since leave-one-out is
an unbiased estimator of the generalization performance of
classifier. i.e., every time we pick out one sample (l1=1 or
l2 = 1) from the training data and try to classify it correctly.
And by doing m1+m2 times test we add m1+m2 constraints.
Furthermore, ILP can be relaxed into the corresponding lin-
ear programming (LP). Therefore, an LP algorithm can be
adopted to efficiently solve this ILP. In terms of computational
complexity, the proposed approach makes the computation of
biomarker tractable. Finally we construct the new model in
Equation (16).

It should be noted that we can use other distances instead
of L1 in our model to achieve the nonlinear classification
effect. The parameter λ is determined by checking the output
leave-one-out predictive accuracy. We notice that our model
can be extended to multi-classification task and n-fold cross
validation experiment.

III. RESULTS

A. Global characterization of the data

We first perform hierarchical clustering on the 80 metabolic
profiles. The results are shown in Figure 3. If the samples
can be clearly discriminated by global pattern, the 80 samples
should be clustered by with or without acupuncture treatment
and then by their meridian points. However, all the sample
labels are mixed in the clustering result (Figure 3) and we
cannot see clearly boundaries.

Furthermore, we calculate the centroids for the seven groups
of samples in Figure 2 by averaging the 10 samples for their
expression values. These centroids are plotted side by side in
Figure 3, which shows that these centroids are very similar
and it’s very difficult to detect the difference.

The above results together demonstrate that global pat-
tern in metabolic profiles cannot discriminate the Zusanli,
Yanglingquan, Liangmen, Juliao, Weizhong, Pre1, Pre2, and
Control I groups. Thus it is necessary to find the local
pattern in the profile data. Our strategy is to find a subset
of biomarkers to achieve clear discrimination.

B. Biological insights for the identified biomarkers

We then applied the proposed optimization method to
identify the biomarkers from the designed seven experiments.
As a result, we identified 4, 7, 2, 3, and 8 biomarkers for
the acupuncture treatment effect of ST36, ST21, ST3, GB34,
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min
x1,x2,··· ,xn

∑n
i=1 xi (10)

s.t.
∑n

i=1 |pli −
∑m1

j=1 tji/m1|xi <
∑n

i=1 |pli −
∑m2

j=1 fji/m2|xi
pl = (pl1, sl2, · · · , pln) ∈ UT , l ∈ {1, 2, · · · , l1},∑n

i=1 |pli −
∑m1

j=1 tji/m1|xi >
∑n

i=1 |pli −
∑m2

j=1 fji/m2|xi
pl = (pl1, sl2, · · · , pln) ∈ UF , l ∈ {1, 2, · · · , l2},

xi = 0, 1, i ∈ {1, 2, · · · , n}

vector-minimize (x,y) {∑n
i=1 xi,

∑l1+l2
i=1 yi} ,

subject to (11)(12) with xi ∈ {0, 1}, i ∈ {1, 2, · · · , n}, (13)
yi ≥ 0, i ∈ {1, 2, · · · , l1 + l2}

min
x,y

∑n
i=1 xi + λ

∑l1+l2
i=1 yi (14)

s.t.
∑n

i=1 |pli −
∑m1

j=1 tji/m1|xi − yl <
∑n

i=1 |pli −
∑m2

j=1 fji/m2|xi
pl = (pl1, sl2, · · · , pln) ∈ UT , l ∈ {1, 2, · · · , l1},∑n

i=1 |pli −
∑m1

j=1 tji/m1|xi + yl >
∑n

i=1 |pli −
∑m2

j=1 fji/m2|xi
pl = (pl1, sl2, · · · , pln) ∈ UF , l ∈ {1, 2, · · · , l2},

xi = 0, 1, i ∈ {1, 2, · · · , n}, yj ≥ 0, j ∈ {1, 2, · · · , l1 + l2}

min
x,y

∑n
i=1 xi + λ

∑l1+l2
i=1 yi (15)

s.t.
∑n

i=1 |pli −
∑m1

j=1 tji/m1|xi − yl <
∑n

i=1 |pli −
∑m2

j=1 fji/m2|xi
pl = (pl1, sl2, · · · , pln) ∈ T, l ∈ {1, 2, · · · ,m1},∑n

i=1 |pli −
∑m1

j=1 tji/m1|xi + yl >
∑n

i=1 |pli −
∑m2

j=1 fji/m2|xi
pl = (pl1, sl2, · · · , pln) ∈ F, l ∈ {1, 2, · · · , l2},

xi = 0, 1, i ∈ {1, 2, · · · , n}, yj ≥ 0, j ∈ {1, 2, · · · , l1 + l2}

min
x,y

∑n
i=1 xi + λ

∑l1+l2
i=1 yi (16)

s.t.
∑n

i=1 |pli −
∑m1−1

j=1 tji/(m1 − 1)|xi − yl <
∑n

i=1 |pli −
∑m2

j=1 fji/m2|xi
pl = (pl1, sl2, · · · , pln) ∈ T, l ∈ {1, 2, · · · , l1}, tk = (tk1, tk2, · · · , tkn) ∈ T\{pl}, k ∈ {1, 2, · · · ,m1}\{l}∑n

i=1 |pli −
∑m1

j=1 tji/m1|xi + yl >
∑n

i=1 |pli −
∑m2−1

j=1 fji/(m2 − 1)|xi
pl = (pl1, sl2, · · · , pln) ∈ F, l ∈ {1, 2, · · · , l2},fk = (fk1, fk2, · · · , fkn) ∈ F\{pl}, k ∈ {1, 2, · · · ,m2}\{l}

xi ≥ 0, i ∈ {1, 2, · · · , n}, yj ≥ 0, j ∈ {1, 2, · · · , l1 + l2}

and BL40 respectively. These selected biomarkers can achieve
100%,100%,100%,100%, and 95% leave-one-out cross val-
idation accuracy. The results are summarized in Table 1.
As expected, Exp7 fails to find any biomarkers. Exp6 finds
several metabolites due to the fact that the expression values

of these metabolites vary after consecutive 5 days. So we
carefully check the obtained biomarker list and exclude these
metabolites in our final results. Some biomarkers identified in
Table 1 are annotated as glucose and lipid. Most of them are
new to us and are under further investigation.
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TABLE I
IDENTIFIED BIOMARKERS FOR DIFFERENT MERIDIAN POINTS.

Fig. 3. Hierarchical clustering of the metabolic profiles of the 80 samples.
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GB34
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BL40

0 200 400

ST21

0 200 400

Pre1

0 200 400

Pre2

0 200 400

Control 1

Fig. 4. Centroids for the seven datasets. The horizontal units are expression
values for the metabolites. The metabolites are sorted by their chemical shift
values.

From Table 1, we can see that acupuncture at Yangming
meridian points (including acupuncture points at ST36, ST21,
and ST3) influenced mainly plasma micromolecular metabo-
lites and was closely related to energy metabolism path-
way. Acupuncture at Yanglingquan influences mainly plasma
macromolecular metabolites and is closely related to lipid
metabolism and transport. Acupuncture at Weizhong doesn’t
largely influence plasma metabolites. This study suggests that
Yangming meridian points have certain characteristics, which
are different from those of both Yanglingquan and Weizhong.
Metabonomics techniques based on 1H NMR and biomarker
identification method provide experimental evidence for dis-
tinguishing between Yangming meridian points and other
meridian points from the metabolic aspect and may become a
new useful means to study the specificities of meridian points.

Our result shows that metabolite with chemical shift value
3.55 is clearly a common biomarker for ST36, ST21, ST3, and
GB34. In Figure 5, we visualize the metabolic profiles as a
two-dimensional graph and highlight this important molecule.
The two dimensional graph, called the GEDI-mosaics, provide
a unique, one-glance visual engram that gives each high-
dimensional sample a face. A characteristic of GEDI’s analysis
is that it does not prejudicate any particular structure in the
data (such as clusters or hierarchical organization). Thus, it
allows the researcher to use human pattern recognition to
perform a global first-level analysis of the data [13] (GEDI
is downloaded from http://www.childrenshospital.org/research/
ingber/GEDI/gedihome.htm). It is clear that the highlighted
metabolite has distinct expression value in case and control
group (ST36 and Pre1 in Figure 5). This demonstrates the
effectiveness of our biomaker identification method.

C. Comparison with other approaches
We compare our optimization based method with several

existing methods. Fold change and t-test are the simplest and
popular methods to identify biomarker. They are usually the
representative methods for filter methods.

Let xij and yij denote the log expression values of metabo-
lite i in sample j in the case and control, respectively. We
define the ordinary two-sample t-statistic ([9]) as

Ti =
x̄i − ȳi
si

(13)

where x̄i, ȳi, and si are the mean of case, mean of control,
and the standard deviation of the samples for metabolite i.
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ST36-1 ST36-2 ST36-3 ST36-4 ST36-5

ST36-6 ST36-7 ST36-8 ST36-9 ST36-10

Pre1-1 Pre1-2 Pre1-3 Pre1-4 Pre1-5

Pre1-6 Pre1-7 Pre1-8 Pre1-9 Pre1-10

Fig. 5. Metabolic sample is visualized as a two dimensional graph. Each
grid denotes a group of metabolites with similar profiles. Red color means the
highly expressed metabolite group and blue color means the lowly expressed
metabolite group. Particularly metabolite with chemical shift value 3.55 is
highlighted in white color and indicated by the star.

The standard definition of the fold-change ([9]) for metabo-
lite i is

FCi =
¯́
ix

¯́
iy

(14)

where x́ij and ýij are the raw expression values of metabolite
i in sample j in the case and control, respectively.

Since our method simultaneously optimize classification
accuracy and the number of selected features, we choose to
compare with an existing method with similar strategy, called
sparse multinomial logistic regression approach (SMLR). It
was developed to jointly and simultaneously identify the
optimal nonlinear classifier, and select the optimal set of
features via optimizing a single posterior objective function
(see [10] and [11]). SMLR has been extensively applied in
problems in systems biology [12]. SMLR is freely available
at http://www.cs.duke.edu/∼amink/software/smlr/ and we take
the default values for the parameters in our calculation.

Without loss of generality, we take the Exp1 (ST36) as an
example. The results obtained from 4 methods are listed and
compared in Table 2. The t-test based method identifies 84
metabolites if we choose a cutoff 2.84 (corresponding p-value
0.005). Top 10 are listed in Table 2. The fold change based
method identifies 97 metabolites by choosing a cutoff 4 (top
10 are listed in Table 2). While SMLR select 37 features to
achieve the 100% leave-one-out predictive accuracy. Our LP
based method finally selected 4 features as the biomarkers
to discriminate ST36 and Pre1. By using only 4 features we
can achieve 100% leave-one-out predictive accuracy. To show
these four important biomarkers are not dependent on the
classifier, we use SVM to do five-fold cross validation, the
predictive accuracy is still 100%. This demonstrate that we
can select a small set of important features really matters by
applying strong regularization.

In Figure 6, we compare different methods by assessing
the quality of the selected biomarkers. We simply plot all the

metabolites by their standard derivation versus the difference
of mean expression value. We find that the ordinary t-statistic
selects genes with low standard deviations. The fold-changes
select genes with large shifts between control and treatment.
While our LP method tends to reveal the metabolites with
small standard deviation and large shifts, which exactly serves
our requirement for good biomarker.

IV. DISCUSSIONS AND CONCLUSIONS

Biomaker identification or feature selection considers the
problem of constructing a prediction rule from only a feature-
subset and accurately classifying the context of diagnosis and
treatment observations (e.g. with vs. without acupuncture treat-
ment). Such problems have become increasing important and
quite general in genomics (identifying differentially expressed
genes in microarray data), proteomics (finding promising
protein marker from the mass spectrometry data), metabolics
(selecting metabolite markers from NMR data), and other
areas of computational biology. Due to the number of features
is much larger than the number of observations, simple and
highly regularized approaches are in pressing need. Here, we
proposed a novel linear programming (LP) model to address
this important problem. The feature selection problem is cast
into an optimization problem with two objectives, one is to
minimize the number of chosen features and the other is to
maximize the predictive accuracy. Mathematically the feature
selection problem is formulated as an integer linear program-
ming problem. Then the model is further relaxed to linear
programming to ensure the efficient identification a feature-
subset in a fast way. We can solve the in-essence combinatorial
optimization problem in a computational reasonable way. In
summary, Our LP based method can select feature and learn
the classifier in a joint way and we can select a small set of
features by applying strong regularization. Our methodology
is general and can be easily applied other scenarios.

We extensively compared our LP based method with exist-
ing methods in some real datasets on acupuncture treatment.
We find that, 1). our method can select the fewest features
while achieve accurate predictions. 2). our method is free
of arbitrary threshold choice. 3). close check of the selected
feature shows that our method can identify those biologi-
cal meaningful features. 4). In addition, the cross-validation
results show that our method can achieve relatively high
accuracy in prediction.

Prior information allows further improvement of our
method. Currently the identified biomarkers are independent
to each other. We can move further to interpretation by
considering a group of biological meaning biomarkers. For
example, we can incorporate the network information (inter-
actions among features) into the feature selection procedure.
As a result, a pathway or modules in the network will be
finally selected instead of single molecule as the biomarker,
so called network biomarker. We note the prior information
can be easily incorporated into our optimization model either
by adding some constraints or penalizing in the objective
function.
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TABLE II
IDENTIFIED BIOMARKERS BY DIFFERENT METHODS ON THE ST36 MERIDIAN POINT.

−60 −40 −20 0 20 40 60

0
20

40
60

80

ST36−Student t−test

Difference in means

S
ta

nd
ar

d 
de

vi
at

io
n

(a) Student t-test
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(b) Fold change
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(d) LP based method

Fig. 6. Comparison of our optimization method with existing methods regarding to the identified biomarkers. All the 400 metabolites are plotted into a two
dimensional plane. The selected biomarkers are highlighted in red. The x-axis denotes the difference of means and the y-axis denotes the standard derivation.
Good biomakers should locate either in the left bottom corner or in the right bottom corner.
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