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Abstract—Protein sub-cellular localization is a central problem
in understanding cell biology and has been the focus of intense
research. In order to predict localization from amino acid
sequence a myriad of features have been tried: including amino
acid composition, sequence similarity, the presence of certain
motifs or domains, and many others.

Surprisingly, sequence conservation of sorting motifs has not
yet been employed, despite its extensive use for tasks such as the
prediction of transcription factor binding sites.

Here, we flip the problem around, and present a proof of
concept for the idea that the lack of sequence conservation can
be a useful feature for localization prediction.

I. INTRODUCTION

Since proper sub-cellular localization is a prerequisite for
protein function, there is a high demand for accurate and
complete localization annotation of all proteins [1]. Although
proteomics data has allowed large scale determination of
protein localization for several model organisms[2], [3], no
experimental evidence is available for the vast majority of
organisms. Strong sequence similarity is a good indicator of
identical localization site, but distant similarity is not [4], and
thus for many proteins we must rely on computer prediction.

In cells, the localization of proteins is largely determined
by “zip-code” like sorting signals, encoded in their amino acid
sequence. Unfortunately these sorting signals seem to be only
very loosely determined, allowing very diverse sequences, sub-
ject to some constraints on their physico-chemical properties
[5].

Among those signals, the most well-known sorting signal is
the signal peptide of secretory path proteins. A typical signal
peptide spans 15-30 amino acids near the N-terminus. Signal
peptides typically show three distinct blocks: the n-region
containing positively charged residues, the h-region mainly
consisting of hydrophobic residues, and the c-region which

includes polar uncharged residues and a weakly conserved
cleavage motif [6].

Similarly, the targeting signals of mitochondria and chloro-
plast are also N-terminally coded [5], and cleaved after import
to their final location. Like signal peptides, these signals are
often poorly conserved and difficult to align properly between
orthologs. Although some consensus motif has been reported
for mitochondrial targeting signals [7], [8], it is information
poor and produces too many false positives to be used for
reliable prediction.

To date, an impressive number of methods have been devel-
oped for protein sorting (in 2004 a survey already listed dozens
of methods employing fifteen broad categories of features [9],
from commonly used ones such as amino acid composition
[10], [11], [12]. (and many more) to rare categories such as
sequence periodicity [13] and mRNA expression level [14].
Of these features amino acid composition, first proposed by
Nakashima & Nishikawa [10] is attractive due to simplicity.
The significant correlation between amino acid composition
and sub-cellular location is partially causative and partially
due to indirect effects such as adaption of surface residues to
the pH of the protein’s localization site [15].

The one feature conspicuously missing from this list has
been evolutionary sequence conservation, despite the fact
that it has seen extensive use in sequence analysis from
the prediction of transcription factor binding sites [16], to
functional RNA [17]. Although the conservation of amino acid
composition has been employed [18], sequence conservation
per se has not – presumably because sorting signals are indeed
not well conserved at the sequence level. Here, we propose that
instead of looking for sequence conservation of sorting signals,
a more effective approach is to exploit their high evolutionary
sequence divergence.
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In this paper we first describe our dataset of yeast proteins
and their orthologs, the divergence and other features we
used for classification, and the classifiers we employed. Then,
we present a simple statistical feature analysis followed by
the performance of the localization prediction for various
combinations of features, classifiers and data. Finally, we
discuss the limitations of our work and conclude.

II. DATASET

A. Proteins and their localization classes

This study focuses on the prediction of N-terminal sort-
ing signals in the budding yeast Saccharomyces cerevisiae
(hereafter “S.cere.”) – the eukaryotic organism with the most
complete annotation available regarding protein sub-cellular
localization. We focused on the two most common N-terminal
sorting signals, the “signal peptide” (which we abbreviate as
“SP”), targeting proteins to the endoplasmic reticulum and the
“MTS” (Matrix Targeting Signal) which targets proteins to
the matrix (inner compartment) of the mitochondria. Although
both of these signals reside near the N-terminus, they are
thought to be mutually exclusive, with different properties
that are effectively discriminated by the cell. Although other
types of N-terminal sorting signals exist, for example the
PTS2 signal targeting the proteins to the peroxisome [19], the
number of proteins using such signals is much smaller than
those using the SP or MTS signals.

In this study we choose to leave these less common signals
to future work and instead concentrate on three broad localiza-
tion classes for proteins in S.cere.: 1) with SP’s, 2) with MTS’s,
and 3) N-signal-less; of which we gathered 54, 182, and
462 examples respectively. We used UniprotKB/Swiss-Prot
([20]) to assign localization class labels, augmented by MTS
containing proteins determined in the proteomics experiment
of Vöglte et al. [21]. Because only a small number of SP’s
have been directly confirmed experimentally, we also included
proteins whose SP is inferred by a combination of their
localization site and prediction by SignalP [22] (see Discussion
for a justification of using prediction results in our dataset).
For N-signal-less proteins we used proteins which localize
to the cytosol or nucleus (according to UniprotKB/Swiss-Prot
annotation).

1) Removing redundant sequences: To avoid a bias in
training and accuracy estimation, we used Blastclust 2.2.22
(http://www.ncbinlmnih.gov/BLAST/) to removed redundant
sequences with a setting of 20% identity.

B. Orthologs and multiple alignment

We extracted orthologs from the Yeast Genome Order
Browser [23]. YGOB includes curated ortholog sets from 11
fungi genomes (S.cere., S. castellii, S. kluyveri, K. waltii, A.
gossypii, C.glabrata, K. lactis, Z. rouxii, K. thermotolerans, S.
bayanus and K. polysporus). For each S.cere. protein in our
dataset, we obtained its ortholog multiple sequence alignment
(orthoMSA) by aligning it to its orthologs with the MAFFT
program [24], using “LINSI”, its most accurate mode. For this

Feature name Quantity

LD(i) H̄i−10,i+10

Nraw20 H̄1,20

Nraw40 H̄1,40

Nraw80-99 H̄80,99

µw Average of H̄window for all length w windows
σw Standard deviation of H̄window for all length w windows
NCdiff Nraw20−Nraw80-99

N20
(Nraw20−µ20)

σ20
(z-score normalized)

N40
(Nraw40−µ40)

σ40
(z-score normalized)

N80-99
(Nraw80-99−µ20)

σ20
(z-score normalized)

TABLE I
SMOOTHED ENTROPY DERIVED FEATURES ARE LISTED. QUANTITIES

SHADED IN GREY WERE NOT USED DIRECTLY AS FEATURES.

study we only included proteins for which an ortholog is listed
for each of the 11 species.

III. FEATURES FOR CLASSIFICATION

A. Sequence evolutionary divergence score

Our study required assigning a divergence score to each
position of each S.cere. protein, based on its orthoMSA.

1) Column entropy score: Several measures have been
suggested for scoring evolutionary sequence conservation (or
conversely divergence) [25], [26]. Here we adopt a simple
Shannon entropy based score. The Shannon entropy H(i) of
the ith column of the an orthoMSA is defined as:

H(i) = −
∑

∈A
F (i, j) lgF (i, j). (1)

where A denotes the set of 20 amino acid characters plus
gap characters, and F (i, j) denotes the frequency of character
j in the i column of an orthoMSA. Note that when multiple
gap characters present in a column, we consider each to be a
unique character. For example, the entropy of an orthoMSA
column ’{L, L, I, -, -}’ is computed as one character (the
’L’) with frequency 0.4 and three characters with frequency
0.2, because we treat the two ’-’ characters as distinct. We
adopted this treatment of gap characters so that the divergence
of orthoMSA columns with many gaps would be considered
high. Since we use 11 species, the range of our column
divergence score runs from 0 (perfect conservation) to 3.46
bits (maximally diverged).

2) Smoothed entropy score: For many orthoMSA’s, the
entropy often varies widely from column to column, therefore
as a measure of divergence, we adopted a smoothed entropy
score, H̄i,j , defined as the average entropy score for columns
in the interval [i, j].

3) Divergence based features: We employed several
smoothed entropy score based features such as the “local
divergence” of a position i, which we define as LD(i) ≡
H̄i−10,i+10. These features are summarized in table I.
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B. Physico-chemical propensities

To explore the possibility of combining sequence divergence
with standard features used in protein localization prediction,
we defined three features computed from the first 30 N-
terminal residues of each S.cere. protein: 1) the number of
positively charged residues (#pos), 2) the number of negatively
charged residues (#neg), and 3) the average hydrophobicity as
measured by the Kyte-Doolittle [27] index (Hphob).

IV. CLASSIFIERS

A. Majority Class Classifier

The majority class classifier unconditionally predicts all
examples to belong to the most common class. Its accuracy
is equal to the fraction of examples belonging to the most
common class.

B. J48

J48 is a version of the C4.5 decision tree induction algorithm
of Quinlan [28], implemented in the Weka software package
[29]. We used the default value of 0.25 for the confidence
factor, which controls the complexity of the induced tree.

C. Support Vector Machine

The SVM [30] is perhaps the most popular classifier in
current bioinformatics work. In its basic form it is a linear,
binary classifier, but it has been extended to non-linear, mul-
ticlass classification. In this project, we used the LIBSVM
implementation [31]. We used the Gaussian radial basis kernel
function with default γ value (1.0 / # number of features).
We also used the default value (1.0) for the SVM cost
parameter C. In our study we conducted binary and 3-class
classification. For multiclass discrimination LIBSVM adopts
the ”one-versus-one” method, in which a separate SVM is
learned for each pair of classes, and majority voting amongst
those SVM’s is used when classifying examples.

D. Quantifying feature importance

We used the so called “F-score” to quantify the importance
of each features. The F-score [32] is a simple measure of
the predictive power of a feature in isolation (i.e. without
consideration of its relationship to other features), defined as:

(x̄(+) − x̄)2 + (x̄(−) − x̄)2

1
n+−1

∑n+

k=1(x
(+)
k − x̄(+))2 + 1

n−−1

∑n−
k=1(x

(−)
k − x̄(−))2

(2)
where x̄(+), x̄(−), and x̄ are the mean values of the feature

for the positive, negative and combined examples respectively;
while x

(+)
k and x

(−)
k denote the value of the kth positive

and negative examples respectively. A larger F-score indicates
greater predictive power.

E. Classification performance evaluation

Accuracy is not always an effective measure of performance
for skewed datasets (i.e. datasets with a very uneven number
of examples from different classes) [33]. Therefore we report
several measures in addition to accuracy.

Fig. 2. Local divergence scores are shown for the 100 residue N-terminal
region for MTS containing (red), SP containing (blue), and N-signal-less
(black) proteins. The error bars denote the standard error. For clarity, error
bars are only shown for every fifth position.

1) Matthews correlation coefficient: The Matthews corre-
lation coefficient, MCC [34], is a measure of performance for
binary classification defined as follows:

TP × TN − FP × FN√
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

(3)

where ’T’ and ’F’ stand for “true” and “false”, while “N”
and “P” stand for “negative” and “positive”. Equivalently
MCC can be defined as the Pearson’s correlation coefficient
of the binary vector of class labels compared to the binary
vector of predicted class labels. MCC ranges from 1.0 for
perfect prediction to -1.0 for perfect inverse prediction. Note
that the MCC for the majority class classifier is identically
zero, as is the expected value of MCC for random prediction.

V. RESULTS

A. Feature Analysis

1) N-terminal sorting signals are evolutionary divergent:
It is well known that sorting signals, especially signal pep-
tides, have very low sequence conservation [35]. As shown
in Figure 1, this phenomenon is particularly clear for the
mitochondrial heat shock protein, mtHSP70, in which main
part of the protein is highly conserved but the N-terminal
region is highly divergent. Figure 2 quantifies this trend for
the proteins in our dataset.

2) Estimate of importance of each feature: As a rough
estimate of feature importance, we computed the F-score for
each feature (Figure 3). The two highest scoring features are
the physico-chemical features #neg and Hphob, but the LD
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Fig. 1. A multiple sequence alignment of the protein mtHSP70 (S.cere. Uniprot accession P12393) from five species of fungi. The light blue line shows the
MPP cleavage site located at the end of the MTS. The conserved region is colored by Jalview.

Fig. 3. Importance of each attribute as estimated by F-score is shown. At
left, the LD value for each position is shown by solid and heat colored lines.
Gray dash lines denote N20, N40, N80-99 and NCdiff . Colored and
dotted lines denote the N-terminal physico-chemical properties #pos, #neg
and Hphob, respectively.

features near the N-terminus also show F-scores significantly
greater than zero.

3) Sequence divergence is not redundant to physico-
chemical trends: To be promising as a feature for prediction,
it is desirable that evolutionary sequence diversity not be
perfectly correlated with other useful features. To investigate
this we plotted LD(13), the divergence feature with the highest
F-score, against the two highest scoring physico-chemical
features (Figure 4). Although it is difficult to discern the exact
relationship, one can see that the feature pairs do not appear
highly correlated.

B. Divergence predicts presence of N-terminal signal

We tested whether sequence divergence can be used to
distinguish between proteins with an N-terminal localization
signal (MTS or SP) and those with none. As shown in
Table II, for this binary classification task, sequence divergence
alone allows for significantly higher prediction accuracy than
randomized control experiments or the majority class fraction
(66.2%).

Fig. 4. The scatter plot of LD(13) on the vertical axis vs. #neg (top) and
Hphob (bottom) on the horizontal axis is shown. MTS, SP, and N-signal-less
proteins are represented by red, blue and black dots, respectively.

C. Divergence distinguishes SP vs. MTS vs. N-signal-less

Although the sequence divergence profile of SP’s and
MTS’s appear similar when averaged over proteins containing
each signal (Figure 2), we found that sequence divergence
is still somewhat effective for the three-way classification of
SP vs. MTS vs. N-signal-free. As shown in Table III the
performance with divergence features is slightly better than
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mean accuracy mean AUC mean MCC
J48 72.49± 3.30 0.68± 0.09 0.40± 0.09
- (randomized) 65.85± 0.66 0.50± 0.01 0.00± 0.03
SVM 74.64± 2.38 0.68± 0.03 0.40± 0.06
- (randomized) 66.19± 0.09 0.50± 0.00 0.00± 0.01

TABLE II
THREE CLASSIFICATION PERFORMANCE MEASURES ARE SHOWN FOR THE

DISCRIMINATION OF N-SIGNAL CONTAINING AND N-SIGNAL-LESS
PROTEINS. AUC DENOTES THE AREA UNDER THE ROC CURVES.

(RANDOMIZED) INDICATES THE VALUES OBTAINED WITH THE
LOCALIZATION CLASS LABELS RANDOMLY SHUFFLED 100 TIMES. FOR
EACH MEASURE THE AVERAGE AND STANDARD DEVIATION IS SHOWN

OVER THE 5 FOLDS OF THE CROSS-VALIDATION, OR 500 (5 × 100 TRIALS)
FOLDS IN THE CASE OF THE RANDOMIZED DATA.

the majority class fraction (66.2%) and also slightly improves
the performance when added to the physico-chemical features.

The ratio of examples in our dataset is 8.56:3.37:1, for
N-signal-less, MTS and SP containing proteins respectively.
Skewed datasets are known to complicate both learning and
performance evaluation [33]. Therefore we also measured per-
formance on a dataset with uniform class occupancy, created
by randomly discarding all but 54 proteins from each class. As
shown in Table IV, in this experiment the difference between
the divergence feature only performance is much higher than
the majority class fraction (0.33%) and the divergence features
also contribute more to the performance when combined with
the physico-chemical features.

VI. DISCUSSION

A. Limitations of our work

We have not attempted to create a state-of-the art predictor.
This work must be considered as a proof of concept only with
many limitations.

1) Measure of divergence: Many sophisticated measures
have been proposed to quantify the degree of sequence con-
servation [26]. Here we only present results using a simple
entropy based measure which ignores the phylogenetic rela-
tionship of the species involved.

2) Features used: For non-divergence features we used only
three, reasonable but simple, physico-chemical based features.

3) Organism evaluated: We only evaluated our predictions
on the well-studied fungi S.cere.. Although the mechanisms
of sub-cellular localization are similar in principle in animals
and plants (chloroplasts also import proteins via N-terminal
signals), the details can be different [36], [37].

4) Localization signals/sites: Although many predictors
discriminate between 10 or more localization sites (e.g. WoLF
PSORT [38]), we focused on only two of the most common
sorting signals.

5) Appropriateness of dataset: One weakness in our work,
is that many of our SP proteins are not experimentally val-
idated, but in fact partially annotated as SP proteins due to
prediction from amino acid sequence with SignalP [22]. This
unfortunate circularity (predicting predictions) is unavoidable
because: 1) only a handful of SP’s have been experimentally
verified, and 2) the presence of SP’s cannot be reliably inferred

exclusively from localization site for most S.cere. proteins. It
may be reasonable to assume that secreted proteins all have
SP’s, but S.cere. secretes very few proteins (the SWISS-PROT
derived WoLF PSORT [38] dataset lists only six). Other SP
containing proteins generally localize to the E.R. or Golgi
body – but proteins annotated to localize to the E.R. or
Golgi include non-SP containing proteins such as peripheral
membrane proteins which localize to the outside of these
organelles.

However, the risk of incorrect conclusion resulted from
employing non-verified SP data is small. First, this problem
only applies to the SP class, as recent proteomics data has
provided direct measurement of many MTS’s [21]. Second,
given the intense study of S.cere. and the continued scrutiny
of UniprotKB/Swiss-Prot by the research community, we find
it unlikely that a large fraction of the SP proteins in our
dataset are incorrectly labeled. Third, our argument is not
really very circular. SignalP prediction is based on physico-
chemical features but not divergence (or conservation) for
prediction, and the results shown in Figure 4 suggest that the
features used by SignalP probably do not correlate very closely
with sequence divergence.

B. Conclusion

We find it rather remarkable that the accuracy of balanced
3-way prediction can be improved to nearly 60% just by using
simply defined sequence divergence features, while otherwise
completely hiding the amino acid sequence of the protein!

Although we readily admit the limited scope of this work, it
is the first to quantitatively show that sequence divergence is a
promising feature for localization prediction. We feel confident
that our observation will stand the test of time, through the
more exhaustive exploration that we expect to follow in the
future.

We provide the first quantatitive evidence that evolutionary
sequence divergence can be used to predict protein sub-cellular
localization.
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sequence patterns in signal peptides from mycoplasmas, other gram-
positive bacteria, and escherichia coli: a multivariate data analysis,”
PROTEINS: Structure, Function, and Genetics, vol. 35, pp. 195–205,
1999.

[38] P. Horton et al., “WoLF PSORT: protein localization predictor.” Nucleic
Acids Res, vol. 35, no. Web Server issue, pp. W585–W587, 2007.

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

312 Zhuhai, China, September 2–4, 2011


