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Abstract—Whole cell cryo-electron tomography emerges as an
important component for structural system biology approaches.
It allows the localization and structural characterization of
macromolecular complexes in near living conditions. However,
the method is hampered by low resolution, missing data and low
signal-to-noise ratio (SNR). To overcome some of these difficulties
one can align and average a large set of subtomograms. Existing
alignment methods are mostly based on an exhaustive scanning
and sampling of all but discrete relative rotations and trans-
lations of one subtomogram with respect to the other. In this
paper, we propose a gradient-guided alignment method based
on two subtomogram similarity measures. We also propose a
stochastic parallel optimization that increases significantly the
efficiency for the simultaneous refinement of a set of alignment
candidates. Results on simulated data of model complexes and
experimental structures of protein complexes show that even for
highly distorted subtomograms and with only a small number
of very sparsely distributed initial alignment seeds, our method
can accurately recover true transformations with a significantly
higher precision than scanning based alignment methods.

I. INTRODUCTION

Whole cell cryo-electron tomography emerges as an im-
portant component for structural system biology approaches
[1], [2]. Cryo-electron tomograms of whole cells essentially
contain information on the systems level about the abundance,
spatial distributions and orientations of all large macromolec-
ular complexes at a given time point in a cell [3], [4], [5],
[6]. However, detecting these complexes in whole-cell cryo-
electron tomograms is a challenging task due to low signal-to-
noise ratio (SNR), distortions and low non-isotropic resolution
(> 5 nm) of the tomograms [6]. Therefore traditional image
registration methods derived for low distortion images usually
cannot be applied to alignment of subtomograms. One strategy
is to segment the tomogram into a large number of single com-
plex subtomograms, which are then classified into like objects
by a pair-wise comparison to each other. After subtomogram
classification averaging of the aligned subtomograms in each
class reveals the shapes of macromolecular complexes in each
class at an increased SNR, which can then be assigned to the
corresponding positions in the whole cell tomogram.

Subtomogram alignment methods are key to such pro-
cesses and have been applied to several complexes, including
membrane-bound complexes [7], [8]. However, due to the
potentially large number of subtomograms in whole cell tomo-
grams alignment protocols must not only be precise but also
computationally very efficient. Existing alignment methods

are typically based on the exhaustive sampling over discrete
sets of rotations and translations of one subtomogram with
respect to a second. The optimal alignment is then detected
using the cross-correlation similarity measure between both
subtomograms [9], [10]. However, due to the heavy computa-
tional cost, the exhaustive rotational search can only sample
a limited number of angles. Moreover the typically applied
Fast Fourier Transform (FFT) based translational alignment
can only approximate best translations at the resolution of
the unit voxels. To enhance computational efficiency an ap-
proximate alignment method has been proposed to generate
alignment candidates based on a fast translation-invariant
rotational search [11]. Then a local refinement was used
starting from the alignment candidates close to the optimal
solution. However, the full potential of purely using local
refinement on very sparsely distributed starting candidates
has not been investigated yet. In this paper, we propose
an efficient gradient-guided alignment method based on two
subtomogram dissimilarity scores. In addition, we design a
stochastic parallel framework that significantly speeds up the
simultaneous refinement of multiple alignment candidates.

We demonstrate on realistically simulated data of models
and real macromolecular structures that for highly distorted
subtomograms, even given a small number of evenly sampled
initial angles with a large interval of 60◦, our method can ac-
curately recover true transformation with very high precision.

II. METHODS

Here we provide a gradient-guided refinement framework
for subtomogram alignment that minimizes a dissimilarity
score defined by the squared sum of the differences between
a parameter fixed function and a function whose parameters
are optimized. We consider two types of dissimilarity scores
for subtomogram alignment, which both incorporate missing
wedge corrections. A real space constrained dissimilarity score
(Section II-B) and a Fourier space constrained dissimilarity
score (Section II-D). In principle one would like to refine each
of the solutions independently, however this is computationally
expensive and not feasible for large scale subtomogram clas-
sifications necessary in whole cell tomography. We therefore
provide also a stochastic parallel refinement framework (Sec-
tion II-C) to efficiently reduce the total number of refinement
steps.
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A. Parameter definitions

For simplicity, we denote two subtomograms as two inte-
grable functions f, g : R3 → R. For a ∈ R3, let τa be the
translation operator (τag)(x) := g(x−a). For a rotation R in
the three-dimensional rotational group SO(3), let ΛR be the
rotation operator, such that (ΛRg)(x) := g[R−1(x)]. R can
be represented as a 3 by 3 rotation matrix R. In this case,
(τaΛRg)(x) = g(R−1(x − a)).

The collection of linear transformation parameters com-
bining both rotation and translation can be expressed as
β = (R, a) = (ϕ, θ, ψ, a1, a2, a3)

T , where (ϕ, θ, ψ)T are
Euler angles with the ’ZYZ’ convention [12] to correspond
rotation R, and translation parameters a = (a1, a2, a3)

T .
In addition, for simplicity, we denote the combined linear
transform operator κβ := τaΛR.

B. Local optimization of subtomogram alignment based on a
real space constrained dissimilarity score (RCS)

We now describe the refinement of the subtomogram align-
ment, given a coarse solution for R and a. The goal is to
identify the exact solution given the current values of R
and a as starting parameters. To perform the scoring one
must define a dissimilarity measure for the alignment of the
two subtomograms. Besides the low resolution and SNR of
subtomograms, distortions due to missing data (ie, the missing
wedge effect) make subtomogram alignment challenging, and
these effects must be explicitly considered in the alignment
process.

To address this problem, Förster et al proposed a con-
strained correlation measure with missing wedge corrections
[9]. It is based on a transform that eliminates the coef-
ficients in the missing wedge region. Let M : R3 →
{0, 1} be a missing wedge mask function that defines valid
and missing Fourier coefficients. Then for a given sub-
tomogram f one can define a modified subtomogram func-
tion f1 := �{F−1[(Ff)M(ΛRM)]}, where � denotes
the real part of a complex function, and F is the Fourier
transform operator. Correspondingly, a modified subtomgram
function for the second subtomogram g is defined as g1 :=
�{F−1[(FτaΛRg)M(ΛRM)]}.

The normalized subtomogram transforms can be defined as
Nf := f1−μ(f1)√∫

(f1−μ(f1))2
, and Nκβ

g := g1−μ(g1)√∫
(g1−μ(g1))2

where μ is the mean operator, defined as μf =
∫

f(x)
Sf , and

Sf denotes the size of the subtomogram f . μf is therefore
the average intensity value of subtomogram f .

Then the constrained correlation is calculated as

c :=

∫
Nf Nκβ

g (1)

Because of the subtomogram normalization, this constrained
correlation is equivalent to a constrained dissimilarity score:

dF
β :=

∫
|Nf − Nκβ

g|2 = 2 − 2c (2)

For a given initial guess of the rotation R (for instance
one of the local minima in a rotational search) one can
determine the corresponding best translation τa that minimizes
the distance criteria d efficiently using Fast Fourier Transform
(FFT)). Given any initial ΛR and τa, we seek to obtain an
increment ΛΔR and corresponding τΔa so that

dF
(ΛΔRΛR,τΔaτa) ≤ dF

(ΛR,τa) (3)

Since Nf is fixed with respect to β, we use the Levenberg-
Marquardt algorithm [13] to obtain such increments. This
algorithm converges very fast.

Let xj , j = 1 . . . n be the locations of all n voxels in the
grid of the subtomogram, then we have a discrete form of the
constrained dissimilarity score

d̃F
β :=

∑

j

[
(Nf)(xj) − (Nκβ

g)(xj)
]2

(4)

According to the Levenberg-Marquardt algorithm, Δβ =
(ΔR,Δa) can be obtained by computing

Δβ = (JT J + λdiagJT J)−1JT (f − gβ) (5)

Here f and gβ are vector representations

f = ((Nf)(x1), . . . , (Nf)(xn))T (6)

and
gβ = ((Nκβ

g)(x1), . . . , (Nκβ
g)(xn))T (7)

J is the Jacobian matrix whose jth row is ∂(Nβg)(xj)
∂β , which

is approximated by numerical differentiation; λ is a damping
factor to control the rate of convergence.

The final result of this section provides the refined alignment
parameters R2 = R1 + ΔR1 and a2 = a1 + Δa1 given
the initial parameter set R1 and a1. To perform a complete
refinement this process must be repeated iteratively until
convergence is achieved (next section).

C. Stochastic parallel refinement process

To carry out a global optimization it is necessary to perform
multiple refinement runs starting each time from a differ-
ent candidate rotation angle. However, to carry out these
individual optimizations independently is time consuming,
which would prevent large-scale applications of subtomogram
alignments. Therefore, we propose a stochastic parallel refine-
ment framework to prioritize for those candidate transform
parameters with smaller dissimilarity scores. The basic idea of
this iterative algorithm is to store the scores of all m candidate
transformation parameters β1, . . . , βm, where each β = (R, a)
consists of both rotation and translation parameters. The choice
of which βj to refine next is stochastically decided according
to a probability obtained from dβj .

In other words, at each iteration candidate angles βj with
smaller dβj compared to other dβk

, k �= j, have a higher prob-
ability of being selected for refinement using the incremental
method described in section II-B.
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We define a sampling probability that considers both rank
and magnitude of d. Suppose the candidate parameters are
ordered such that

dβ1 ≥ . . . ≥ dβm (8)

Then for j = 1 . . .m the sampling probability of βj is
proportional to pj with

pj = pj−1 max(10t/(m−1), dβj−1/dβj), ∀j = 2 . . .m (9)

where p1 = 1 and t is a scaling threshold such that the
distinction between pj and pj−1 is at least 10t/(m−1), and
pm/p1 ≥ 10t. The iterative process is terminated when
changes in d compared to its initial value are below a given
threshold.

To further enhance the computational efficiency, similar
candidate transforms β are removed from the list to omit
redundant optimization runs. The similarity of two transforms
βj and βk is defined as the the Frobenius norm ||Dβjβk

||F ,
where

Dβjβk
:= [R−1

j (I − (aj , aj , aj))] − [R−1
k (I − (ak, ak, ak))]

(10)
∀j, k = 1, . . . ,m. If ||Dβjβk

||F ≤ γ is lower than a predefined
threshold γ, then the transform leading to the larger of the two
dissimilarity scores d is removed from the target list.

To terminate the optimization process, at each iteration the
ratio between the smallest and the initial minimum score is cal-
culated. The iterative process is terminated when convergence
is achieved, which is identified by a linear regression ratio
over the minimal scores in last iterations. In case convergence
cannot be achieved the optimization is terminated after a large
number of iterations nmax iter.

In this section we have introduced a parallel iterative
refinement method that relies on a similarity measure and local
optimization process as described in Section II-B. In the fol-
lowing section, we introduce another refinement method based
on a different similarity measure between subtomograms.

D. Local optimization of subtomogram alignment based on
a Fourier space constrained subtomogram dissimilarity score
(FCS)

After having introduced an iterative refinement process, and
introduced a dissimilarity measure in Section II-B, we now
test the refinement process further with a second dissimilarity
score. This new score is based on a constrained dissimilarity
score computed directly in Fourier space [11]:

dB
β :=

∫
|(Ff) − (FτaΛRg)|2M(ΛRM)∫

M(ΛRM)
(11)

By properties of the Fourier transform

(FτaΛRg)(ξ) = e−2πa�ξ (ΛRFg)(ξ) (12)

, given a fixed initial R, the initial a can be efficiently calcu-
lated using FFT. Because dB

β is not expressed as the summed
square of differences, here the Levenberg-Marquardt algorithm
cannot be directly applied. However, because

∫
M(ΛRM) has

a regular structure containing only binary 0 and 1 values, one
can approximate dB

β as

dB
β ≈ c

∫
|(Ff) − (FτaΛRg)|2M(ΛRM) (13)

where c := 1∫
M(ΛRM)

is treated as a constant in the whole
refinement step.

Let ξj , j = 1 . . . n be the locations of all n voxels in
the grid of the Fourier transform of the tomogram such that
M(ΛRM)(ξj) = 1. Then a discrete form of the dissimilarity
score can be formulated

d̃B
β := c

∑

j

|(Ff)(ξj) − (Fκβg)(ξj)|2 (14)

Because the above score is based on a complex function,
the Levenberg-Marquardt algorithm cannot be directly applied.
Therefore in the following section we derive a new version of
the Levenberg-Marquardt algorithm for complex functions. In
this version, Δβ can be obtained by computing

Δβ = A−1b (15)

where

A = [�(J)T �(J) + �(J)T �(J)] (16)

+ λ diag[�(J)T �(J) + �(J)T �(J)]

and where � and � denote real and imaginary parts and

b = �(J)T [�(f) − �(gβ)] + �(J)T [�(f) − �(gβ)] (17)

Here f and gβ are vector representations of Fourier trans-
form of the two subtomograms

f = ((Ff)(ξ1), . . . , (Ff)(ξn))
T (18)

and
gβ = ((Fκβg)(ξ1), . . . , (Fκβg)(ξn))T (19)

J is the Jacobian matrix whose jth row is ∂(Fκβg)(ξj)
∂β , where

the derivative with respect to the translational parameters can
be determined analytically (according to Equation (12)) and
the derivative with respect to the rotational parameters is
approximated by numerical differentiation. λ is a damping
factor to control convergence speed.

E. Generating simulated cryo-electron tomograms

For a reliable assessment of the method tomograms must be
simulated as realistic as possible. We follow a previously ap-
plied methodology for realistically simulating the tomographic
image formation [4], [6], [9], [14]. Initial density maps at 4 nm
resolution are generated and used as samples for simulating
electron micrograph images at different tilt angles. The tilt
angles are set within a certain maximal range with steps of 1◦.
As a result our data contains a wedge-shaped region in Fourier
space for which no data has been measured (missing wedge
effects), similar to experimental measurements. The missing
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wedge effect leads to distortions of the density maps in real
space along the tilt-axis. To generate realistic micrographs,
noise is added to the images and the resulting image map is
convoluted with a Contrast Transfer Function (CTF), which
describes the imaging in the transmission electron microscope
in a linear approximation. Any negative contrast values beyond
the first zero of the CTF are eliminated. We also consider
the modulation Transfer Function (MTF) of a typical detector
used in whole cell tomography, and convolute the density
map with the corresponding MTF. The CTF and MTF de-
scribe distortions from interactions between electrons and the
specimen and distortions due to the image detector [15], [14].
Typical acquisition parameters used during actual experimental
measurements of whole cell tomograms [4] were used: voxel
grid length = 1 nm, the spherical aberration = 2×10−3m, the
defocus value = −4× 10−6m, the voltage = 200kV, the MTF
corresponded to a realistic electron detector [16], defined as
sinc(πω/2) where ω is the fraction of the Nyquist frequency.

Finally, we use a backprojection algorithm to generate a
tomogram from the individual 2D micrographs that were
generated at the various tilt angles [4]. To test the influence
of increasing noise, we add different amount of noise to the
images, so that the SNRs range between ∞ and 0.1, respec-
tively. Figure 1(b) shows the reconstructed subtomograms of a
phantom model at different noise levels and different tilt angle
ranges.

All our methods are implemented in MATLAB.

III. RESULTS

We test our method on phantom models and actual struc-
tures of protein complexes.

Fig. 1. (a) Density map of an unsymmetric phantom model consisting of
four different 3D Gaussian functions. This density map is used to simulate
subtomograms of 323 voxels. (b) A slice of the reconstructed tomograms at
different levels of noise (∞, 1, 0.5, 0.1), and different tilt angle ranges leading
to different levels of missing wedge distortions. The Isodensity contour plot
are generated using the Chimera software package [17]. The slices are plotted
using MATLAB.

To assess the general performance, 100 pairs of sub-
tomograms with randomly placed phantom models were gen-
erated for different SNR levels and tilt angle ranges (Figure
1(b)). Our stochastic parallel refinement method is tested using
both the RCS and FCS distance scores1.

We test our approach with respect to two factors. First,
the maximal alignment error obtained from the refinement

1Stopping criterion for optimization: (nmin dist = 10, tregress = 0.001
and nmax iter = 1000)

and second, the number of iterative steps that are needed to
determine the optimal solution.

Fig. 2. Top panels: The minimum dissimilarity scores obtained at different
iterations subtracted from the true distance. Bottom panels: The difference
||Dβpredβtrue ||F between predicted and true transforms at those iterations
where minimum dissimilarity scores are obtained. Top, (a) Subtomogram
alignments based on the real space constrained dissimilarity score (RCS), and
(b) based on the Fourier space constrained dissimilarity score (FCS). Shown
is the performance for subtomograms with SNR 0.5, missing wedge angle
30◦. The method was tested with rotational angles sampled at angle interval
60◦

We show that even at a low SNR level of 0.5 and a typical
range of tilt angles between −70◦ and +70◦ our method can
still achieve a very low alignment error (Table I). For example
even when the rotational sampling is performed at only 60◦

intervals the stochastic iterative refinement process together
with the RCS scoring produces on average errors of 3.1◦,
while the FCS scoring achieves 2.9◦ error (Table I). This
angle error is significantly lower than would be expected from
exhaustive scanning where sampling of rotational angles is
usually performed at 10◦ or 5◦ sampling intervals without
additional refinement. At 5◦ intervals a total of 168,634 can-
didate orientations must be processed while at 60◦ rotational
intervals only 108 candidate orientations are processed. Also
our method can in general achieve a small error for the
translation of subtomograms that cannot be reached by an FFT
based exhaustive sampling, which on average cannot be less
than 0.5 (Table II).

The parallel stochastic refinement process reduces consid-
erably the number of refinement iterations that are needed
to reach the global solution. At a rotational sampling of
60◦, there are 108 candidate orientations that can potentially
serve as starting points for a refinement process. Without
the parallel stochastic optimization method, a refinement of
a candidate orientation takes on average about 60 iterations
per run, totaling about 6480 iterative refinement steps to find
the global optimum among all candidate orientations if all
candidate orientations are refined independently. However, our
parallel stochastic refinement process reaches convergence al-
ready within 200-300 iterative refinement steps (Figure 2). We
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estimate that the parallel stochastic refinement is on average
about 20 to 40 fold faster in comparison to the independent
refinement of all candidate orientations (Table III).

TABLE I
SUBTOMGRAM ALIGNMENT ERROR IN TERMS OF THE DIFFERENCE IN THE

DETERMINED AND TRUE ROTATIONAL ANGLE OF THE SUBTOMOGRAMS.
SHOWN ARE THE MEDIANS AND MEDIAN ABSOLUTE DEVIATIONS OF ALL

100 SUBTOMOGRAM ALIGNMENTS.

RCS�����Tilt
SNR ∞ 1 0.5 0.1

±90◦ 0.71 ± 0.49 3.3 ± 2.8 2.6 ± 1.4 14 ± 9.3
±80◦ 0.85 ± 0.54 2.5 ± 1.8 3.5 ± 2.4 21 ± 14
±70◦ 1.2 ± 0.53 1.9 ± 1.3 3.1 ± 1.7 19 ± 12
±60◦ 0.97 ± 0.49 2 ± 0.97 3.7 ± 2.4 49 ± 45
±50◦ 1.8 ± 0.9 2.9 ± 1.6 7 ± 5.2 87 ± 63
±40◦ 1.6 ± 1 9 ± 8.3 55 ± 53 123 ± 31

FCS
∞ 1 0.5 0.1

±90◦ 0.89 ± 0.54 2.6 ± 2.1 2.4 ± 1.1 8.5 ± 4.5
±80◦ 1.1 ± 0.61 2.2 ± 1.6 3.2 ± 2.2 12 ± 7.7
±70◦ 2 ± 0.86 2.1 ± 1 2.9 ± 1.3 16 ± 11
±60◦ 1.5 ± 0.82 2.4 ± 1.2 3.8 ± 2.1 34 ± 30
±50◦ 2.6 ± 1.1 3.4 ± 1.8 6.3 ± 4.2 43 ± 37
±40◦ 15 ± 14 92 ± 40 106 ± 37 113 ± 26

TABLE II
SUBTOMOGRAM ALIGNMENT ERROR IN TERMS OF THE DIFFERENCE IN

THE EUCLIDEAN DISTANCE BETWEEN DETERMINED AND TRUE

SUBTOMOGRAM TRANSLATIONS. SHOWN ARE THE MEDIANS AND MEDIAN
ABSOLUTE DEVIATIONS OF ALL 100 SUBTOMOGRAM ALIGNMENTS.

RCS
�����Tilt

SNR ∞ 1 0.5 0.1

±90◦ 0.035 ± 0.023 0.16 ± 0.12 0.19 ± 0.12 0.96 ± 0.66
±80◦ 0.045 ± 0.029 0.24 ± 0.2 0.21 ± 0.15 1.3 ± 0.89
±70◦ 0.078 ± 0.037 0.25 ± 0.17 0.3 ± 0.18 1.3 ± 0.74
±60◦ 0.068 ± 0.036 0.19 ± 0.12 0.43 ± 0.3 2.2 ± 1.3
±50◦ 0.14 ± 0.078 0.26 ± 0.17 0.65 ± 0.51 2.3 ± 1.3
±40◦ 0.15 ± 0.092 0.74 ± 0.64 1.7 ± 1.3 3.2 ± 1.6

FCS
∞ 1 0.5 0.1

±90◦ 0.047 ± 0.023 0.12 ± 0.081 0.11 ± 0.053 0.49 ± 0.31
±80◦ 0.053 ± 0.03 0.15 ± 0.1 0.18 ± 0.1 0.85 ± 0.66
±70◦ 0.11 ± 0.057 0.13 ± 0.074 0.21 ± 0.1 0.95 ± 0.58
±60◦ 0.11 ± 0.061 0.2 ± 0.094 0.3 ± 0.15 1.6 ± 1.2
±50◦ 0.19 ± 0.1 0.28 ± 0.16 0.44 ± 0.26 1.8 ± 1.2
±40◦ 0.61 ± 0.54 3.3 ± 2.7 4.3 ± 2.6 6.2 ± 3

Next, we further test our alignment methods for refining
density maps of complexes by averaging all aligned sub-
tomograms. We generated 1000 subtomograms (at SNR 0.5,
tilt angle range ±60◦) containing randomly oriented models.
We then aligned the tomograms against the initial template
using our methods and rotational sampling with 60◦ angle
intervals. From the resulting averaged density maps it can
be seen that our methods can successfully recover the initial
model structure (Figure 3).

A. Pairwise alignment of subtomograms from real macro-
molecular complexes

A whole cell cryo-electron tomogram consists of instances
of macromolecular complexes of different types. These in-
stances are segmented into subtomograms and can be classified
after pairwise alignment, which is fundamental for successful

TABLE III
FOLD CHANGE FOR THE DECREASE IN THE ITERATION NUMBER NEEDED

BY STOCHASTIC PARALLEL OPTIMIZATION COMPARED TO EXHAUSTIVE

INDEPENDENT REFINEMENT. SHOWN ARE THE MEDIANS AND MEDIAN
ABSOLUTE DEVIATIONS OF ALL 100 SUBTOMOGRAM ALIGNMENTS.

RCS
�����Tilt

SNR ∞ 1 0.5 0.1

±90◦ 28 ± 5.4 23 ± 3.4 21 ± 1.8 21 ± 2.3
±80◦ 28 ± 4.6 23 ± 2.7 21 ± 2.2 21 ± 2.8
±70◦ 27 ± 4.2 21 ± 2.4 22 ± 2.7 20 ± 2.4
±60◦ 28 ± 4.1 21 ± 2.5 21 ± 1.8 21 ± 3
±50◦ 23 ± 3.1 22 ± 2.4 20 ± 2.4 21 ± 2.9
±40◦ 23 ± 3.2 20 ± 2.5 20 ± 2.3 20 ± 2.2

FCS
∞ 1 0.5 0.1

±90◦ 40 ± 12 28 ± 6.3 26 ± 4.2 21 ± 2
±80◦ 37 ± 11 26 ± 4.7 24 ± 3.3 21 ± 1.8
±70◦ 36 ± 5.3 26 ± 4.6 24 ± 3.6 20 ± 2.1
±60◦ 36 ± 8.4 26 ± 4.6 24 ± 3.2 21 ± 1.8
±50◦ 29 ± 6.4 24 ± 3.9 23 ± 2.8 21 ± 2.1
±40◦ 24 ± 4.6 22 ± 3.2 20 ± 2.5 20 ± 3.3

Fig. 3. Averaged subtomograms. Left, aligned using RCS. Right, aligned
using FCS.

structural systems biology analysis of these instances. In
this section, we test our methods on subtomograms of four
macromolecular complexes obtained from the Protein Data
Bank (PDB id 1KP8, 2GHO, 1W6T, 1YG6). The density map
of each complex is calculated from its atomic structure by ap-
plying a low pass filter at 4 nm resolution using the PDB2VOL
program of the Situs 2.0 package [18] and voxel spacing
of 1 nm. The resulting density maps are used to simulate
20 subtomograms for each randomly placed macromolecular
complex, at SNR 0.5 and tilt angle range ±60◦ (Section II-E).

We perform all pairwise alignments between all 80 sub-
tomograms with sampling of 60◦ rotational angle intervals.
After alignment the resulting dissimilarity score matrix for
subtomogram classification is significantly improved in com-
parison to the dissimilarity score matrix generated from the
initial starting structures (Figure 4 (a)).

After classification and alignment, the resulting averaged
tomograms are very similar to the original density maps. The
distortions evident in the individual subtomograms are greatly
reduced after averaging (Figure 4 (b)).

IV. CONCLUSION

In this paper, we have proposed a new gradient based
method for high precision subtomogram alignments. Com-
bined with the RCS and FCS scores, this method can achieve
significantly lower alignment error in comparison to an ex-
haustive sampling method. We show that this accuracy can
already be reached with only a relatively small number
of sampled candidate orientations, for example at rotational
intervals of 60◦. Moreover, we have proposed a very ef-
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Fig. 4. (a) Dissimilarity score matrices for subtomogram classification.
The matrix elements representing the same complexes are in consecutive
order. (Top row) Dissimilarity score matrix based on the initial subtomogram
orientations before alignment for (left column) RCS score and (right column)
FCS score. (Bottom row) RCS and FCS score matrices after subtomogram
alignments. The alignment is performed at a sampling with 60◦ rotation angle
intervals. (b) Density maps of complexes generated after averaging of the
aligned subtomograms in the same class. (Left column) Isodensity contour
plot of the density distribution in single subtomogram for each complex.
(Middle and right columns) Isodensity contour plot of the resulting density
maps generated by averaging the 20 subtomograms aligned with the RCS and
FCS scores, respectively.

ficient stochastic parallel refinement method, which is able
to find the global optimum with only a small fraction of
iterations in comparison to the independent sampling and
refinement with the same sampling angle intervals. Together,
these improvements increase significantly the efficiency and
accuracy for subtomogram alignments, which is a key factor
for the systematic classification of macromolecular complexes
in cryo-electron tomograms of whole cells.
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