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Abstract—Alternative splicing is a ubiquitous gene regulatory
mechanism that dramatically increases the complexity of the
proteome. In this paper we study splicing module, which we
define as a set of cassette exons co-regulated by the same
splicing factors. We have designed a tensor-based approach to
identify co-splicing clusters that appear frequently across multiple
conditions, thus very likely to represent splicing modules – a
unit in the splicing regulatory network. In particular, we model
each RNA-seq dataset as a co-splicing network, where the nodes
represent exons and the edges are weighted by the correlations
between exon inclusion rate profiles. We apply our tensor-based
method to the 19 co-splicing networks derived from RNA-seq
datasets and identify an atlas of frequent co-splicing clusters. We
demonstrate that these identified clusters represent splicing mod-
ules by validating against four biological knowledge databases.
The likelihood that a frequent co-splicing cluster is biologically
meaningful increases with its recurrence across multiple datasets,
highlighting the importance of the integrative approach. We also
demonstrate that the co-splicing clusters reveal novel functional
groups which cannot be identified by co-expression clusters, and
that the same exons can dynamically participate in different
pathways depending on different conditions and different other
exons that are co-spliced.

I. INTRODUCTION

Alternative splicing provides an important means for gen-
erating proteomic diversity. Recent estimates indicate that
nearly 95% of human multi-exon genes are alternatively
spliced [1]. The mechanism for regulating alternative splicing
is still poorly understood, and its complexity attributes to the
combinatorial regulation of many factors, e.g. splicing factors,
cis-acting elements, and RNA secondary structure [2], [3]. A
fundamental task of alternative splicing research is to decipher
splicing code and understand the mechanism of how an exon
is alternatively spliced in tissue-specific manner.

A central concept in transcription regulation is the transcrip-
tion module, defined as a set of genes that are co-regulated by
the same transcription factor(s). Analogously, such coordinated
regulation also occurs at the splicing level [4], [5], [6]. For
example, the splicing factor Nova regulates exon splicing of a
set of genes that shape the synapse [6]. However, the study of
such coordinated splicing regulation has thus far been limited
to individual cases [5], [6], [7], [8], [9]. In this paper, we define
a splicing module as a set of exons that are regulated by the
same splicing factors. The exons in a splicing module can
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belong to different genes, but they exhibit correlated splicing
patterns (in terms of being included or excluded in their
respective transcripts) across different conditions, thus form
an exon co-splicing cluster.

The recent development of RNA-seq technology provides
a revolutionary tool to study alternative splicing. From each
RNA-seq dataset, we can derive not only the expression levels
of genes, but also those of exons and transcripts (i.e., splicing
isoforms). Given an RNA-seq dataset containing a set of sam-
ples, we can calculate the inclusion rate of each exon 1 in every
sample, as the ratio between its expression level and that of the
host gene. A recent study provided a nice example of studying
splicing regulatory relationships using a network of exon-
exon, exon-gene, and gene-gene links [10]. Here, we construct
from each RNA-seq dataset a weighted co-splicing network
where the nodes represent exons and the edge weights are
correlations between the inclusion rates of two exons across all
samples in the dataset. While directly comparing the inclusion
rates for the same exon in different datasets could be biased
by platforms and protocols, the correlations between inclusion
rates for a given exon pair are comparable across datasets.
From a series of RNA-seq datasets, we can therefore derive
a series of co-splicing networks, which can be subjected to
comparative network analysis and provide an effective way to
integrate a large number of RNA-seq experiments conducted in
different laboratories and using different technology platforms.

A heavy subgraph in a weighted co-splicing network repre-
sents a set of exons that are highly correlated in their inclusion
rate profiles; i.e., they are co-spliced. A set of exons which
frequently form a heavy subgraph in multiple datasets are
likely to be regulated by the same splicing factors, and thus
form a splicing module. We call such patterns frequent co-
splicing clusters. Due to the enhanced signal to noise separa-
tion, frequent clusters are more robust and are more likely to
be regulated by the same splicing factors (thus more likely
to represent splicing modules) than those heavy subgraphs
derived from a single dataset. In our previous research [11],
we showed that the likelihood for a gene co-expression cluster
to be a transcription module increases significantly with the
recurrence of clusters in multiple datasets. A similar principle
applies to splicing modules.

1In this study we only consider cassette exons, which are common in al-
ternative splicing events. Henceforth, the term “exon” always means “cassette
exon.”
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Fig. 1. A collection of co-splicing networks can be “stacked” into a third-order tensor such that each slice represents the adjacency matrix of one network.
The weights of edges in the co-splicing networks and their corresponding entries in the tensor are color-coded according to the scale to the right of the figure.
After reordering the tensor by the exon and network membership vectors, a frequent co-splicing cluster (colored in red) emerges in the top-left corner. It is
composed of exons A,B,C,D which are heavily interconnected in networks 1, 2, 3.

In this paper, we adopt our recently developed tensor-based
approach to find the heavy subgraph that frequently occur in
multiple weighted networks [12]. Our goal here is to identify
co-spliced exon clusters that frequently occur across multiple
weighted co-splicing networks. A co-splicing network of n
nodes (exons) can be represented as an n × n adjacency
matrix A, where element aij is the weight of the edge between
nodes i and j. This weight represents the correlation between
the two exons’ inclusion rate profiles. Given m co-splicing
networks with the same n nodes but different edge weights,
we can represent the whole system as a 3rd-order tensor (or
3-dimensional array) of size n × n ×m. An element aijk of
the tensor is the weight of the edge between nodes i and j
in the kth network (Fig. 1). A co-splicing cluster appears as
a heavy subgraph in the co-splicing network, which in turn
corresponds to a heavy region in the adjacency matrix. A
frequent co-splicing cluster is one that appears in multiple
datasets, and appears as a heavy region of the tensor (Fig. 1).
Thus, the problem of identifying frequent co-splicing clusters
can intuitively be formulated as the problem of identifying
heavy subtensors in a tensor. By representing networks and
formulating the problem in this tensor form, we gain access
to a wealth of established optimization methods for multidi-
mensional arrays. Reformulating a discrete graph discovery
problem as a continuous optimization problem is a long-
standing tradition in graph theory. There are many successful
examples, such as using a Hopfield neural network to solve
the traveling salesman problem [13] and applying the Motzkin-
Straus theorem to the clique-finding problem [14]. Moreover,
when a graph-based pattern mining problem is transformed
into a continuous optimization problem, it becomes easy to
incorporate constraints representing prior knowledge. Finally,
advanced continuous optimization techniques require very few

ad hoc parameters, in contrast with most heuristic graph
combinatorial algorithms.

We applied our tensor algorithm to 19 weighted exon co-
splicing networks derived from human RNA-seq datasets. We
identified an atlas of frequent co-splicing clusters and validated
them against four biological knowledge bases: Gene Ontol-
ogy annotations, RNA-binding motif database, 191 ENCODE
genome-wide ChIP-seq profiles, and protein complex database.
We demonstrate that the likelihood for an exon cluster to be
biologically meaningful increases with its recurrence across
multiple datasets, highlighting the benefit of the integrative
approach. Moreover, we show that co-splicing clusters can
reveal novel functional groups that cannot be identified by
co-expression clusters. Finally, we show that the same exons
can dynamically participate in different pathways, depending
on different conditions and different other exons that are co-
spliced.

II. METHODS

Given an RNA-seq dataset, we construct a co-splicing
network where nodes represent exons and edges are weighted
by the correlation between two exon inclusion rate profiles.
Given m co-splicing networks with the same n nodes but
different edge weights, we can represent the whole system
as a 3rd-order tensor A = (aijk)n×n×m. A frequent co-
splicing cluster (FSC) in the tensor A can be defined by
two membership vectors: (i) the exon membership vector
x = (x1, . . . , xn)

T , where xi = 1 if exon i belongs to the
cluster and xi = 0 otherwise; and (ii) the network membership
vector y = (y1, . . . , ym)T , where yj = 1 if the exons of the
cluster are heavily interconnected in network j and yj = 0
otherwise. The summed weight of all edges in the FSC is
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HA(x,y) =
1

2

n∑

i=1

n∑

j=1

m∑

k=1

aijkxixjyk. (1)

Note that only the weights of edges aijk with xi = xj =
yk = 1 are counted in HA. Thus, HA(x,y) measures the
“heaviness” of the FSC defined by x and y. The problem of
discovering a frequent co-splicing cluster can be formulated
as a discrete combinatorial optimization problem: among all
patterns of fixed size (K1 member exons and K2 member
networks), we look for the heaviest. This is also an integer
programming problem: find the binary membership vectors
x and y that jointly maximize HA under the constraints∑n

i=1 xi = K1 and
∑m

j=1 yj = K2. However, there are
several major drawbacks to this discrete formulation. The first
is parameter dependence, meaning that the size parameters
K1 and K2 are hard for users to provide and control. The
second is high computational complexity; the task is proved
to be NP-hard (see Supplementary Material 2) and therefore
not solvable in a reasonable time even for small datasets.
Therefore, the discrete optimization problem is infeasible for
an integrative analysis of many massive networks. Instead, we
solve a continuous optimization problem with the same objec-
tive by relaxing integer constraints to continuous constraints.
That is, we look for non-negative real vectors x and y that
jointly maximize HA. This optimization problem is formally
expressed as follows:

maxx∈Rn
+
,y∈Rm

+
HA(x,y)

subject to f(x) = 1 and g(y) = 1
(2)

where R+ is a non-negative real space, and f(x) and g(y)
are vector norms. After solving Eq. (2), users can easily
identify the top-ranking networks (after sorting the tensor by
y) and top-ranking exons (after sorting each network by x)
contributing to the objective function. After rearranging the
networks in this manner, the FSC with the largest heaviness
occupies a corner of the 3D tensor. We can then mask all edges
in the heaviest FSC with zeros, and optimize Eq. (2) again to
search for the next FSC.

The choice of vector norms in Eq. (2) has a significant
impact on the outcome of the optimization. A vector norm
defined as ‖x‖p = (

∑n
i=1 |xi|p)

1/p, where p > 0, is also
called an “Lp-vector norm”. In general, the closer p is to zero,
the sparser the solution favored by the Lp-norm; that is, fewer
components of the optimized vectors are significantly different
from zero [15]. In contrast, as p increases, the solution favored
by the Lp-norm grows smoother; in the extreme case p→∞,
the elements of the optimized vector are approximately equal
to each other. For more details on these vector norms, refer
to the Supplementary Material. Our ideal membership vector
selects a small number of exons (“sparse”) whose values are
close to each other in magnitude (“smooth”), while the rest of
exons are close to zero. Our past research [12] has shown that
this goal can be achieved using the mixed norm L0,∞(x) =

2Supplementary Material is available at http://zhoulab.usc.edu/cosplicing

α‖x‖0 + (1 − α)‖x‖∞ (0 < α < 1) for f(x). The norm L0

favors sparsity while the norm L∞ encourages smoothness in
the non-zero components of x. In practice, we approximate
L0,∞(x) with another mixed norm: Lp,2(x) = α‖x‖p + (1−
α)‖x‖2, where p < 1. Our criteria for the network membership
vector are similar. We want the exon cluster to appear in as
many networks as possible, so the network membership values
should be non-zero and close to each other. This is the typical
outcome of optimization using the L∞ norm. In practice, we
approximate L∞ with Lq(y), where q > 1 for g(y). Therefore,
the vector norms f(x) and g(y) are fully specified as follows,

f(x) = α‖x‖p + (1− α)‖x‖2 and g(y) = ‖y‖q (3)

We performed simulations to determine suitable values for
the parameters p, α, and q, applying our tensor method to
collections of random weighted networks. We randomly placed
FSCs of varying size, recurrence, and heaviness in a subset of
the random networks. We then tried different combinations of
p, α, and q, and adopted the combination (p = 0.8, α = 0.2,
and q = 10) that led to the discovery of the most FSCs. More
details on these simulations are provided in the Supplementary
Material.

Since the vector norm f(x) is non-convex, our tensor
method requires an optimization protocol that can deal with
non-convex constraints. The quality of the optimum discovered
for a non-convex problem depends heavily on the numerical
procedure. Standard numerical techniques such as gradient
descent converge to a local minimum of the solution space,
and different procedures often find different local minima.
Thus, it is important to find a theoretically justified numerical
procedure. We use an advanced framework known as multi-
stage convex relaxation, which has good numerical properties
for non-convex optimization problems [15]. In this framework,
concave duality is used to construct a sequence of convex
relaxations that give increasingly accurate approximations to
the original non-convex problem. We approximate the sparse
constraint function f(x) by the convex function f̃v(x) =
vTh(x) − f∗h(v), where h(x) is a specific convex function
h(x) = x2 and f∗h(v) is the concave dual of the function
fh(v) (defined as f(v) = fh(h(v))). The vector v contains
coefficients that will be automatically generated during the
optimization process. After each optimization, the new coeffi-
cient vector v yields a convex function f̃v(x) that more closely
approximates the original non-convex function f(x). Details
of our tensor-based optimization method can be found in the
Supplementary Material.

Once the membership vectors (i.e., the solution of Eq. (2))
have been found by optimization, the frequent co-splicing
clusters can be intuitively obtained by including those exons
and networks with large membership values. However, any
given solution can result in multiple overlapping patterns
whose “heaviness” is greater than a specified threshold. Here,
heaviness is defined as the average weight of all edges in the
pattern. To identify the most representative pattern, we first
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rank exons and networks in decreasing order of their mem-
bership values in x̂ and ŷ. Then we extract two representative
patterns that satisfy the heaviness threshold: the pattern that
occurs in the most networks while having at least the minimum
number of top-ranking exons (e.g., 5), and the pattern with
the largest number of top-ranking exons while appearing in
at least the minimum number of top-ranking networks (e.g.,
4). Both patterns are included as co-splicing clusters in our
results. After discovering a pattern, we can mask its edges in
those networks where it occurs (replacing those elements of
the tensor with zeroes) and optimize Eq. (2) again to search
for the next frequent co-splicing cluster.

III. RESULTS

We identified 19 human RNA-seq datasets from the NCBI
Sequence Read Archive 3, each with at least six samples
providing transcriptome profiling under multiple experimental
conditions, such as diverse tissues or various diseases. For
each dataset, we used the Bowtie [16] tool to map short reads
to the hg18 reference genome, setting the program options
to report only the optimal alignment and discard those reads
that map equally well to multiple positions. Next, we applied
the transcript assembly tool Cufflinks [17] to estimate the ex-
pressions for all transcripts with known ensemble transcription
annotations. We calculated the inclusion rate of each exon, as
the ratio between its expression (the sum of RPKM 4 over all
transcripts that cover the exon) and the host gene’s expression
(the sum of RPKM over all transcripts of the gene). It is
worth noting that in RNA-seq experiments, a gene expression
with low RPKM is usually not precisely estimated because
the number of reads mapped to the gene is quite small. In
order to work with reasonably accurate estimates of exon
inclusion rates, as pointed out by [19], we calculated inclusion
rates only for those genes whose expressions are above 70th

percentile across at least 2/3 of the samples. This criterion
resulted in inclusion rate profiles for 5422 exons covering
3343 genes. Based on these profiles, we constructed an exon
co-splicing network from each RNA-seq dataset by using
Pearson’s correlation between exons’ inclusion rate profiles.

We applied our method to 19 RNA-seq datasets generated
under various experimental conditions. Adopting the empirical
criteria of “heaviness” > 0.4 and cluster size > 5 exons, we
identified 2334 co-splicing clusters with recurrences > 4, 1064
co-splicing clusters with recurrences > 5, and 442 co-splicing
clusters with recurrences > 6.

A. Frequent co-splicing clusters are likely to represent func-
tional modules, splicing modules, transcriptional modules, and
protein complexes

To assess the biological significance of the identified pat-
terns, we evaluate the extent to which these exon clusters
represent functional modules, splicing modules, transcriptional
regulatory modules, and protein complexes.

3http://www.ncbi.nlm.nih.gov/sra
4RPKM stands for “Reads Per Kilobase of exon model per Million mapped

reads”, as defined in [18].

a) Functional analysis: We evaluated the functional ho-
mogeneity of the host genes in an exon cluster using Gene
Ontology (GO) annotations. To ensure the specificity of GO
terms, we filtered out general GO terms associated with > 500
genes. If the host genes of exons in a cluster are statistically
enriched in a GO term with p-value<1E-4 (based on the hyper-
geometric test), we declare the exon cluster to be functionally
homogeneous. We found that 14.9% of clusters appearing in
>6 datasets are functionally homogenous, compared to only
5.4% of randomly generated clusters with the same sizes.
functionally homogenous clusters cover a wide range of post-
transcriptional associated GO terms, such as “RNA splicing”,
“ribonucleoprotein binding”, “heterogeneous nuclear ribonu-
cleoprotein complex”, “negative regulation of protein catabolic
process”, and “cellular protein localization”. When we perform
the same analysis for clusters with lower recurrences (4 or
5 datasets), it is clear that functional homogeneity is more
likely among more frequent clusters (Fig. 2A). These results
confirm the benefits of the integrative approach in improving
the quality of detected patterns.

b) Splicing regulatory analysis: By construction, the
exons in our identified co-splicing clusters have highly cor-
related inclusion rate profiles across different experimental
conditions. Clusters meeting this criterion are likely to consist
of exons co-regulated by the same splicing factors. It has been
shown that splicing factors can affect alternative splicing by
interacting with cis-acting elements in a position-dependent
manner [20]. We collected the binding motifs of 33 RNA-
binding proteins from the RBPDB database (version 1.2.1
released on 25/01/2011) [21]. These proteins include known
and potential splicing factors. To identify possible splicing
factors associated with a co-splicing cluster, for each exon of
a co-splicing cluster, we retrieved the internal exon region and
its 100bp flanking intron region to check whether those regions
contain one or more of the exact motifs of those 33 RNA-
binding proteins. If the exons of a cluster are highly enriched
in the targets of an RNA-binding protein, then this protein
could serve as the common splicing regulator of the cluster. In
this case, we consider the cluster to be “splicing homogenous”.
At the p-value<0.01 level (based on the hypergeometric test),
12.2% clusters with >5 exons and >6 recurrences are splicing
homogenous. Performing the same analysis for less frequent
clusters, we find that as the recurrence increases, so does
the percentage of splicing homogenous modules (Fig. 2B).
The four most frequently enriched RNA-binding proteins are
RBM4, YTHDC1, YBX1 and SFRS1. RBM4 is known to be
involved in diverse cellular processes including alternative
splicing of pre-mRNA, translation, and RNA silencing [22].
YTHDC1 has been shown to modulate alternative splice site se-
lection in a concentration-dependent manner [23], and its mal-
function is associated with a number of diseases[24], [25]. The
RNA splicing mediated by YBX1 is inhibited by TLS/CHOP in
human myxoid liposarcoma cells [26]. SF2/SFRS1 promotes
alternative exon inclusion, and prevents inappropriate exon
skipping in natural alternatively spliced pre-mRNAs [27].

We found that some splicing factors tend to co-bind to the
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Fig. 2. Evaluation of the functional, transcriptional, splicing, and protein complex homogeneity of co-splicing clusters with different recurrences. Four types
of databases are used: (A) Gene Ontology for functional enrichment, (B) RBPDB database for splicing enrichment, (C) ENCODE database for transcriptional
and epigenetic enrichment, and (D) CORUM database for protein complex enrichment. The x-axis is recurrence and y-axis is enrichment rate.

cis-regulatory regions of exons in a co-splicing cluster, sug-
gesting the combinatorial regulation of those splicing factors.
SFRS1 and RBM4 are simultaneously enriched in 12 clusters,
whose major functions (by GO term enrichment) are related
to transcriptional regulation, such as “transcription factor
binding” (p-value=1.22E-3), “transcription repressor activity”
(p-value=2.99E-3), and “positive regulation of gene-specific
transcription” (p-value=4.46E-3). KHDRBS3, Fox-1 and YBX2,
are simultaneously enriched in 6 clusters. These clusters are
associated with post-transcriptional regulation, for example,
“proteolysis involved in cellular protein catabolic process” (p-
value=8.31E-4), “ubiquitin-dependent protein catabolic pro-
cess” (p-value=4.85E-4), and “post-transcriptional regulation
of gene expression” (p-value=4.53E-3). Our results suggest
that combinatorial splicing regulation can occur in both co-
transcriptional and post-transcriptional processes.

c) Transcriptional and epigenomic analysis: To evaluate
how co-splicing is affected by transcriptional regulation, we
used 191 ChIP-seq profiles generated by the Encyclopedia
of DNA Elements (ENCODE) consortium [28]. This dataset
includes the genome-wide bindings of 40 transcription factors
(TF), 9 histone modification marks, and 3 other markers
(DNase, FAIRE, and DNA methylation) on 25 different cell
lines. For a detailed description of the signal extraction pro-
cedure, see the Supplementary Material. If the host genes
of an exon cluster are highly enriched in the targets of any
regulatory factor, we consider the cluster to be “transcription
homogenous”. At the significance level p-value < 0.01, 39.4%
clusters with recurrences >6 are transcription homogenous,
compared to only 14.8% of randomly generated clusters with
the same sizes. As expected, the percentage of transcription
homogenous modules increases with recurrence (Fig. 2C).
This result suggests a strong association between transcription
and splicing for a significant number of genes. The 5 most
frequently enriched regulatory factors are JUN, H3K9me1,
STAT2, H4K20me1 and H3K36me3. JUN and STAT2 are
transcriptional factors regulating a wide range of biologi-
cal processes, while the roles of H3K9me1 and H4K20me1
in transcription or splicing are not yet clear. Of particular
interest is H3K36me3, a histone modification mark closely
related to alternative splicing. The causal effect of H3K36me3
on alternative splicing was recently discovered: increasing
H3K36me3 reduces the inclusion of PTB-dependent exons in
FGFR2, TPM2, TPM1 and PKM2 mRNA [29]. Furthermore,

the mechanism is recruitment of PTB to H3K36me3-modified
chromatin through protein MRG15 [29]. H3K36me3 is also po-
tentially linked to transcription elongation by RNA polymerase
II [30], which may be a regulator for transcription-coupled
alternative splicing. Based on the kinetic model, the rate of
transcription elongation influences the inclusion of alternative
exons by affecting whether the splicing machinery is recruited
sufficiently quickly for spliceosome assembly and splicing to
occur [3].

d) Protein complex analysis: We evaluate the extent to
which host genes of our identified exon clusters are protein
complexes by using the Comprehensive Resource of Mam-
malian protein complexes database (CORUM, September 2009
version) [31]. At the significance level p-value < 0.01, 5.7% of
co-splicing clusters with recurrences >6 are enriched in genes
belonging to a protein complex, versus only 0.16% of ran-
domly generated clusters with the same sizes. The percentage
of clusters enriched in protein complexes increases with the
cluster recurrence (Fig. 2D). The 4 most frequently enriched
protein complexes are “large Drosha complex”, “C complex
spliceosome”, “TNFα/NF-κB signaling complex”, “PABPC1-
HSPA8-HNRPD-EIF4G1 complex”. At least 1/3 of subunits
in the highest enriched complex “large Drosha complex”
contain proteins associated with splicing function, especially
heterogeneous nuclear ribonucleoproteins such as HNRNPH1,
HNRNPM, HNRNPU, HNRNPUL1 and HNRNPDL [31].

B. Co-splicing clusters reveal novel functions that are not
identified by co-expression clusters

Studies have shown that genes that are co-regulated tran-
scriptionally do not necessarily overlap with those that are
co-spliced [32]. Therefore, the identification of co-splicing
clusters can reveal functionally related genes that could not
be discovered from transcription analysis. In order to iden-
tify novel functions associated with co-splicing but not co-
expression, we complement the above analysis by constructing
a gene co-expression network from each RNA-seq dataset. The
nodes of these networks represent genes, and the edges are
weighted by Pearson’s correlation between two gene expres-
sion profiles. We then apply our tensor-based pattern mining
algorithm to identify frequent co-expression clusters in the 19
co-expression networks. The same functional enrichment anal-
ysis described above for co-splicing clusters was performed on
the resulting co-expression clusters. We found that 97.7% of
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co-splicing clusters with recurrences > 4 have low expression
correlations (average correlations 6 0.4). Therefore, many of
the functions associated with post-transcriptional regulation
are enriched in co-splicing clusters but not in co-expression
clusters. These functions include “maintenance of protein loca-
tion”, “regulation of protein catabolic process”, “cytoplasmic
sequestering of protein”, “regulation of intracellular protein
transport”, “regulation of ubiquitin-protein ligase activity”,
“ribonucleoprotein complex assembly”, “RNA splicing, via
transesterification reactions”, and “RNA export from nucleus”.

For example, one co-splicing cluster has seven host genes:
HNRNPC, HERPUD1, RALY, MAPKAP1, PUM1, PKM2, and
DCAF11. This cluster cannot be found from co-expression
data, for the expression profiles of the host genes have low
correlations. However, this set of host genes is enriched
with several splicing associated functions including “spliceo-
somal complex” (p-value=1.15E-3) and “RNA splicing” (p-
value=4.76E-3). Out of the seven host genes, RALY and PUM1
encode RNA-binding proteins, and HNRNPC encodes het-
erogenous nuclear ribonucleoproteins C1/C2. This co-splicing
cluster reveals a cascade splicing effect: the co-spliced genes
encode RNA-binding proteins or splicing factors, which can
participate in the splicing of downstream genes. Clearly, co-
splicing clusters can provide complementary information on
functionally related gene groups in addition to co-transcription
clusters. In particular, co-splicing clusters can grant new
insights into functions associated with post-transcriptional
regulation.

C. Exons can dynamically participate in different pathways
upon different co-splicing mechanisms

Alternatively skipping or including a cassette exon can
change the functions of a protein by deleting or inserting a
protein domain. In other words, protein isoforms alternatively
spliced from the same gene may participate in different path-
ways. In our results, we observed that 45.3%/35.7%/26.1% of
exons are members of at least two clusters (recurrence>4/5/6)
with different functions. For example, exon8 of the gene
Rela appears in three co-splicing clusters, which are enriched
with the following distinct functions respectively: “regulation
of NF-κB cascade” (p-value=2.71E-6), “negative regulation
of protein catabolic process” (p-value=2.04E-5), and “kinase
binding” (p-value=8.99E-5). Rela encodes the transcription
factor p65, which is an important subunit of the NF-κB
complex that affects several hundred genes by NF-κB signal-
ing. Recent research has identified several alternative splice
variants of Rela, e.g. p654, p6542 and p6543. In fact,
p654 arises by the use of an alternative splice site located
30 nucleotides into exon8, and p6543 was identified as a
splice variant lacking exon7 and exon8 [33]. These facts are
consistent with our finding that exon8 is dynamically included
in multiple co-splicing clusters. As another example, exon7
of PRMT5 appears in two co-splicing clusters, which are
enriched with two distinct splicing functions, “ribonucleopro-
tein complex assembly” (p-value=9.75E-4) and “ribonucleo-
protein binding” (p-value=5.66E-5). This is consistent with

recent genome-wide studies that PRMT5 contributes to the
regulation of many pre-messenger-RNA splicing events in
various ways [34]. These examples demonstrate that exons can
contribute to different functionalities of proteins depending on
different splicing regulatory mechanisms.

IV. CONCLUSION

Splicing code is determined by a combination of many
factors, such as cis-acting elements and trans-acting factors.
If some exons share the same splicing code, they may form
a splicing module: a unit in the splicing regulatory network.
Therefore, identifying co-splicing clusters first and then inves-
tigating their cis-acting elements and associated trans-acting
factors can serve as an important step to decipher the splicing
code. Our tensor-based approach can identify co-spliced exon
clusters that frequently appear in multiple RNA-seq datasets.
The exons in a frequent co-splicing cluster can belong to
different genes, but are very likely to be co-regulated by the
same splicing factors, thus forming a splicing module. We
demonstrated that the identified clusters represent meaningful
biological modules, i.e. functional modules, splicing modules,
transcriptional modules, and protein complexes, by validating
against four biological knowledge databases. In all four types
of enrichment results, the likelihood that a co-splicing cluster
is biologically meaningful increases with its recurrence. This
consistent behavior highlights the importance of the integrative
approach. We also showed that the co-splicing clusters can
reveal novel functional related genes that cannot be identified
by co-expression clusters, and that the same exons can dynam-
ically participate in different pathways depending on different
conditions and different other exons that are co-spliced. The
NCBI Sequence Reader Achieve database currently stores 6293
RNA-seq profiles, and this number is expected to dramatically
increase in the near future. We expect to apply our approach to
the rapidly accumulating RNA-seq data of multiple organisms,
and to identify a large number of splicing modules and their
associated phenotype conditions. This analysis can serve as
a first step towards the reconstruction of tissue- and disease-
specific splicing regulatory networks.
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