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Abstract--A key challenge in the post genome era is to 
identify genome-wide transcriptional regulatory networks, 
which specify the interactions between transcription 
factors and their target genes. In this work, a regulatory 
model based binding energy is proposed to quantify the 
transcriptional regulatory network. Multiple quantities, 
including binding affinity and the activity level of 
transcription factor (TF) are incorporated into a general 
learning model. The sequence features of the promoter 
and the possible occupancy of nucleosomes are exploited 
to estimate the binding probability of regulators. 
Comparing with the previous models that only employ 
microarray data, the proposed model can bridge the gap 
between the relative background frequency of the 
observed nucleotide and the gene’s transcription rate. 
Experimental results show that the proposed model can 
effectively identify the parameters and the activity level of 
TF. Moreover, the kinetic parameters introduced in the 
proposed model can reveal more biological sense than 
some previous models can do. 
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1.  INTRODUCTION  
A challenge facing molecular biology is to develop 
quantitative, predictive models of gene regulation. The 
advance of high-throughput microarray technique makes it 
possible to measure the expression profiles of thousands of 
genes, and genome-wide microarray datasets are collected, 
providing a way to reveal the complex regulatory mechanism 
among cells. There are two broad classes of gene regulatory 
interactions: one based on the ‘physical interaction’ that aim 
at identifying relationships among transcription factors and 
their target genes (gene-to-sequence interaction) and another 
based on the ‘influence interaction’ that try to relate the 
expression of a gene to the expression of the other genes in 
the cell (gene-to-gene interaction). 
    In recent years, researchers have proposed many different 
computational approaches to reconstruct gene regulatory 

networks from high-throughput data, e.g. see reviews by 
Bansal et al. and Markowetz and Spang [1, 2]. These 
approaches fall roughly into two categories: qualitative and 
quantitative aspects. Inferring qualitative regulatory networks 
from microarray data has been well studied, and a number of 
effective approaches have been developed [3-10]. However, 
these methods are based on coarse grained qualitative models 
[11, 12], and cannot provide a realistic and quantitative view 
of regulatory systems. 

On the other hand, quantitative modeling for gene 
regulatory network is in its infancy. Research on quantitative 
models for genetic regulation has arisen only in recent years, 
and most of them are based on classical statistical techniques. 
Liebermeister et al. [13] proposed a linear model for cell 
cycle-related gene expression in yeast based on independent 
component analysis. Holter et al. [14] employ singular value 
decomposition to uncover the fundamental patterns 
underlying gene expression profiles. Pournara et al. [15] and 
Yu et al. [16] proposed the Factor analysis model to describe a 
larger number of observed variables. However, these 
approaches are based on linear regression, and are not always 
being consistent with the observations in biochemical 
experiments which are nonlinear. Imoto et al. [17] proposed a 
nonlinear model with heterogeneous error variances. This 
model matches the microarray data well but it is not satisfying 
enough in revealing more biological sense. Segal et al. [18] 
proposed a transcription control network based model and 
apply their model to the segmentation gene network of 
Drosophila melanogaster. They reveal that positional 
information is encoded in the regulatory sequence and input 
factor distribution. However, there is still a little bit of 
dilemma in the model: the activity level of transcription 
factors is difficult to be measured or to be identified. Actually, 
assaying the transcription factors’ activity state in a dynamic 
fashion is a major obstacle to the wider application of the 
kinetic modeling. TFs’ activity levels are difficult to measure 
mainly due to two technical limitations: TFs are often present 
at low intercellular concentrations and the changes in their 
activity state can occur rapidly due to post-translational 
modifications. 

Based on the above description, this paper aims to describe 
the transcriptional regulatory network quantitatively. In this 
work, a Bayesian inference based regulatory model is 
proposed to quantify the transcriptional dynamics. The model 
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relies on a continuous time, differential equation description 
of transcriptional dynamics where TFs are treated as latent 
on/off variables and are modeled using a switching stochastic 
process. Multiple quantities, including binding energy, 
binding affinity and the activity level of transcription factor 
(TF) are incorporated into a general learning model. The 
sequence features of the promoter and the occupancy of 
nucleosomes are exploited to derive the binding energy. 
Compared with the previous models, the proposed model can 
reveal more biological sense. 

 

2. PROBLEM  STATEMENT 
A microarray experiment only measures the "observed" 
quantities, as shown in fig. 1, whereas the other quantities are 
not observed ("hidden"). The dashed oval encloses the closest 
quantities on the path between the TF and the target gene. 

TR of 
mRNA

Observed 

TF

G, y(t)

mRNA

Hidden

Activation 
signal

mRNA 
degraation

TF

TF, r(t)

G

Protein

 
Figure 1: A qualitative molecular model of transcriptional regulation. mRNA 
encoding a transcription factor (TF) is translated to protein. The protein is 
activated and induces the transcription of a target gene at a certain rate (G). 
The final accumulation of G mRNA levels is determined by this 
transcription rate and by the rate of G's mRNA degradation. 
 

Consider a transcriptional network of n genes that are 
regulated by m regulators, as well as a time-dependent 
external signal. Given the structure G and a set X of 
transcription rates of these genes in T time points, is it 
possible to reconstruct the time-varying activity level of m 
regulators, R, at all time points and the corresponding model 
parameters? This is an infinite dimensional problem that we 
tackle by placing a stochastic process prior over the activities 
of regulators. 
    Our approach relies on a continuous time, differential 
equation description of transcriptional dynamics where TFs 
are treated as latent on/off variables and are modeled using a 
switching stochastic process. The framework of the proposed 
method is shown in the fig. 2. 
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Figure 2: Flow of proposed method. 

 
3. METHODS 
3.1 Kinematic model of regulation 
Compared with the gene expression level, the gene 
transcription rate can capture more dynamic characteristics of 
transcription regulation. We here employ the transcription 
rate to model the regulation function. We first assume: 
 The derived transcription rates are average rates over a 

cell population.  
 The speed of a TF’s binding to or dissociation from its 

target sites is assumed to be much more rapid than the 
transcription process, thus rapid-equilibrium 
approximation can be used. 

Based on the above assumptions, the transcription rate of a 
gene is proportional to the amount of the gene bound by its 
regulators in all genes of the measured cell population. We 
first consider the case that a gene is regulated by a single 
activator. The corresponding regulation function can be 
properly described by Michaelis–Menten equation: 

       ( )
( )

dx r t c x
dt d r t

β λ= + −
+

,                                   (1) 

 here x represents the mRNA concentration for a particular 
gene, r(t) the concentration of active TF, βand d are kinetic 
constants, c a baseline expression rate and λ the mRNA 
decay rate. 

To incorporate the sequence feature and the TF binding 
preference into the model, we set the binding affinity ψ=1/d, 
and (1) can be reformulated as 

      ( )
1 ( )

dx k r t c x
dt k r t

ϕβ λ
ϕ

= + −
+

,                                      (2) 

here k is a scaling parameter.  
We now take the regulation involving two regulators in to 

account. Denote by r1(t) and r2(t) the concentration of two 
regulators, ψ1 and ψ2 the binding affinity of two regulators 
from their own target sites, the regulation function can be 
written as below: 

      
( )( )

1 1 1 2 2 2 3 1 2 1 2

1 1 2 2

( ) ( ) ( ) ( )
1 ( ) 1 ( )

k r t k r t k r t r tdx c x
dt r t r t

ϕ ϕ ϕ ϕ
β λ

ϕ ϕ
+ +

= + −
+ +

        (3) 
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Considering the general case, a gene is regulated by n 
regulators. There are 2n different binding states in total. The 
n-dimension binary vector is employed to indicate a certain 
binding state, e.g., a 4-dimension vector (0 1 0 1) indicates 
that the second and the fourth regulators are bound to their 
own target sites while the first and the third are not bound. 
The regulation function can be written as: 

 

    1; 1,

1

( )

(1 ( ))
j i

s ij is S s i nj
j j j jn

ij ii

k r tdx
c x

dt r t

ϕ
β λ

ϕ
∈ = =

=

= + −
+

∑ ∏
∏

                (4) 

where Sj denotes the set of all 2n possible state vectors, and si 
is the ith element of the state vector s. 

3.1.1 Models for binding affinity 
Measuring affinities of molecular interactions in high-
throughput format remains problematic, especially for 
transient and low-affinity interactions. We here try to 
describe the landscape of binding affinity in the perspective 
of binding energy between the various DNA-binding 
molecules and their target genes. Binding affinity landscapes 
describe how each molecule translates an input DNA 
sequence into a binding potential that is specific to that 
molecule. The presented framework models several 
important aspects of the binding process. 

By allowing molecules to bind anywhere along the input 
sequence, the entire range of affinities is considered, thereby 
allowing contributions from both strong and weak binding 
sites [19, 20].  
 Conventional cooperative binding interactions can be 

explicitly modeled by assigning higher statistical 
weights to configurations in which two molecules are 
bound in close proximity.  

 The cooperativity that arises between factors when both 
nucleosomes and transcription factors are integrated is 
captured automatically [21]. 

We first consider the simplest case that there is only one 
target site Sij for TF i in the promoter of gene j: 

[ ]b

d

k
i ij i ijkTF S TF S+ ←→ ⋅  

The site-specific binding affinity is given by 

                    
ijE

kT
iC eϕ

−
=                               (5) 

where Ci is a constant , Eij the binding free energy between 
TF i and the promoter of gene j, k and T are the Boltzmann 
constant and temperature, respectively. 

The above case can be expanded to the general case that 
binding may happen in anywhere along the input sequence 
and the accessibility of target sites varies due to the 
occupancy of nucleosomes. The general binding affinity is 
modeled as 

      
( )

( )

1

n
ijEN

n kT
ij i ij

n
C p eϕ

−

=

= ∑                             (6) 

where p(n)
ij is the probability of transcription factor i binding 

to the nth binding site in the promoter of gene j. Note that the 
derivation of p(n)

ij involves the information of the possible 
occupancy of nucleosomes. The nucleosomes positions can 
be predicted based on the  nucleosome-DNA interaction 

model proposed by Kaplan et al [22]. Fig.3 (b) shows the 
occupancy of nucleosomes for the genomic sequence shown 
in the Fig. 3 (a). 
 

b

…AATGCATCTTACAGTCCACGATGCACAATCTGAC…

TF1
TF2

-----------------------------------------------------------
A | 0.14   0.72   -0.61   -1.43   -1.43    0.72    0.86  

  C | -0.16   -0.16   -0.61   -1.43  -1.43   -0.16   -0.61  
   G | -0.61   -0.61    0.86    1.19   -1.43    -0.61   -0.61  
   T |  0.38    -0.61   -0.61   -1.43   1.19     -0.61  -0.61  

Nucleosome

a  
Figure 3. Employing sequence features and the occupancy of nucleosomes to 
estimate the binding affinity. 
   Since the positional weight matrices (PWM) are often used 
to represent the sequence motif [23, 24], we estimate the 
binding energy in perspective of PWM. As the background 
information has been taken into the PWM, the binding free 
energy can be approximately calculated as below: 

    
}{

( )( ) ( ) *

1 , , ,

L
q q n

ij l L nl
l n A C G T

E K J M M
= =

= −∑ ∑                   

where  1       ( )
0      otherwise

n
l

if n s l
J

=
= 


 

Here K(q) is the scaling factor, M*
L indicates the maximum 

background frequency in the motif, s(l) is the nucleotide in 
position l. 

3.1.2 Switching stochastic process based description of 
TF activity 

In many biological processes, the transcription factor transit 
from inactive to active state as a consequence of fast post-
translational modifications, so it is reasonable that we model 
the TF activity as a binary variable r(t)∈{0,1}. 
    For the regulation involving a single regulator, the TF 
activity can be seen as a two states Markov Jump Process 
[29]. Given transition rates n±

 for the process, the probability 
of the system being in a particular state at a given time is 
given by the following Master equation: 
             1

0 1
( ) ( ) ( )dp t n p t n p t

dt + −= −                                        (7) 

             0
1 0

( ) ( ) ( )dp t n p t n p t
dt + −= −                                              (8) 

here p1(t)=p(r(t)=1) and analogously for p0(t). 
For the regulation involving two regulators, the probability of 
the system being in a particular state at a given time is given 
by the following Master equations: 
 

1 1 2 2 3 311
01 11 10 11 00 11

( ) ( ) ( ) ( ) ( ) ( ) ( )dp t n p t n p t n p t n p t n p t n p t
dt + − + − + −= − + − + −  

4 4 2 2 5 510
00 10 11 10 01 10

( ) ( ) ( ) ( ) ( ) ( ) ( )dp t n p t n p t n p t n p t n p t n p t
dt + − − + + −= − + − + −   

(9)    
6 6 1 1 5 501

00 01 11 01 10 01
( ) ( ) ( ) ( ) ( ) ( ) ( )dp t n p t n p t n p t n p t n p t n p t

dt + − − + − += − + − + −  
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here p11(t)=p(r1(t)=1, r2(t)=1) and analogously for p10(t), p01(t) 
and p00(t), 

in±  (i=1, 2…) indicates the corresponding 
transition rate. 

3.2.    Regulatory network modeling using dynamic 
Bayesian inference  
To set up a Bayesian inference framework, we define the 
TF’s switching stochastic process as the prior distribution. 
Notice that the stochastic process prior on the TFs implies 
that the mRNA concentrations are also a stochastic process, 
even though the relationship between x and r is entirely 
deterministic. The prior distribution then is combined with an 
observation model (likelihood) that relates the observed 
variables to the hidden variables. In this case, we model the 
observations yj(t) of mRNA species j at time t as normally 
distributed around the value of the random variable x(t): 

2
j( ) ( ) ( ( ),  )j jy t r t N x t σ  

Given a prior model and a likelihood, we can then combine 
these into Bayes’ theorem to obtain the posterior over the 
process as 

1( ,  ) ( ,  ) ( )p r y p y r p r
S

Ω = Ω , 

Where y denotes collectively the observations, Ω are the 
parameters involved in the regulation function and S a 
normalization constant. 

3.3  Variational inference and Model optimization 
We will use a variational formulation of the inference 
problem [25].Variational inference is a powerful inference 
method based on tools from optimization. Free form (i.e. 
unconstrained) variational inference is entirely equivalent to 
the general inference problem. Variational inference is used 
as an approximation technique: given an intractable 
probability distribution p, the variational approach finds an 
optimal approximation q within a certain family of 
distributions. This is usually done by minimizing the 
Kullback–Leibler (KL) divergence between the two 
distribution 

    ( )[ ] [log ] log ( )
( )q

q q rKL q p E q r dr
p p r

= = ∫                   (10) 

By selecting a suitable family of approximating distributions, 
the inference problem is then turned into an optimization 
problem. It can be shown that the KL divergence is a convex 
functional of q and is equal to zero iff q=p [26]. In this case, 
we will choose the approximating process q to be again a 
Markov Jump Process, so that the required KL is given by 

[ ] [ ] log [log ( ,  )]qpost prior
KL q p KL q p S E p y r= + − Ω      (11) 

here S is a normalization constant, [log ( ,  )]qE p y r Ω  the 
expectation of the likelihood of the observations under the 
approximating process. For the regulation involving a single 
regulator, the KL divergence between the prior process and 
the approximating [ ]

prior
KL q p  is given by 

0 10 0
[ ] ln ( ) ln ( )

T T

prior
m mKL q p m n m q t dt m n m q t dt
n n
+ −

+ + + − − −
+ −

   
= + − + + −   

   
∫ ∫

  (12) 

Here m+ is the transition rate of jumps form the 0 to 1 state 
for process q, and analogously for m-.  A derivation for 

[ ]
prior

KL q p  is given in the appendix. Therefore, the 

inference problem can be turned into an optimization 
problem.  
  By direct computation, minimization of the KL functional 
(11) can be represented as the saddle point problem 

2
2

1
max min{ [ ] [ ( ( )) ]}

2

n

prior j j j jq j
J KL q p y x t

τ

στ τ
=

= + − −∑ ,    (13) 

here τ is auxiliary variables (one for each observation). By 
inspection and using the properties of the KL divergence, we 
can find that this functional is concave in τ and convex in q. 
Hence we can exchange min and max. Performing the max 
first yields the result. This also shows that there is only a 
unique saddle point solution. 
Solving  (2) and Submitting (12) into (13), we get 
 

0 10 0
max min{ ln ( ) ln ( )

T T

q

m mJ m n m q t dt m n m q t dt
n nτ

+ −
+ + + − − −

+ −

   
= + − + + −   

   
∫ ∫

   

    2
( ) 2

0
1

( )[ [ ] ( )]}
1 ( ) 2

n t s t
j j j j

j

k q s c e ds y
k q s

λϕ στ β τ τ
ϕ

−

=

− + − −
+∑ ∫            (14) 

 
For the regulation involving two regulators (extension to i>2 
is conceptually straightforward), the KL divergence between 
the true posterior and the approximating process is given by 

( )( )
1 1 1 1

1 2 1 1 1 2 2 2 3 1 2 1 2
1 10

1 1 1 2 2

( ) ( ) ( ) ( )[ ] [ ] [ ] ( )
1 ( ) 1 ( )

n T j j

j

k q t k q t k q t q tJ KL q p KL q p c U t dt
q t q t

ϕ ϕ ϕ ϕβ
ϕ ϕ=

+ +
= + − +

+ +
∑∫

with 
( ) ( )( )

j
i it t t tj j

i
i

U t eλτ − Θ −=∑                  

And Θ is the Heaviside step (j indexes the genes, i the time 
points). The KL divergence between two Markov Jump 
Processes is given by 

1 10 0
[ ] [ ( ln )] [(1 )( ln )]

T Tm mKL q p q m n dt q m n dt
n n
− +

− + + +
− +

= + + − +∫ ∫
      (15) 

 
The optimization procedure is based on a forward-backward 
procedure, leading to ordinary differential equations which 
can iteratively be solved. The free energy is a functional of 
both the approximating processes q1, q2 and their transition 
rates m1, m2. However, these are not independent, but are 
related by the Master equation. To incorporate this constraint, 
we add Lagrange multipliers as 

1
1 2 1 2 11

1 2 1 2 1 1 1 1 10

( )( , , , ) [ , , , ] [ ( ) ( ) ] ( )
T dq tL q q g g J q q g g m m q t m t dt

dt
λ− + += + + + −∫

 
                  1

12
2 2 2 2 20

( )[ ( ) ( ) ] ( )
T dq t m m q t m t dt

dt
λ− + ++ + + −∫        (16) 

The Lagrange multiplier functions obeys the final condition 
λ(T ) = 0. Now we can optimize the objective function by 
setting to zero its functional derivatives. The details can be 
found in the appendix. Estimation of the parameters A and b 
can be done directly by maximizing the approximate 
marginal likelihood Eq[logp(y|r,Ω)].  
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4.  EXPERIMENTS AND RESULTS  
4.1 Case: Circadian patterns in rat liver  
4.1.1 Datasets  
Circadian rhythm is a daily time-keeping mechanism 
fundamental to a wide range of species. The basic molecular 
mechanism of circadian rhythm has been studied extensively. 
As a real example to test our approach, we considered the 
dynamics of the circadian patterns in rat liver. We employ the 
datasets from Almon RR et al [27]. This experiment was 
designed to examine fluctuations in gene expression in liver 
within the 24 hour circadian cycle in normal animals. Fifty-
four male normal Wistar rats were housed in a strictly 
controlled stress free environment with light: dark cycles of 
12 hr: 12hr. Three animals were sacrificed at each of 18 
selected time points within the 24 hour cycle. RNA was 
prepared from livers for gene arrays. Time point designations 
reflect time after lights on in hours. 

4.1.2 Results and analysis 
To test the proposed model on the above dataset, we employ 
two important transcriptional regulators of which activity 
levels indicate the variation of heat signals in a subset of gene 
circadian network, hsf1 and ppara. In total, we selected 7 
genes to perform posterior inference of TF activities. To 
ensure identifiability, we included three genes that are 
regulated solely by hsf1 (HSP110, HSPA8 and COL4A1), 
and two genes that are regulated solely by ppara (ACSL1 and 
HMGCS1). The remaining two genes are jointly regulated by 
hsf1 and ppara. These genes were chosen since they exhibit 
the largest variance in the microarray time course, and hence 
are likely to provide a cleaner representation of the output of 
the system. 
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Figure 3-1. Results on circadian patterns data: (a) mean activity profile for 
hsf1, (b) mean activity profile for ppara, (c) bar-chart representation of the 
parameters ki, giving the logical structure of the interaction between two TFs. 
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Figure 3-2. Expression profile and mean reconstruction of target genes. (a) 
HSPA8, (b) COL4A1, (c) ACSL1, (d) HMGCS1, (e) HSP90AA1 and (f) 
HSPA1B. The red circle indicates the observed value at each time-points. 

The inferred TFs’ activity levels are shown in Figure 3-1 
(a) and (b). Both inferred TF profiles sow a noisy periodic 
behavior [28]. Figure 3-1 (c) gives the values of the 
parameters ki for the four selected circadian genes (HSPA8, 
ACSL1, HSP90AA1 and HSPA1B). The green column 
represents the response k1 to hsf1 alone, the red column is the 
response k2 to ppara alone and the black column represents 
the joint response k12. It can be seen that, for gene, HSPA8, 
the model predicts a significant activation by hsfl alone, 
which is consistent with the experimental conclusion from 
Yan et al [28]. The black columns of HSP90AA1 and 
HSPA1B demonstrate that the model predicts a significant 
combinatorial activation which can be verified by 
mutagenetic techniques, i.e. by knocking out one of the TFs. 
Figure 3-2 shows the fit of the model to the observed data at 
each time-point. 

 

5.  DISCUSSION AND CONCLUSION 
In this paper, a gene transcriptional regulation model is 
proposed in perspective of biochemical binding reactions. 
The sequence features of the promoter and the possible 
occupancy of nucleosomes are exploited to estimate the TFs’ 
binding probability. Unlike previous methods that only 
employ microarray data [16, 17], the present model can 
reveal more biological sense.  

The DBN-based model of transcription rates and regulator 
activity levels allows us to handle these biologically relevant 
quantities despite the indirect measurement of the former and 
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the lack of measurements of the latter. It also allows us to 
handle the inherently noisy measurement in a principled way. 
However, the proposed model still abstracts away some of 
the explicit processes that generate the actual observed 
expression data. A more explicit modeling of these will 
provide a more principled treatment of different sources of 
noise in the data. Furthermore, this model does not handle 
directly the upstream events that affect regulator activity. In 
fact, the current model is an open loop system, such that the 
regulation of regulator activity is itself viewed as exogenous 
to the system. By developing a richer modeling language we 
may capture more complex reaction models, model the 
upstream regulation of activity levels, and identify systems 
that involve feedback mechanisms and signaling networks. 

 Post-Transcriptional Modification Model (PTMM) have 
been previously used to model TF activities [30]; in that 
work, further dependencies were included between TF 
mRNA expression levels and their predicted activities, which 
enabled to predict possible post-transcriptional modifications 
in TFs. Naturally, it should be possible to combine both our 
approach and their approach to give a model capable of 
simultaneously inferring TF activities, combinatorial 
interactions and post-transcriptional regulations. 
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