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Abstract—Gene regulation is a key factor in gaining a full
understanding of molecular biology. microRNA (miRNA), a novel
class of non-coding RNA, has recently been found to be one
crucial class of post-transactional regulators, and play important
parts in cancer. One essential step to understand the regulatory
effect of miRNAs is the reliable prediction of their target
mRNAs. Typically, the predictions are solely based on sequence
information, which unavoidably have high false detection rates.
Here we develop a new algorithm called HCTarget, which predict
miRNA targets by integrating the typical algorithm and the
paired expression profiles of miRNA and mRNA. HCTarget
formulates a linear model to characterize the relationship be-
tween mRNA and miRNA, and use a Markov Chain Monto
Carlo algorithm to learn the target probabilities. When applying
HCtarget to the expression data in multiple myeloma, we predict
target genes for ten cancer related miRNAs. The experimental
verification and a loss of function study of hsa-miR-16 validate
our predictions. Compared with the previous approaches, our
target sets have increased functional enrichment. Meanwhile, our
predicted target pair hsa-miR-19b and SULF1 plays an important
role in multiple myeloma. Therefore, HCtarget is a reliable and
effective approach to predict miRNA target genes, and could
improve our comprehensive understanding of gene regulation.

I. INTRODUCTION

Discovering gene regulation is one of the main goals in
molecular biology. Specifically, uncovering the mechanisms
underlying the expression of tumor related genes is a key factor
in gaining a full understanding of cancer biology [1], which
is also of great therapeutic significance.

While previously a great deal of study has focused on
transcriptional factors (TFs), one crucial class of regulators
at the transcriptional level, the post-transcriptional regulator
microRNA (miRNA) has arrested much attention recently [2].
miRNAs are a noval class of endogenous ∼22nt noncoding
RNAs. They down regulate gene expressions through specific
binding to the 3’-untranslated region of target mRNAs, which
lead to their translational repression or degradation [3]. More
than 1000 miRNAs have been annotated in human genome,
and they are predicted to regulate up to one third of all protein-
coding genes [4].

Experimental analysis has recognized that miRNAs control
the key cellular processes such as growth, development and
apoptosis [5][6][7]. It has been established that miRNAs make
an important contribution to gene regulation in embryonic
development and a growing list of human disease, especially

cancer [8][9]. Previous studies have verified that miRNAs can
act as tumor suppressors or oncogenes and their dysregulation
is widely involved in cancer initiation and progression [10],
which enable their inhibition to be a novel therapeutic strategy
for cancer [11][12].

An essential step and major challenge in understanding
miRNA regulatory function is the identification of their target
genes [13]. Since it is infeasible to carry out high throughput
experiments, only a small fraction of miRNA targets have
experimental supports [14]. Typically, the target prediction is
achieved by computational approaches, such as TargetScan
[15][16], PicTar [17] and miRanda [18]. They mainly base
on the ”seed match” of miRNA and mRNA sequences, as
well as miRNA’s phylogenetic conservation [19]. However,
these sequence based approaches have high false-positive rate,
such as 22-31% for TargetScan [20]. Since the seed match
complementation could not discern the real targets effectively,
great deals of fake targets are confounded.

Recently, a novel strategy has been developed to predict
miRNA targets by integrating experimental data to the se-
quence information [21][22][23][24][25][26][27]. The major
experimental data is miRNA expressions, which have been
putatively used to investigate the role of miRNA in many
biological processes, especially cancer [6][10]. It has been
verified that the expression of mRNAs targeted by highly
expressed miRNAs are negative shifted compared with the
background [25], which ensures that the significantly negative
correlated miRNA-mRNA pairs have high potential to be the
real target pairs . Therefore, the paired miRNA and mRNA
expression data, which profile miRNA and mRNA expression
levels simultaneously from the same sample, could serve as a
suitable evidence to predict the actual miRNA targets [26].

Based on this idea, the first and most widely used approach
to predict miRNA targets from sequence and expression
data is GenMiR++ (Generative model for miRNA regulation)
[25][26][27]. This approach characterizes mRNA expressions
as a linear combination of the regulatory effects of their
targeting miRNAs, and a variational Bayesian algorithm is
used to learn the latent miRNA target indicators. GenMiR++
has been successfully applied on the expression data among
normal and cancer tissues to predict human miRNA targets.
However, it has several restrictions. First, originating from
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the experiments of different tissues, GenmiR++ characterizes
miRNA’s relative effects among all tissues as a constant. This
assumption may not hold when considering the experiments
of different cancer patients. Since patients have much more
varieties, their miRNA’s relative effects could not be regarded
as a constant anymore. Second, GenMiR++ uses variational
Bayesian algorithm to learn the parameters. Instead of leaning
the real posterior distribution, variational Bayesian use a
variational posterior, which restricted to the factorized form,
to approximate the real one [28]. This algorithm is putatively
used when the posterior distribution is difficult or time-
consuming to compute directly. Its convergence rate highly
depends on the form of the likelihood and priors and may
be extremely slow. This restriction has been relaxed by using
Metropolis-Hasting algorithm [22]. However, this approach is
limited in its high computational complexity.

Here we propose a new algorithm called HCtarget (High
Confident targets) to integrate expression and sequence infor-
mation to detect miRNA targets. Our approach develops Gen-
MiR++ and overcomes the above restrictions, by re-defining
the parameters of miRNA effects and using a Markov chain
Monte Carlo (MCMC) algorithm to learn the posterior directly.
We first evaluate the performance of HCtarget by a simulation
study, and then access its robustness. Furthermore, the exper-
imental verification is extracted to compare the reliability of
HCtarget and GenMiR++. Meanwhile, we refer to a loss of
function study of hsa-miR-16 to validate our predictions. In
addition, we also study the functional enrichment to investigate
the biological significance of our predicted targets. Moreover,
a specific target pair is selected to explore miRNA’s role in
multiple myeloma.

II. RESULTS

In HCtarget, a linear model is formulated to characterize the
relationship between the paired miRNA-mRNA expressions,
and we use a MCMC algorithm to estimate the parameters.
The output of our model is the target probability of each
miRNA-mRNA pair (See Materials and Methods).

A. Performance of HCTarget on the simulation data

We first evaluated the performance of GenMiR++ and
HCTarget on the simulation data. These data have similar ex-
pression patterns with real data, with the actual target relations
known (See Materials and Methods). Compared with the real
targets, we computed the true positive rate and false positive
rate of GenMiR++ and HCTarget with different cutoffs. Their
ROC (Receiver operating characteristic) curves and AUC (the
area under the ROC curve) values are shown in Figure 1, which
indicate that HCTarget has higher accuracy than GenMiR++.

B. Predict miRNA targets based on cancer expression data

We then applied our HCtarget approach to detect miRNA
targets in cancer. The miRNA and mRNA expression profiles
of patients with multiple myeloma are extracted, and we
integrated them with the computational predictions in Tar-
getScan. Since our approach aim to discover cancer related
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Fig. 1. The ROC curves of HCTarget and GenMiR++ for simulation
data. Their AUC values are 0.95 and 0.91 respectively.

target genes, we selected ten miRNAs and 1000 genes that
specifically expressed in multiple myeloma for our prediction
(See Materials and Methods). TargetScan provides 1401 target
pairs for these miRNAs and genes. HCtarget cuts down these
predictions to 647, while 699 target pairs are obtained by
GenMiR++.

C. Assess the Robustness of HCtarget

We performed a series of permutation tests to assess the
robustness of our approach [25]. We permuted the gene labels
are permuted 100 times and generated 100 random data sets.
In these sets, the relationship between miRNAs and mRNAs
are destroyed and their predicted target probabilities could
be regarded as background. These permutations allow us to
evaluate whether our model would be affected by introducing
a great deal of fake targets into the candidates. Comparing
the predictions of HCtarget for both permuted and original
data, we found the probabilities leaned from the real data are
significantly higher than the background. The p value of one
side wilcoxon test is 0.06. It illustrates that HCtarget could
successfully discriminate the real target from the fake ones,
which ensures its robustness in target prediction.

D. Compare with experimentally verifications

To evaluate the accuracy of our approach, we extracted ex-
perimentally supported miRNA targets from Tarbase [14](See
Materials and Methods). For the multiple myeloma related
miRNAs and mRNAs, three miRNAs have biological experi-
ments, and their 17 target genes in TargetScan have experimen-
tal verifications. Nine of them are detected by HCtarget, while
GenMiR++ only identifies two. The numbers of verified targets
predicted by TargetScan, GenMiR++ and HCTarget as well as
their precisions are listed in Table I, which show that HCtarget
could identify more accurate targets than GenMiR++. For
example, mir-15 has nine supported targets, seven of them are
detected by HCtarget, while GenMiR++ failed to identify any
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of them. It also indicates that HCtarget has higher precision
than the original TargetScan.

TABLE I
COMPARISON WITH TARBASE

miRNA family TargetScan GenMiR++ HCTarget

let-7 7 (3.57%) 2 (2.02%) 2 (2.15%)

mir-15 9 (4.02%) 0 (0) 7 (6.67%)

mir-29 1 (0.51%) 0 (0) 0 (0)

total 17 (2.76%) 3 (0.95%) 9 (3.01%)

E. Validate hsa-miR-16 targets

Previous analysis suggests that hsa-miR-16 can act as a
tumor suppressor in multiple myeloma [29]. A loss of function
study inhibited hsa-miR-16 and identified a large number of
different expressed genes as its target genes (See Materials
and Methods) [29]. To validate our prediction, we compared
our detected targets with these different expressed genes.
TargetScan identifies 224 targets for hsa-miR-16, 34 of them
have different expression levels when hsa-miR-16 is deleted
(the p value of hyper-geometric test is 0.14). HCtarget, which
cuts down the target genes to 105, provides 22 validated targets
(p = 0.006) (Figure 2). This represents that HCtarget has more
confirmed targets than TargetScan. In addition, GenmiR++
only detects 11 different expressed genes (p = 0.72), which
also validates the accuracy of HCtarget.

Fig. 2. Venn diagram. It shows the overlap of different expressed genes
with the predicted targets of targetScan and HCtarget.

F. Gene Ontology enrichment analysis

To have further investigation of our predicted targets, we an-
alyzed their function annotations in Gene Ontology (GO)(See
Materials and Methods) [30]. For each target set detected by
TargetScan and HCtarget respectively, we computed its GO
enrichment p value using hyper geometric test. Considering
multiple testing problems, these p values are corrected using
FDR modification. For TargetScan, we found 107 (2.5%)
functional target sets (with FDR<0.1). While there are 135
(3.1%) functional sets of GenmiR++ and HCtarget increases
the number to 158 (3.7%). The comparison exhibits that
the targets of HCtarget have significantly more consistent
functional annotations.

Meanwhile, we selected the GO functions that signif-
icantly enriched (FDR<0.01) in hsa-miR-19b, which has
been experimentally verified to be a key regulator in
multiple myeloma [31]. They are: GO0034612 (response
to tumor necrosis factor), GO0000723 (telomere mainte-
nance), GO0006289 (nucleotide-excision repair), GO0006302
(double-strand break repair) and GO0045732 (positive regu-
lation of protein catabolic process). The first annotation is
significantly associated with multiple myeloma, the latter three
ones are crucial functions in cell division, a key cellular
process in cancer, while the last one is putative important in
metabolism. These findings demonstrate that HCtarget could
successfully identify the functional miRNA targets.

G. Example

Based on the above findings, we further focused on a spe-
cific target pair to discover miRNA’s role in multiple myeloma.
hsa-miR-19b is selected, and one of its targets detected by
HCtarget is SULF1, which has been found to be a potent
inhibitor of myeloma tumor growth [32]. We focused the
patients with higher hsa-miR-19b expressions (with expression
level larger than average), and discovered that the expression
levels of SULF1 are significantly lower in these patients than
in the other ones (the p values of the one side wilcoxon
test is 0.1). Their cumulative distributions (Figure 3) displays
that the expression of SULF1 is negatively shifted when hsa-
miR-19b is highly expressed. This example further confirms
the significant down regulatory effects of hsa-miR-19b, and
provides us a reliable target gene SULF1. We believed that this
target pair plays a crucial role in multiple myeloma and could
be served as effective candidates for the therapeutic treatment.
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Fig. 3. The down regulatory effect of hsa-miR-19b on SULF1. The
cumulative distributions of the expression levels of SULF1 in the sample with
or without highly expressed hsa-miR-19b (red solid line and blue dashed line
respectively).

III. CONCLUSION

In this paper, we propose a new algorithm, HCtarget,
to predict miRNA target genes by integrating the sequence
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information and expression profiles. The simulation study
and the robustness assessment confirm the accuracy of our
approach. The investigations of the expression profiles in mul-
tiple myeloma also exhibit the well performance of HCtarget.

Our model affords reliable targets of miRNA, which im-
prove our understanding of miRNA’s roles in cancer. Such as
the disease related target pair, hsa-miR-19b and SULF1, is
beneficial for the further discovery and clinical treatment of
multiple myeloma.

Here we focus on the target prediction for miRNA and genes
that specifically related with multiple myeloma, which could
help our understanding of cancer biology. By selecting some
other proper miRNA and mRNA expression profiles, HCtarget
could be generalized to provide miRNA’s whole genome
target predictions, which is beneficial for the comprehensive
discovering of miRNA’s regulatory effects.

Although our model is designed to predict miRNA targets, it
could be directly generalized to detect the target genes of TFs.
In addition, previous studies demonstrated that TFs, or their
cis-regulatory modules, have widely cooperation with miR-
NAs. Their combinatorial regulatory modules play important
parts in gene regulation [33]. With accurate target predictions
of miRNAs and TF, HCtarget could be an effective way to
reconstruct gene regulatory network, which helps us to uncover
the mechanisms underlying gene expression.

IV. MATERIALS AND METHODS

In this section, we describe our HCtarget approach which
integrated miRNA and mRNA expression data and sequence
information to predict miRNA target gene.

A. Model

Suppose the paired miRNA and mRNA expression data
profile N mRNAs and M miRNA across T samples. Let yit

denote the expression level of mRNA i in sample t and zjt

denote the expression level of miRNA j in the same sample,
where i = 1, . . . , N, j = 1, . . . , M and t = 1, . . . , T .

Similar to GenMiR++, we take a linear model to formulate
the relations between mRNA expressions and the regulatory
effects of their targeting miRNAs [34]. A latent binary variable
R is used to indicate the target relations, where rij = 1
if mRNA i is targeted by miRNA j, and 0 otherwise. The
relationship between mRNA and miRNA expressions is for-
mulated as:

yit = β0t +

M∑

j=1

rijzjtβjt + εit, εit ∼ N(0, σ2
t ) (1)

where yit and zjt are the observed expressions, βjt represents
the regulatory effects of miRNA j at sample t (in GenMiR++,
this term is factored into the product of the tissue effect and
the miRNA effect γtλj ), and β0t is the background effect of
sample t.

The goal of our model is to estimate the latent indicators
R. Considering the known computational predictions based
on mRNA and miRNA sequences, denoted as C, as cij = 1
if mRNA i is predicted to be targeted by miRNA j, and 0

otherwise, we suppose R have a Bernoulli distribution depend
on C. That is rij ∼ bernoulli(π) in the condition of cij = 1,
and rij = 0 when cij = 0. In the following discussion, we
focus on the pair with cij = 1. The likelihood of R is:

p(R|π) ∝
∏

ij

πcijrij (1 − π)cij(1−rij)

here π can be regarded as the accuracy of the sequence based
predictions. This assumption enables our model to cut down
the false positive rate of the previous prediction.

Let Bt = (rijzjt), At = [1, Bt], yt = (y1t, . . . , yNt)
T , Z =

(zjt), βt = (β0t, . . . , βMt)
T and εt = (ε1t, . . . , εNt)

T , we
have the vector representation of our model:

Yt = Atβt + εt (2)

B. MCMC Algorithm for Statistical Inference

Based on the above model, the likelihood of the observed
data p(Y, Z, C, R|β, σ2, φ) is:

∏

i,t

e

[
− 1

σ2
t

(yit−
∑

M

j=1
zjtrijβjt−β0t)

2
] ∏

i,j

πcijrij (1−π)cij(1−rij)

To estimate the parameters θ = (β, σ2, π) and latent vari-
ables R, we apply the Bayesian methodology and a MCMC
algorithm [35]. With proper prior assumptions, the posterior
of R and θ have simple forms and could be directly computed
using a MCMC algorithm as the following iterations [36][37]:
(i) sample the parameters θ conditional on the updated latent
variable; (ii) sample the latent variable R conditional on the
updated parameters .

1) Updata the parameters:
Given the non-informative prior p(βt, σ

2
t ) ∝ σ−2

t , the
posterior distributions of βt and σt are

βt|σ2
t , Y ∼ N(β̂t, (A

T
t At)

−1σ2
t ), σ2

t |Y ∼ vs2
t χ

−2
v (3)

where v = N − M − 1 and

β̂t = (AT
t At)

−1AT
t Yt, Ŷt = AT

t β̂t, s
2
t =

1

v
(Yt−Ŷt)

T (Yt−Ŷt).

While for π, with the conjugate prior π ∼ Beta(a0, b0), the
posterior distirbution is

π ∼ Beta(n1 + a0, n0 + b0) (4)

where n1 =
∑

ij cijrij and n0 =
∑

ij cij(1 − rij)

2) Updata the latent variable:
The marginal distribution of the latent variable p(rij |cij =

1, Y, Z, θ) is

exp
[
−

T∑

t=1

1

σ2
t

(yit−
∑

k

zktrikβkt−β0t)
2
]
πcijrij (1−π)cij(1−rij)

Since

[yit−
∑

k

zktrikβkt−β0t]
2 = [yit−

∑

k �=j

zktrikβkt−β0t]
2+qijtrij
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here qijt denotes

z2
jtβ

2
jt − 2yitzjtβjt + 2

∑

k �=j

zktβktzjtβjtrik + 2zjtβjtβ0t

then p(rij |·) ∝ exp(−
T∑

t=1

qijt

σ2
t

rij)π
cijrij (1 − π)cij(1−rij)

that is, rij has Bernoulli marginal distribution

p(rij |·) ∼ bernoulli(pij) (5)

with updated probability pij =
( π
1−π )cij

( π
1−π )cij + exp(

∑T
t=1

qijt

σ2
t

)

3) The algorithm of HCtarget:
Based on the above discussion, we use a traditional MCMC

approach to estimate the parameters and the latent variable
iteratively:

1) Initial βt, σt, R as βt = 1, σt = 1 and rij |cij = 1 ∼
bernoulli(0.5).

2) Update σ2
t by sampling from vs2

t χ
−2
v , update βt by

sampling from N(β̂t, (A
T
t At)

−1σ2
t ) and update π by

sampling from beta(n1 + a0, n0 + b0).
3) Given the updated parameters, sample the latent variable

rij from bernoulli(pij).
4) Repeat the above two steps until convergence. Here the

convergence is evaluated by Gelman and Rubin criteria
[37].

We output pij , which represents the posterior probability
that miRNA j targets mRNA i, for our final prediction.
miRNA-mRNA pairs with pij larger than a certain threshold
are the putative target pairs of our model. In the analysis of
cancer expression data, we specify the threshold as 0.8.

C. Data sources

We selected TargetScan as the computational algorithm to
predict miRNA targets based on their sequence. In all, 9448
targets of 249 miRNAs were assembled from TargetScanHu-
man (release 5.1) [15].

For the paired miRNA-mRNA expression data, we used the
profiles from 52 patients with multiple myeloma [10]. The data
was downloaded from GEO database [38] with the accession
number GSE17306.

We selected multiple myeloma related miRNAs and mRNAs
for our predictions. Ten miRNAs with the highest expression
level are picked up, they are: hsa-let-7g, hsa-miR-142-3p, hsa-
miR-148a, hsa-miR-16, hsa-miR-19b, hsa-miR-21, hsa-miR-
26a, hsa-miR-29c, hsa-miR-370 and hsa-miR-494. Meanwhile
1000 mRNAs are selected, half with the highest expressions
and half with the lowest expressions, since miRNA puta-
tively repress gene expressions and may have secondary up-
regulatory effects [34].

Furthermore, we downloaded the experimentally supported
human miRNA targets from Tarbase (v.5c) [14], which houses
1033 miRNA-mRNA target pairs for 864 genes and 111
human miRNAs. To compare Tarbase with our predictions,

miRNAs were all mapped to miRNA families using the
annotations in miRBase [4].

In addition, we extracted genes’ function annotations from
Gene Ontology [30] (data were downloaded on April 20,
2011). GO is a rooted directed acyclic graph on three cat-
egories, and here we focused on biological process. Similar
to the above approach [39], we selected the GO nodes which
cover at least 50 genes. Finally 429 function annotations for
our selected genes were assembled.

Profile of a loss of function study of hsa-miR-16 was
extracted from GEO database (GSE24522). It provides gene
expression levels before and after hsa-miR-16 deletion [29].
We focused on genes with fold change larger than 1.5 as
different expressed genes. For our 1000 genes, 132 genes were
selected.

D. Simulations

The simulation data is generated based on the above selected
miRNAs and mRNAs from the following rule. First, the ten
miRNA expression data Z are extracted from the real data
from patients with multiple myeloma. Then the 1000 mRNA
expressions Y are simulated from

yit = β0t +

10∑

j=1

rijzjtβjt + εit, i = 1, . . . 1000, t = 1, . . . , 52

here βjt, β0t and ε are generated from N(−0.3, 0.1),N(1, 1)
and N(0, 1) respectively. The real target relations rij is
obtained from bernoulli(0.5) conditions on cij = 1, where
cij represents the predictions from TargetScan.
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