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Abstract—Recently, we have identified 39 candidates of ac-
tive regulatory networks for the diabetes progression in Goto-
Kakizaki (GK) rat by using the network screening, which were
well consistent with the previous knowledge of regulatory rela-
tionship between transcription factors (TFs) and their regulated
genes. In addition, we have developed a computational procedure
for identifying transcriptional master regulators (MRs) related
to special biological phenomena, such as diseases, in conjunction
of the network screening and inference. Here, we apply our
procedure to identify the MR candidates for diabetes progression
in GK rat. First, active TF-gene relationships for three periods
in GK rat were detected by the network screening and the
network inference, in consideration of TFs with specificity and
coverage, and finally only 5 TFs were identified as the candidates
of MRs. The limited number of the candidates of MRs promises
to perform experiments to verify them.

Index Terms—Master regulator; regulatory network; diabetes
progression; systems biology.

I. INTRODUCTION

Recent developments in genome-wide computational analy-
ses successfully identified causal interactions [1], and showed
promise in the identification of dysregulated genes within
developmental and tumour-related pathways [2]. For example,
a computational analysis procedure was applied to identify
the MRs causally linked to the activation of a specific gene
set, mesenchymal gene expression signature (MGES), in hu-
man malignant glioma [3]. Indeed, 53 TFs were obtained
by ARACNe algorithm and the MGES enrichment test, and
among them, the top 6 TFs with the largest fraction of MGES
genes were experimentally controlled, as the MR candidates.
Finally, 2 of the top 6 TFs, STAT3 and CEBPB, were experi-
mentally verified as MRs of mesenchymal transformation. Un-
fortunately, the computational part in the previous work seems
not so sophisticated and remains to be improved. For example,
it is unclear why they selected the top 6 TFs from 53 TFs, not

5 or 7 TFs. Although the coverage of TFs for the MGES genes
were carefully considered, there was no rational criterion at the
final selection of the MR candidates. Furthermore, ARACNe
considers the relationship between the three genes for selecting
MR candidates. Actually, some mathematical techniques that
can consider multiple relationships are well known, and are
applied to infer the regulatory networks [4].

Recently, we developed a procedure for identifying MRs,
by a combination of network screening and inference. The
performance of our procedure was tested for MRs in human
malignant glioma, by using the same data set [3]. Fortunately,
our procedure worked well [5]. 22 TFs and 27 TFs were de-
tected by the network screening and the inference, respectively,
and 3 TFs overlapped between them. Interestingly, 2 of 3 TFs
were STAT3 and CEBPB that were verified by experiments as
the master regulators in the previous report.

In our previous paper [6], we have reported 39 candidates
of active networks for the diabetes progression in GK rat,
which were identified by the network screening, in comparison
with the Wistar-Kyoto (WKY) rat. The candidates were char-
acterized by the known biological pathways that were well
consistent with the previous knowledge about the diabetes.
Unfortunately, it was still insufficient to verify the plausibility
of the active networks by experiments. This is partly because
the results were presented as a metaphysical form, the biolog-
ical pathway, instead of the list of concrete target genes, and
partly because the active networks were composed of many
genes that were not feasible for the experimental verification.

Here, we identify the candidates of master regulators for
the diabetes progression in GK rat. Based on the networks
specific to diabetes progression in our previous results [6],
we tried to further narrow down the candidate molecules re-
sponsible for the diabetes by identifying the master regulators
that play a central role for the diabetes progression in GK
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rat. Furthermore, we improved our previous method [5], to
consider the coverage of TF for its regulated genes in a
statistical way, in addition to the specificity of TF to the target
biological phenomena. As expected from the previous case of
computational identification of MRs in human brain tumor [5]
and the present improvement, the limited number of MRs was
identified to give a hint to design further experimental works
for candidate verification.

II. MATERIALS AND METHODS

A. Overview of our procedure

Here, we searched for MR candidates by two approaches,
which are schematically shown in Fig. 1. One is a knowledge-
based approach, which estimates the consistency of the net-
work structures among the known networks with the measured
data (named “network screening”) [6], [7]. Unfortunately, our
knowledge about the gene variety in transcriptional networks is
restricted. To compensate for this restriction, we use another
approach to search for MRs, based on the inference of the
network structures by using the measured data (path consis-
tency algorithm) [5]. In both cases, we further select the MR
candidates by considering the enrichment of gene expression
signature in the networks.

Fig. 1. Workflow of MR identification procedure.

B. Network screening

The candidates of active regulatory networks are detected
by network screening in the following manner [6], [7]. First,
the regulatory network sets are generated. The mouse binary
relationships compiled in the TRANSFAC database [8] were
used: based on the correspondence between mouse and rat in
gene id, 3,015 binary relationships of 1,507 genes between
503 TFs and 1,123 regulated genes. Based on the binary
relationships, transcriptional networks were constructed, ac-
cording to the functional gene sets previously defined in
the Molecular Signatures Database (MSigDB) [9]. In each
gene set, the regulated genes in the binary relationships
were searched, and if at least one gene was found in the
gene set, then the corresponding binary relationships were

regarded as a regulatory network characterized by the gene
set. The set of constructed networks was used as the reference
network for network screening. In present study, the reference
network comprised 1,760 regulatory networks characterized
by biological functions that are composed of 1,195 genes:
the numbers of TFs and regulated genes are 335 and 860,
respectively.

Then, we calculated the graph consistency probability
(GCP) [10], which expresses the consistency of a given
network structure with the monitored expression data of the
constituent genes in this study. The details of the reference
network and the GCP are described below.

First, suppose a causal graph is a directed acyclic graph
(DAG), G(Vi, Ej), where Vi is a vertex (i = 1, 2, ..., nv) and
Ej is an edge (j = 1, 2, ..., ne) in the graph. The DAG can be
factorized into subgraphs according to the parent-descent rela-
tionships. The joint density function f(Xi), corresponding to
Vi for the graph G, can then be factorized into the conditional
density functions according to the graph, as follows:

f(X1, X2, ..., Xnv ) =
n∏

i=1

f(Xi|pa{Xi}), (1)

where pa{Xi} is the set of variables corresponding to the
parents of Vi in the graph.

Second, the causal graph meets the measured data based on
the Gaussian graphical model (GN: Gaussian Network). On
the assumption that the probability variable Xi is subjected
to a multiple normal distribution, each conditional function in
equation (1) is obtained by linear regression for the measured
data of the constituent nodes (molecules) measured at m
points, i.e.,

f(Xi|pa{Xi}) =
1√
2πσ2

i

exp
[
− 1

2σ2
i

m∑

k=1

(xik−
ni∑

j=1

βijxjk)2
]
,

(2)
where xik is the measured value of Xi, at the k-th point, and

ni is the number of variables corresponding to the parents of
Vi. Thus, the joint density function in equation (1) is expressed
by the regression for the measured data in equation (2). Finally,
the logarithm of the likelihood of equation (2) is calculated for
the measured data, as

l(G0) = ln

nv∏

i=1

f(Xi|paXi)

= −1

2

nv∑

i=1

ni∑

j=1

{ 1

σ2
i

m∑

k=1

(xik − βijxkj)
2 + ln(2πσ2

i )}. (3)

Thus, the GN allows us to quantify a given network into
the corresponding numerical value from the measured data,
according to the network form. Note that the calculation of the
likelihood itself requires no assumptions on the relationships
between variables. Indeed, the likelihood can be calculated in
the case of non-linear regressions, such as spline regression.

Finally, the probability of the log-likelihood for the network
structure (graph consistency probability; GCP) was estimated
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by the distribution of log-likelihoods for many networks,
generated under the condition that the networks shared the
same numbers of nodes and edges as those of the given
network. Thus, we generated Nr networks under the same
condition, and the GCP is simply defined, as

GCP =
Ns

Nr
, (4)

where Nr is the total number of generated networks, and Ns

is the number of networks with larger log-likelihoods than the
log-likelihood of the tested network. In the present study, Nr

was set to 2,000. In this paper, the GCP significance of the
given network was set at 0.05 in this analysis.

C. Path consistency algorithm

The path consistency (PC) algorithm [11] is an algorithm
to infer a causal graph composed of two parts: the undirected
graph inference by a partial correlation coefficient and the
following directed graph construction by the orientation rule.
The present method partially exploits the first part of the PC
algorithm for the inference of the network structures. A simple
example in the PC algorithm is illustrated in Fig. 2.

We assume that five variable, X1, X2, X3, X4, X5, have the
five following relationships: i) X1

⨿
X1, ii) X2

⨿
(X1, X4),

iii) X3

⨿
X4|(X1, X2), iv) X4

⨿
(X2, X3)|X1, and v)

X5

⨿
(X1, X2)|(X3, X4). The PC algorithm reconstructs the

above relationships as the follows. 1) Prepare a complete
graph, C, between the five variables. 2) Test the correlation
between two variables by calculating the zeroth-order of partial
correlation coefficient (Pearson’s correlation coefficient). From
the test, two variables pairs, (X1, X2) and (X2, X4), are
excluded (broken lines in Fig. 2), due to the relationships,
i) and ii). 3) Test the correlation between three variables by
calculating the first-order of partial correlation coefficient of
variable pairs given one variable. Then, one variables pair,
(X3, X4), is further excluded from the undated graph by
2), due to iii) and iv). 4) Test the correlation between four
variables by calculating the second-order of partial correlation
coefficient of variable pairs given two variables. Then two
variables pairs, (X1, X5) and (X2, X5), are excluded, due to
iv). 5) We cannot find any edges adjacent to three edges in
the updated C. Thus, the algorithm naturally stops. As seen in
the final graph, the five relationships emerged completely.

In general, the (m − 2) − th order of the partial correlation
coefficient is calculated between two variables, given (m− 2)
variables, i.e., rij,rest, between Xi and Xj , given the ‘rest’
of the variables, Xk for k = 1, 2, ..., m, and k ̸= i, j,
and after calculating the (m − 2) − th order of the partial
correlation coefficient, the algorithm naturally stops. However,
the algorithm does not usually request the (m−2)−th order of
the correlation coefficient for the natural stop. This is because
adjacent variables, after excluding the variables, are often not
found, even in the calculation of the lower orders of partial
correlation coefficients.

In the actual expression profile data, many genes frequently
show profiles with similar patterns. This makes the numerical

Fig. 2. Example of path consistency algorithm.

calculation of correlation coefficients difficult, due to the
multi-colinearity between the variables. The original PC algo-
rithm accidentally stops, if only one correlation between a pair
of variables shows a violation of the numerical calculation.
However, in a biological sense, the gene pairs that cause the
accidental stop can be interpreted as a case when they are
highly associated with each other, in terms of gene expression.
Thus, we modified the original PC algorithm to prevent it
from accidentally stopping with the highly associated gene
pairs, as follows [12], [13]. If the calculation of any order
of the partial correlation coefficient between the variables is
violated, then the corresponding pair of variables is regarded
as being dependent. For example, if the first-order correlation
coefficient, rij,k, cannot be calculated numerically, due to the
multi-colinearity between Xi and Xj , then keep the edge
Xi − Xj without the statistical test. The other parts remain
unchanged in the modified algorithm. Note that the above
modification ensures that the algorithm will naturally stop for
the data including the high correlation.

As seen in the original algorithm, the output is not unique,
depending on the calculation order of pairs [11]. As a conve-
nient way, a permutation test for the calculation order will be
one of the ways to partly resolve this issue. In this study, the
estimation without permutation was empirically adopted as a
first approximation, based on the successful estimations of the
relationships in our previous studies [12], [13]. In addition, one
of the most remarkable features of PC algorithm is that the
algorithm removes pseudo-correlations between the variables
(genes) by considering the higher-order of partial correlations.
If we have the measurement data for a complex network, we
frequently face more serious issue on the pseudo-correlation
rather than on the correlation level. The merit of PC algorithm
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may be useful for identifying real relationships between TFs
and their regulated genes.

D. Definition of MR by network screening and network infer-
ence

We first refer to two sets of networks obtained by the
network screening [6], [7] and the network inference [12],
[13]. From each set of network, the binary relationships
between TFs and its regulated genes are extracted, only if the
regulated genes are included in the expression signature, which
is the ensemble of gene with the significant difference of gene
expression that is statistically estimated by false discovery rate
(FDR) test for multiple comparisons (FDR < 0.05) [14].

Then, we define MR candidates from the binary relation-
ships by two criteria. One is the specificity of TF that is the
same criterion as the previous method [5], and the other is the
coverage of TF that is newly introduced in the present MR
candidate identification. Here, the specificity simply means
that TF emerged only in GK networks, but not in WKY. To
select TFs in terms of the specificity, we select TFs that emerge
at three periods in GK but not in WKY, as the MR candidates.
The coverage means how many genes each TF regulates. To
select TFs in terms of the coverage, we first counted the genes
regulated by each TF for each period in GK and WKY, and
then sort the numbers of regulated genes for each case. To
consider the coverage in a rational way, we use the outlier test,
Smirnov-Grubbs test [15], for the numbers of regulated genes,
by setting a threshold (p < 0.05). Thus, TFs with the larger
number of regulated genes that fulfill the threshold are selected
in a statistical way. Finally, the two sets of MR candidates that
are selected in terms of the specificity and the coverage are
compared to define the final MR candidates.

1) Data analyzed in this study: We analyzed the gene
expression data measured in GK and WKY rats [16],
which is cited from the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/projects/geo/) database
(GSE:13271). The data are composed of 31,099 probes mea-
sured by using Affymetrix Microarray Suite 5.0 (Affymetrix),
which are reduced into 14,506 genes, for 5 samples of male
GK spontaneously diabetic rats and WKY rats at each of 5
time points (4, 8, 12, 16, and 20 weeks of age). In this analysis,
the 5 periods are classified in to three periods: period of 4w,
periods of 8w and 12w, and periods of 16w and 20w.

III. RESULTS AND DISCUSSION

A. MR candidates detected by network screening

We identified 39 networks for GK and WKY rats in three
periods of 4w, from 8w to 12w, and from 16w to 20w, by
network screening, among the 1,760 networks in the reference
network set in our previous study [6]. From the 39 networks,
in total, we extracted 568 binary relationships of TF and its
regulated gene, which were specifically found in the three
periods for GK and WKY rats, under the condition that the
gene expression shows difference with FDR of less than 0.05,
between two kinds of rats for each period. The numbers of

specific genes for each period in GK and WKY rats are as
follows: 54 at the period of 4w in GK; 199 at 8w and 12w
in GK; 56 at 16w and 20w in GK; 95 at the period of 4w
in WKY; 125 at 8w and 12w in WKY; and 39 at 16w and
20w in WKY. Note that some TF-gene relationships emerged
iteratively for different periods in GK and WKY rats.

First, the TF-gene relationships were selected by the speci-
ficity. To do this, we selected TFs that were listed in GK but
not in WKY. Finally we found 21 TFs that regulates 32 genes
in Table I. Here, all of the gene names are cited from the Rat
Genome Database (http://rgd.mcw.edu/).

TABLE I
TFS IDENTIFIED BY NETWORK SCREENING IN TERMS OF SPECIFICITY.

AR, BCL6, BRCA1, ETV4, FUS, GLI1, HES1, HNF1B, HNRNPK, KLF10,
KLF4, LYL1, MEF2C, NFIA, NR2F1, NRL, PAX6, SP2, SP4, TCFAP2B, WT1

Next, the TF-gene relationships were selected by the cov-
erage. We selected MR candidates by setting each threshold
for each period in GK and WKY in Table II. As seen in the
table, most TFs emerged in both GK and WKY, and finally
we found 3 TFs (EGR1, NRF1, and TCFAP2A) that regulates
17 genes.

TABLE II
TFS IDENTIFIED BY NETWORK SCREENING IN TERMS OF COVERAGE. ♯
MEANS THE NUMBER OF REGULATED GENES. TFS FOUND IN BOTH GK

AND WKY ARE INDICATED BY BOLD LETTERS.

4w 8w 12w 16w 20w
GK WKY GK WKY GK WKY

TF TF ♯ TF ♯ TF ♯ TF ♯ TF ♯

SP1 10 SP1 19 SP1 39 SP1 18 SP1 12 SP1 5
SP3 8 SP3 11 HNF4A 6 SP3 3 FOXO3 3
TP53 4 TP53 11 FOXO3 4

EGR1 6
NRF1 6
TCFAP2A 5

B. MR candidates inferred by the path consistency algorithm

We first inferred six networks of all genes on the microarray
for each of three periods in GK and WKY rats, by the
path consistency algorithm, and then the TF-gene relation-
ships were extracted from each network. After the extraction,
then, only the relationships that include the genes with the
significant difference between GK and WKY rats were further
selected for 6 sets of the relationships. First, we selected the
relationships in terms of specificity: TFs were extracted from
the relationships that were found in GK but not in WKY. As
a result, 108 TFs were identified as the MRs in Table III.
The number of candidates seems large in comparison with the
candidate number, 27 TFs, in the previous case of the brain
tumor [5], but three networks for the three periods in GK rat
were surveyed to select the candidates in the present study.
The number of TFs extracted from one network, 36 TFs on
average, is similar to that in the previous study.

Next, the TF-gene relationships were selected by the cov-
erage. We selected TF-gene relationships by setting each
threshold for each period in GK and WKY in Table IV. In
contrast to the case by network screening, only a few TFs
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TABLE III
TFS IDENTIFIED BY NETWORK INFERENCE IN TERMS OF SPECIFICITY.

Alx1, Arnt, Cebpg, Ddit3, Dlx5, Dmrt2, Dnmt1, Dr1, Ebf1, Elf5, Elk3, Elk4,
Erg, Etv4, Etv5, Fev, Fosl1, Foxe1, Foxg1, Foxo3, Foxp4, Gabpb1l, Gfi1
Gtf2a1, Gtf2b, Gtf2e1, Gzf1, Hcfc1, Hey1, Hhex, Hoxb3, Hoxb7, Ilf3,
Irx2, Kcnip4, Klf1, Klf15, Klf3, Klf5, Klf7, Ldb2, LOC680117, Mafk,
Meis2, Mnat1, Msx1, Msx2, Mybl2, Myc, Myocd, Myod1, Mzf1, Neurod2,
Nfix, Nfx1, Nkx6-1, Notch1, Nr1h4, Nr2f1, Nr4a1, Nr5a1, Pax8,
Pbx2, Phox2a,Pitx1, Pitx3, Pou2f3, Pou3f1, Ppard, Pparg, Ppargc1a,
Rbl1, RGD1566107, Rreb1, Runx1, Shh, Six5, Six6, Skp2, Sox10,
Sox11, Sp1, Sp2, Spdef, Srebf1, Ss18l1, Stat5a, Stat5b, Taf2, Tbx18,
Tbx2, Tcf12, Tcfap2b, Tead1, Tfdp2, Tfec, Tmf1, Tp53bp1, Twist1,
Vdr, Zbtb5, Zfhx3, Zfp191, Zfp238, Zfp423, Zfp444, Zhx1, Zic1

emerged in both GK and WKY. Indeed, 44 TFs are listed in
total in Table IV, and only two TFs (Tbpl1 and Cbfb) emerged
in both GK and WKY. Finally we found 42 TFs that regulates
725 genes.

TABLE IV
TFS IDENTIFIED BY NETWORK INFERENCE IN TERMS OF SPECIFICITY. ♯
MEANS THE NUMBER OF REGULATED GENES. TFS FOUND IN BOTH GK

AND WKY ARE INDICATED BY BOLD LETTERS.

4w 8w 12w 16w 20w
GK WKY GK WKY GK WKY

TF TF ♯ TF ♯ TF ♯ TF ♯ TF ♯

Arntl 31 Max 10 Lhx5 24 Ywhae 18 Fus 10 Foxq1 32
Lhx2 22 Otx2 10 Etv1 23 Pfdn5 13 Smad5 10 Hoxa1 16
Sp2 18 Daxx 9 Ctnnb 18 Atf1 11 Nfx1 9 Rbl2 16
Gbpa 13 Sim1 9 Rpa3 8 Cdk9 11 Hsf1 8 Zic2 12
Xpa 4 Tcf21 8 Zfp105 8 Hmgb2 11 Tlx3 8 Rorc 8
Foxs1 3 Gata5 7 Foxo3 7 Sfpq 9 Tp53 8 Tcfap4 6

Tcfap2c 7 Hoxc5 6 Zfp281 9 Foxs1 7 Pttg1 5
Meis3 5 Litaf 6 Cdk7 8 LOC 7 Ncoa3 4

679869
Rorc 5 Nr2f2 6 Ets2 8 Cbfb 6 Ccnh 3
Snapc1 5 Foxo1 5 Hoxa1 8 Ctcf 6 Hif1a 3
Zic2 5 Msx1 5 Nfe2l2 8 Glis2 6 Junb 3
Meis1 4 Myocd 5 Nfil3 8 Irf7 6 Kcnip1 3
Pou2af1 4 Pbx1 5 Six4 8 Nfkbib 6 Mtf1 3
Srf 4 Tbpl1 5 Cux2 7 Nr1i2 6 Zfp148 3
Stox2 4 Vdr 5 Mafg 7 Hdac1 5
Tcfcp2l1 4 Hltf 4 Nfkbia 7 Rfx5 5
Gtf2h2 3 Htt 4 Pgr 7 Tle1 5
Zfx 3 LOC 4 Ppp1 7 Xpa 5

680117 r13b
Mbd1 4 Tbpl1 7
Parp1 4 Cbfb 6
Rreb1 4 Ezh2 6
Smarcc1 4 Hbp1 6

Junb 6
Taf13 6
Tef 6

C. MR selection by comparison of the TF sets detected by the
two methods

We summarized the TFs detected by the two methods in
terms of two criteria (Tables I-IV) in Table V. 21 TFs detected
by network screening in terms of specificity overlapped with
only 4 TFs and 2 TFs by path consistency algorithm by two
criteria, respectively. In contrast, 3 TFs showed no overlapped
TFs by path consistency algorithm by two criteria. As pointed
out, one of pitfalls in network screening is the restriction of
TF-gene relationships. Thus, the coverage may not be effective
as a criterion in selecting TFs.

As a result, 5 TFs are finally identified as the candidates
of MRs for diabetes progression in GK rats: one of 6TFs,
SP2, emerged in both 4TFs and 2TFs. The TFs and their
regulated genes are listed in Table VI. By preliminary survey,
all of the 5TFs are not reported their any direct relations to
diabetes, but related to various diseases. Notably, the relations

TABLE V
SUMMARY OF TFS.

path consistency algorithm
specificity (108) coverage (42)

network specificity (21) 4 2
screening coverage (3) 0 0

of Etv4 and Tcfap2b to adipogenesis, which is well known to
be highly related to diabetes, are reported, together with their
association of the other pathways [17], [18]. The molecular
functions of the remaining three TFs, Fus, Nr2f1, and Sp2,
are also reported to be related to some diseases [19]–[21].
Although direct evidence is not found in previous knowledge,
5 TFs are expected to be MR candidates, in consideration
with the circumstance evidence of the relations to diseases,
especially the relations of Etv4 and Tcfap2b to adipogenesis,
in addition to the correct finding of new MRs in brain
tumor by more preliminary procedure than that in the present
study. In addition to their regulated genes, some experimental
verification of MR candidates may be desirable to further
examine their plausibility as the MR candidates for diabetes
progression.

TABLE VI
CANDIDATES OF TF-GENE RELATIONSHIPS FOR DIABETES PROGRESSION

IN GK RAT. THE GENES IN BOLD CHARACTERS ARE INCLUDED IN KNOWN
TF-GENE RELATIONSHIPS DETECTED BY NETWORK SCREENING.

TF Regulated genes
Etv4 Mcm10 ERBB2 MMP7 NID1 PLAU PTGS2
Fus Mcpt8l2 Mcpt9 PAICS PPAT Ugt1a1 Ugt1a2

Ugt1a3 Ugt1a5 Ugt1a6 Ugt1a7c Ugt1a8 Ugt1a9
Nr2f1 ALOX5 CPT1B CYP11B2 TF Ugt1a3 Ugt1a5
Sp2 CAPNS1 IRS2 LOC685183 LOC685226 LOC685291 LOC685759

LOC688519 LOC688603 LOC689083 LOC689312 LOC689338 LOC689690
LOC689999 LC690179 LOC690328 LOC690379 LOC690577 LOC691712
LOC691735 LOC691754 PAPSS2 Vom2r45 Vom2r46 Vom2r47

Tcfap2b Aqp1 EGFR KRT14 PTGDS SOD2 TGM1

D. Remarks

In this study, we have identified the candidates of master
regulators based on our previous study [5], by using an im-
proved method based on our previous methods for identifying
master regulator candidates [6]. The MR candidates were
extracted from the active networks of many genes charac-
terized by biological pathways, to present the feasible gene
candidates for experimental verification. In methodological
aspect, the method was improved by considering the coverage
of TF by a statistical way, in addition to the specificity that
considered in the previous method. At any rate, the present
study illustrated one of the rational ways to narrow down
the genes of MR candidates, definitely different from the
metaphysical presentation such as biological pathway or large
network form.

Our study intended to identify the candidates of MR,
which indicated that the gene(s) had large impacts on the
phenotype changes in terms of biological sense [3]. Here,
we identified logically MR candidates by the specificity on
TF appearance and the coverage of regulated genes to gene
expression signature in the networks of GK and WKY rats.
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Apart from biological sense, we further investigate the mean-
ing of “master” in view from the network structure. To do
this, we uncovered hierarchical structures [22] of networks in
8w-12w and 16w-20w by network screening, and allocated the
present 5 TFs into the hierarchical structures (Shown in Fig.
3). As seen in the figures, all of the 5 TFs were allocated
into the highest level. Indeed, Nr2tf1 at 8w-12w network
and Tcfap2b at 16w-20w network were definitely allocated
into the highest level of hierarchical structures. Furthermore,
the remaining TFs were allocated into the levels including
the highest and middle levels, but not into the lowest level.
In addition, previous hierarchical analysis of the regulatory
networks in Escherichia coli and Saccharomyces cerevisiae
suggested that MRs were in the middle of the hierarchy [23].
Although the verification experiments remain to be performed
for justification of MR in terms of biological sense, present 5
TFs may be regarded as the plausible MR candidates in terms
of the network structure.

A

1

NR2F1

[22]

2 [19]

3 [1]

4 [1]

5 [3]

[12]

Level

[3]
[5]

ETV4,

FUS SP2,

TCFAP2B

[59]

[1]
[2]

[90]

 
B

1

TCFAP2B

[13]

2 [7]

3 [1]

NR2F1

[21]

[16]

Level

 
 

Fig. 3. Hierarchical structures of networks for 8w-12w (A) and 16w-20w
(B). 5 TFs are indicated at the levels in hierarchical structures obtained by
vertex-sort algorithm [22], and the numbers of TFs in each level are indicated
in parenthesis.

Here we present the candidates of MRs for the diabetes
progression, 5 TFs and their regulated genes in GK rat, by
our original method. Fortunately, the number of candidates
was very small, and may be enough to perform experiments
for their verifications. Furthermore, the recent availability of
the next-generation sequencer may confirm the effectiveness
of our procedure, and allow further chances for testing its
performance with other data sets. Indeed, RNA-seq and ChIP-
seq are useful for more accurate measurements of gene ex-
pression and concrete information about the regulated genes.
Thus, the combined procedure using the two approaches may
compensate for the possible pitfalls of each approach, and
will provide some clues about the transcriptional networks that
regulate transitions into physiological or pathological cellular
states of diabetes.
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