
Parallel-META: A High-Performance 
Computational Pipeline for Metagenomic Data 

Analysis 

Xiaoquan Su, Jian Xu, Kang Ning* 
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China 

suxq@qibebt.ac.cn, xujian@qibebt.ac.cn, ningkang@qibebt.ac.cn (*corresponding author) 

 

Abstract—Metagenomics method directly sequences and analyzes 
genome information from microbial communities. There are 
usually more than hundreds of genomes from different microbial 
species in the same community, and the main computational 
tasks for metagenomics data analysis include taxonomical and 
functional component of these genomes in the microbial 
community. Metagenomic data analysis is both data- and 
computation- intensive, which requires extensive computational 
power. Most of the current metagenomic data analysis softwares 
were designed to be used on a single computer, which could not 
match with the fast increasing number of large metagenomic 
projects’ computational requirements. Therefore, advanced 
computational methods and pipelines have to be developed to 
cope with such need for efficient analyses. In this paper, we 
proposed Parallel-META, a GPU- and multi-core-CPU-based 
open-source pipeline for metagenomic data analysis, which 
enabled the efficient and parallel analysis of multiple 
metagenomic datasets. In Parallel-META, the similarity-based 
database search was parallelized based on GPU computing and 
multi-core CPU computing optimization. Experiments have 
shown that Parallel-META has at least 15 times speed-up 
compared to traditional metagenomic data analysis method, with 
the same accuracy of the results 
 (http://www.bioenergychina.org:8800/). 
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I. INTRODUCTION 
The total number of microbial cells on earth is huge: 

approximate estimation of them is 1030  [1], and the genomes 
of these vastly unknown communities of microbes might 
contain a large number of novel genes with useful functions. 
However, more than 99% of microbe species were unknown 
and un-cultivable [2], making traditional isolation and 
cultivation process non-applicable. Analysis of their 
metagenomic data is the direct and efficient way to analyze all 
microbes in the community [3]. The metagenomic approach 
has made it possible better understanding of microbial 
diversity as well as their functions and interactions. And the 
broad applications of metagenomic research, including 
environmental sciences, bioenergy research and human health, 
have made it an increasingly popular research area. 

Metagenomics research was based on sequencing data 
from 16S rRNA amplicon, or large-scale shot-gun 
whole-genome metagenomic sequencing. Early 16S 

rRNA-based metagenomic survey of microbial communities 
focused on 16S ribosomal RNA sequences which are 
relatively short, often conserved within a species, and 
different between species. The 16S rRNA-based metagenomic 
survey has already produced data for analysis of microbial 
communities of Sargasso Sea [4], acid mine drainage biofilm 
[5] and human gut microbiome [6]. Facilitated with 
Next-Generation-Sequencing (NGS) techniques [7], current 
metagenomic research has been advanced rapidly. NGS 
techniques could produce millions of reads at very high speed 
with relatively low price, thus it enables sequencing at much 
greater depth. Based on NGS techniques and high 
performance computational analysis methods, many 
large-scale metagenomic research projects have been 
conducted [8], thus made the large-scale metagenomic 
research the mainstream in metagenomic research. In this 
paper, we were focusing on data analysis for shot-gun 
whole-genome metagenomic sequencing, in which the 
computational methods play very important roles, especially 
the similarity-based database search. 

The primary goal of metagenomics is the assessment of 
taxonomic and functional diversity of microbial communities. 
Based on NGS data, metagenomic data analysis is both data- 
and computing-intensive. Therefore, high-performance 
computing is needed for metagenomic data analysis.  

Traditional high performance computing platform only 
use CPU cluster. For high computing speed, CPU computing 
platform always has large amount of CPUs with high frequent, 
which also accompanied with high cost and high power 
consumption. However, with the increase of data size, it 
becomes more and more difficult for current CPU cluster to 
satisfy the requirement of the fast-developing metagenomics 
research. The computing speed of metagenomics data analysis 
would be accelerated significantly by the combination of GPU 
computing and parallel CPU computing. For GPU computing, 
the GPGPU(General Purpose Graphic Process Unit) hardware 
and CUDA(Compute Unified Device Architecture) software 
would be the method of choice. CUDA is a massive parallel 
computing architecture. Based on nVIDIA (Santa Clara, CA) 
GPGPUs and SIMT (Single Instruction Multiple Threads), it 
enables dramatic increases in computing performance by 
parallel computing with huge number of stream processors. 
For parallel CPU computing, multi-core CPU could be 
utilized by implementation of multi-threaded parallel 
programming. 
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In this work, we used both GPU and multi-core CPU to 
implement the parallel computing to accelerate the 
computation. We have proposed a high-performance 
computational pipeline (Parallel-META) for metagenomics 
research that has the major advantage of efficient process of 
large metagenomics dataset. The whole system is illustrated in 
Figure 1. There were two major components of the system: 
Multi-core CPU and GPU computing facilities, which enabled 
the hardware support for parallel process of large 
metagenomics datasets; and high-performance metagenomics 
data analysis pipeline, which enabled the software support for 
parallel metagenomic data analysis. 

 

 
Figure 1.Parallel computing platform based on GPU and multi-core CPU 

hardware as well as software pipeline. 

 

II. METAGENOMICS AND HIGH-PERFORMANCE 
COMPUTING 

A. Metagenomics 
Large databases of reference sequences, such as 

Greengenes [9], SILVA [10] and RDP [11] already exist for 
metagenomic sequence analysis. As most of the microbial 
communities are still unknown, these databases are also 
updating frequently. For computational analysis of 
metagenomic data, the most important tasks include 
taxonomic and functional analyses. A crucial step in the 
taxonomic analysis of large-scale metagenomic data is 
“binning”, in which the metagenomic sequences were 
assigned to phylogenetic groups according to their taxonomic 
origins at different resolutions: from “kindom” to “genus” 
level. There are two categories of binning methods: 
similarity-based methods that align reads to reference 
databases, and composition-based methods that use 
composition patterns (GC content, k-mer frequency, etc.) to 
cluster reads. The similarity-based methods classify sequences 
based on sequence homology, which is determined by 
reference database searches using general purpose alignment 
tools such as BLAST [12]. The most frequently used 
similarity-based metagenomic data binning methods include 
MEGAN [13], CARMA [14] and Sort-ITEM [15]. Most of 
these software could be used on PC workstation. However, 
similarity-based methods rely on reference databases that 
contain sequences of known genomes, so these methods 

cannot classify the majority of sequences that were from 
unknown genomes without close references. In contrast, 
composition-based methods analyze intrinsic sequence 
features such as GC content, codon usage and k-mer 
frequency, and compare these features with reference genome 
sequence of known taxonomic origins. The most frequently 
used composition-based metagenomic data binning methods 
include TETRA [16] and PhyloPhythia [17]. Recently, some 
all-in-one metagenomic data analysis pipelines were 
introduced, such as Phyloshop [18] and QIIME [19]. The 
web-based metagenomic annotation platforms, such as 
MG-RAST [20] and CAMERA [21] were also designed to 
analyze metagenomic data. However, the increasing number 
of metagenome data analysis projects needs more and more 
computational power, which become an increasingly large 
huddle for the efficient process of metagenome datasets by 
current pipelines. 

B. GPU computing 
CUDA is a massive parallel computing model based on 

GPGPU (GPU for short) to solve the rapid increasing data 
computing problem. It is presented by nVIDIA in 2006 with 
the G80 series GPU. Different form the traditional GPUs, 
which are consisted of rendering pipeline of Vertex Engine 
and Pixel Engine, a CUDA enabled GPU is composed by 
several SMs (Stream Multiprocessors). The amount of SM 
depends on the model of GPU. For example, nVIDIA Tesla 
has 30 SMs, and nVIDIA Quadro FX 880M has 6 SMs. In a 
single SM, there are also several stream processors and a 
shared memory which can be accessed by these processors in 
the same SM. For G80/GT100/GT200 series GPU, one SM is 
composed by 8 stream processors. The latency of the shared 
memory is quite low, so it is always used as cache. There is 
also an onboard memory (Global Memory) which can be 
shared by all the stream processors in a GPU. As GPU cannot 
directly access the RAM of a computer system, data should be 
transferred from RAM to Global Memory before GPU 
computation. 

 

 
Figure 2. The peak computing capability comparison between CPU and 

GPU 

 

Based on SIMT (Single Instruction Multiple Threads) 
structure, GPU can invocate a block of threads on one single 
SM. Each thread performs a single computation on one stream 
processor. For one block, the maximum number of thread is 
512 for the GPU with computation capability 1.X and 1024 
for the GPU with computation capability 2.0. Therefore, Total 
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thread number = (Number of Threads in one single Block) X 
(Number of Blocks). This number can be very large as there 
might be huge number of SMs in one GPU, meaning that 
many threads can be executed parallelly at the same time. 
That is the main reason for the high computing capability and 
throughput of GPU rather than CPU (Figure 2).  

In a computer system equipped with GPU, the CPU 
system is called host, and the GPU system is called device. 
CUDA provides a series of APIs which can be invocated by 
host programs. As GPU cannot directly access the system 
memory of CPU and Hard disk, data should be transferred 
from the system memory (RAM) to the Global Memory of 
GPU by CUDA APIs. Then the stream processors of GPU can 
exchange data with the Global Memory and Shared Memory. 

 

 
Figure 3. The architecture of GPU & CPU and data transfer in a 

computer system 

 

C. Multi-core CPU computing 
CPU core is the key part made of Monocrystalline silicon 

on which instructions can be executed. Before 2005, for 
normal CPUs, there was only 1 core on one single CPU 
chipset, which limited the development of the computing 
capability and efficiency. Engineers used the method that 
integrating several CPU cores on a chipset to solve these 
problems. Instructions can be executed on those cores 
parallelly at the same time. This method not only enhanced 
the computing capability of CPU, but also reduced the TDP 
(Thermal Design Power) for cutting down the working 
voltage and clock rate of CPU cores and the application of 
power management technology. 

The latest architecture of Intel multi-core CPU is Nehalem. 
Nehalem Xeon 5000 series have such architecture features: (a) 
four cores integrated into one CPU, (b) hyper-threading 
technology supports 8 threads at most, (c) each core has a 
64KB L1 cache and 256KB L2 cache, with an 8MB L3 cache 
is shared by all cores and (d) turbo Boost technology, 
dynamically adjusts the work frequent of cores. 

A computer system with both GPU and multi-core CPUs 
is illustrated in Figure 3. This would be a typical hardware 
architecture for next-generation high performance biological 
data analysis system, based on which we are testing the 
Parallel-META metagenomics data analysis pipeline. 

 

III. SYSTEM ARCHITECTURE AND PIPELINE 
DESIGN 

A. Hardware architecture 
In this work, the hardware used was one single node of the 

GPU computing platform of QIBEBT, CAS (Qingdao 
Institute of Bioenergy and Bioprocess Technology, Chinese 
Academy Sciences) computing platform that had the 
following configuration:  CPU: Dual Intel Xeon X5645 2.66 
GHz with 12 cores, GPU: nVIDIA Tesla C2070 with 448 
processors and 6G DDR5 ECC on board memory, RAM: 
72GB RDIMM DDR3.  

For this system, the total float computing capability of 
CPU is 89.6Gflops, and the total float computing capability of 
GPU is up to 1Tflops. 

B. Software architecture  
The keys to the efficient and parallel process of large 

metagenomics data is the parallelization of sequence data 
binning by database search. The Parallel-META pipeline is 
using the Phyloshop software [18] as the basic framework. 
Phyloshop is a pipeline which can extract 16S rRNA gene 
fragments form metagenomic sequences, assign the taxonomy 
terms for the identified 16S rRNA fragments, and report the 
taxonomy distribution. This pipeline includes three steps: (1) 
16S rRNA prediction by HMM search of HMMER [22], (2) 
Mapping of 16S rRNA onto the Greengenes [9] core set using 
megaBLAST [23], (3) Classification of the 16S rRNA 
fragments based on the mapping to the phylogenetic tree. 
After these steps, Phyloshop reports the classification, length 
distribution and the summary of the taxonomic assignments of 
16S rRNA sequences at different phylogenetic levels. 

To speed up the metagenomic data analysis process, the 
Parallel-META pipeline is optimized by decomposing large 
problems into smaller size sub problems and solving them 
parallelly at the same time on high performance computing 
devices. Parallel-META mainly optimized the HMM search 
part and database search part by megaBLAST. The overall 
pipeline design was illustrated in Figure 4. 

In the HMM search part, we used GPU-HMMER [24] 
component to implement parallel computing instead of 
traditional HMMER which is based on CPU. The core of 
HMM search is the Viterbi Algorithm, which is used to 
compute the most probable path through a given state HMM 
(Hidden Markov Model). Different from CPU computing that 
performs HMM search by serially executing the loops of 
Viterbi Algorithm. In GPU-HMMER, the loops are 
parallelized and expanded into some sub processes. Then each 
process was mapped to a thread on a stream processor of GPU. 
As GPU enable the activities of huge number of threads at the 
same time, Viterbi Algorithm can be done in a much shorter 
time on GPU than on CPU.  
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The next step – megaBLAST has been divided into three 
parts: Problem Decomposition, Parallel Computing, and 
Result Combination. In the first part, the output data gained 
from the HMM search were decomposed into sub data files 
with similar size. Then in the second part, each thread could 
directly find its input data from the original file and perform 
the megaBLAST search parallelly by multi-threads 
programming. After that, sub results are merged together to 
get the final result.  

 

IV. EXPERIMENTS AND DISCUSSIONS 
We have used four sets of Illumina Solexa GAIIx 

sequencing-based metagenome data [25] to evaluate the 
performance of Parallel-META. Shotgun pair-end libraries of 
total saliva genomic DNA was prepared (two from the healthy 
population and the other two from the caries-active 
population). Each metagenomic DNA library was then 
sequenced on one lane of pair-end 100 bp flow cell on Solexa 
GA-IIx (Illumina, San Diego, CA, USA). After removing the 
contaminating reads from human hosts, over 7.5 million reads 
were produced for each of the healthy saliva microbiome, and 
over 28 million reads were generated for each of the 
caries-active microbiome. All of the Solexa reads were 
mapped against the 44 oral reference genomes in Human 
Microbiome Project [26] to assess the coverage and 
abundance of these sequenced isolates or their close neighbors 
in saliva microbiota. 

 

 
Figure 4.Metagenomic data analysis pipeline by high-performance 

parallel computing. 

 

These 4 input files used for checking the performance of 
analyzing different number (from 7.5 million up to 34.4 
million) and type of sequences of the optimized pipeline. 

 

Table 1. Statistics of test datasets 
 Size(MB) Sequences 16S rRNA 
Input 1 531.86 7,544,950 2406 
Input 2 1576.96 17,591,235 2118 
Input 3 2775.04 34,405,667 6468 
Input 4 2928.64 28,854,628 17119 

 

In the experiment we first measured the speed-up of 
GPU-based HMMER, then tested the speed-up of 
multi-thread megaBLAST, and finally evaluated the overall 
performance improvement of Parallel-META. 

A. HMM Search 
In the experiment of testing of HMMsearch, we ran the 

HMMsearch software with each sequence file as input on both 
CPU and GPU to compare the speed of two different methods. 
The tests were performed on one single node of the GPU 
computing cluster with nVIDIA Tesla C2070 GPU and Intel 
Xeon X5645 CPU. To reduce the effect of system-wise 
randomness and noises on the results, each input data were 
executed three times to get the average results, and the 
average results were compared. From the results (Figure 5), it 
was clear that a speed-up of at least 13 have been achieved on 
each input file.  

 

 
Figure 5.Comparison of running time of CPU & GPU  

 

Then we have compared the speed-up of input file with 
increasing file sizes. From Figure 5, we could observe that for 
input file 1 the speed-up was a little smaller than other input 
files. This might be due to the fact that for the input file 1 the 
data size was small. In this situation, the data transfer between 
Global Memory and RAM became a more significant 
bottleneck than computing. With the increase of the input file 
size, the computation proportion also became larger, and the 
data transfer process has less effect on the whole process. The 
maximum speed-up rate was 14.88. To get the weighted 
average speed-up, we used the formula as below: 

Weighted Average = ∑ 𝑁𝑖 ∗ 𝑆𝑖4
𝑖=1  / ∑ 𝑁𝑖4

𝑖=1   (1) 

Here Ni and Si were the sequence number and speed-up of 
input i, respectively. By this we can get the average speed-up 
of GPU-HMMSearch of 14.71. 

B. MegaBLAST 
In the experiment on megaBLAST step, for each input of 

the megaBLAST, we decomposed the data into sub input files. 
The number of the sub input files has been designed to be the 
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number of CPU threads. The CPU of the computing platform 
is Dual Intel Xeon X5645 with 12 cores and 24 threads in 
total; therefore each input data file was divided into 24 sub 
files, and then each sub problem could be solved on one single 
thread. We also executed each test dataset three times and 
provided the average results for comparison. From the results 
(Figure 6), it was clear that a speed-up of 18 and above have 
been achieved on each input file. We also observed that with 
the increase size of the input data, the speed-up rate also 
increased, though such increase was not significant. 

 

 
Figure 6. Comparison of Normal and Multi-threads megaBLAST on 

input files 

 

In theory, to decompose the input data into 24 parts and 
parallelly solving them will reduce the runtime to 1/24. 
However, for the implementation of the multi-thread 
computing, the time cost of problem decomposition and 
results combination should also be taken into account. In 
addition, as the CPU system only has 12 physical CPU cores, 
if the computing throughput was larger than the CPU 
computing capability, CPU would use the transition algorithm 
to automatically manage these threads and some threads 
maybe executed serially when the CPU was very busy. The 
maximum speed-up was 19.09, and to get the weighted 
average speed-up, we used a formula which was similar to the 
one in HMMSearch part: 

Weighted Average = ∑ 𝑅𝑖 ∗ 𝑆𝑖4
𝑖=1  / ∑ 𝑅𝑖4

𝑖=1    (2) 

 
Figure 7. Total speed-up of Parallel-META compared to single CPU for 

all test datasets. 

 

Here Ri and Si were the 16S rRNA number and speed-up 
of input i, respectively. Therefore, the average speed-up of the 

multi-thread megaBLAST was 19.00. 

C. Overall performance 
Combining these optimization steps, a total speed-up of up 

to 16.87 has been observed compared to traditional 
CPU-based methods. More importantly, on all of these 
datasets, the final results of Parallel-META were identical to 
the results of the original single CPU-based pipeline, and the 
taxonomical analysis results were also consistent with the 
metagenomic data analysis results solely based on 16S rRNA 
[25]. 

 

V. CONCLUSION AND FUTURE WORKS 
Traditional metagenomic data analyses were conducted on 

single PC, based on which handling multiple large 
metagenome datasets is becoming more and more difficult. In 
this work, we have tried to utilize GPU computing and 
multi-core CPU computing to boost the speed of metagenome 
data analysis, and proposed a novel pipeline that enabled the 
parallel processing of large metagenome datasets. 

The Parallel-META pipeline has been applied on several 
metagenomic data analysis projects for human-associated 
bacterial communities, such as oral disease-causing microbial 
community analysis [27]. Several folds of speed-up has been 
observed, while the sensitivity and discrepancy power were 
not compromised. These results have shown that the 
parallelization of current metagenomic data analysis pipeline 
is very promising. With current 10 to more than 15 times of 
speed-up, binning would not be a very time-consuming 
process any more. Therefore some deeper data mining of the 
metagenomic data, such as refined gene regulatory network 
analysis in microbial communities, would be feasible. 

Current Parallel-META pipeline could be improved in 
different ways. Firstly, the megaBLAST search part could 
also be implemented on GPU architecture, so that the 
efficiency of this time-consuming part could be further 
improved. Secondly, as metagenomic datasets are of different 
types and sources, the parameters for analysis would be 
different for each metagenomic dataset. These parameters 
could be trained based on running parallel-META on a large 
amount of different metagenomic datasets, which in turn 
could improve the accuracy of parallel-META. Thirdly, the 
parallel-META framework could be extended to work with 
multiple search engines and databases so as to be applicable to 
different types of metagenomic datasets. Finally, as a 
general-purpose metagenomic data analysis pipeline, 
parallel-META could also incorporate component-based 
binning methods, which might also significantly improve the 
speed for clustering metagenomic short reads [28]. 

Compliment to the high-performance computational 
pipeline is the high-performance database management 
system. The high-performance database management system 
would not only store large amount of results by 
high-performance computational pipeline, but also facilitate 
deeper data mining of metagenome data. Such 
high-performance database management system would also be 
incorporated into the next-generation high-performance 
computational platform for metagenomic data analysis. 
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