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Abstract—Modeling genetic regulatory networks is an impor-
tant research issue in systems biology. Many mathematical models
have been proposed, and among these models, Boolean Network
(BN) and its extension Probabilistic Boolean Network (PBN) are
popular. In this paper we consider the problem constructing
PBNs with gene perturbations. We propose a modified Newton’s
method to get the gene perturbation probability of the captured
problem. Numerical experiments are given to demonstrate both
effectiveness and efficiency of our proposed method.
Keywords: Inversion Problem, Gene Perturbation, Modify
Newton’s Method, Probabilistic Boolean Networks.

I. INTRODUCTION

Mathematical modeling and computational study of genetic
regulatory network are important topics in bioinformatics and
have been studied in a number of literature [3], [7], [10]. Many
mathematical models have been proposed in the literatures,
e.g. directed graphs, Boolean networks (BNs) [1], [2], Prob-
abilistic Boolean Networks (PBNs) [12], [13], Markov chain
model [4], [6], multivariate Markov model [5] and many other
models [15]. Among these models, BN and its extension PBN
have attracted much attention [14].

BN was first introduced by Kauffman [8], [9]. In a BN
model, the gene expression states are quantized to only two
levels: on and off (represented as 1 and 0). The target gene is
predicted by several genes called its input genes via a Boolean
function. When the input genes and the Boolean functions
are given, we say that a BN is defined. Later BNs have
been extended to PBNs (stochastic models). In a PBN, for
each gene, there can be more than one Boolean function and
selection probabilities are assigned to the Boolean functions.
The network dynamics of a PBN can be studied in a Markov
chains framework [12]. The rich theory of Markov chains
are then applicable to the analysis of a PBN. PBNs also
provide a natural way to quantify the relative influence and
sensitivity of genes in their interactions with other genes.
The random gene perturbations are introduced into the PBN
model in [13], where the perturbation describes the random

inputs from the outside. The effect of introducing the random
gene perturbations is to make the network stable and ensure
the existence of the steady-state distribution. Extension to the
context-sensitive PBN model has been introduced by Pal et al.
[11].

The gene perturbation can be applied to gene control
analysis. One can regard the perturbation probability p is the
proportion of time that a control is applied [17]. Suppose we
know the steady-state probability distribution x̃ of a PBN with
gene perturbation. And we would like to perturb the PBN to
another PBN with the steady-state probability distributions x̃,
then one would be interested in knowing the gene perturbation
probability p (or the proportion of time that a control was
applied). Here we consider the inverse problem of PBNs
with gene perturbations, that is to find the gene perturbation
probability p when the transition probability matrix A and
the steady-state probability distribution x̃ of PBNs with gene
perturbations are given. We propose an effective method to
find the perturbation probability p.

The rest of the paper is organized as follows. In Section
2, we give a brief review on the mathematical formulation of
PBNs and PBNs with gene perturbations. We then introduce
inverse problem of PBNs with gene perturbations in Section 3.
Section 4 presents a modified Newton’s method for the compu-
tation of perturbation probability p. Numerical experiments are
given to demonstrate the effectiveness of the proposed method
in Section 5. Finally we give a brief summary to conclude the
paper.

II. REVIEW ON PBNS AND PBNS WITH GENE

PERTURBATIONS

In this section, we give a brief introduction to PBN and
PBN with Gene Perturbations with some examples.

A. A Review of PBNs

In a PBN, each target gene has a number of Boolean
functions can be chosen to be a prediction function. All
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TABLE I
THE TRUTH TABLE OF THE PBN

State v1v2v3 f
(1)
1

f
(1)
2

f
(2)
1

f
(3)
1

f
(3)
2

1 000 0 0 0 0 0
2 001 1 1 1 0 0
3 010 1 1 1 0 0
4 011 1 0 0 1 0
5 100 0 0 1 0 0
6 101 1 1 1 1 0
7 110 1 1 0 1 0
8 111 1 1 1 1 1

c
(i)
j

0.6 0.4 1 0.5 0.5

these Boolean functions can be selected randomly with some
probabilities. We assume that for the kth gene, there are l(k)
possible Boolean functions:

F (k) = {f
(k)
j : for j = 1, . . . , l(k)}

and the probability of choosing function f
(k)
j is c

(k)
j , where

f
(k)
j is a function with respect to the activity levels of n genes.

A PBN is said to be independent if the elements from different
F (k) are independent. For an independent PBN of n genes,
there are at most N =

∏n
k=1 l(k) different possible BNs. This

means that there are totally N possible realizations of the PBN.
Suppose fj is the jth possible realization,

fj = [f
(1)
j1

, f
(2)
j2

, . . . , f
(n)
jn

], 1 ≤ jk ≤ l(k), k = 1, 2, . . . , n.

Assuming the selection process is independent, the probability
to choose the jth realization is given by

pj =

n∏

k=1

c
(k)
jk

, j = 1, 2, . . . , N. (II.1)

In fact, it can be show that transition probability matrix of the
network states is

A =

N∑

j=1

pjAj

where Aj is the transition matrix corresponding to the jth BN.

Example II.1. [12] Suppose we are given a PBN consisting
of three genes V = (v1, v2, v3) and the function sets F (1) =

{f
(1)
1 , f

(1)
2 }, F (2) = {f

(1)
1 } and F (3) = {f

(3)
1 , f

(3)
2 }. Let

the functions be given in Table I. The transition probability
matrix is given by

A =

⎛
⎜⎜⎝

1 0 0 0.2 0 0 0 0
0 0 0 0.2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0.3 0 0 0.5 0
0 0 0 0.3 0 0 0.5 0
0 1 1 0 0 0.5 0 0
0 0 0 0 0 0.5 0 1

⎞
⎟⎟⎠ .

B. A Review of PBNs with Gene Perturbations

In this subsection, we introduce the PBN model with
gene perturbations [13]. Random gene perturbation is the
description of the random inputs from the outside due to
external stimuli and this is meaningful in an open genome
system. The effect of the random gene perturbations is to
make the genes flip from state 1 to state 0 or vice versa. It
makes the underlying Markov chain of the PBN ergodic and
therefore all the 2n states in the system are communicated.

When random gene perturbation is introduced, the transition
probability matrix Ã is then given by

Ã(i, j) = (1 − p)nA(i, j) + P̃n ≡ Â(i, j) + P̃n, (II.2)

where

[P̃n]ij = ph(v(i),v(j))(1 − p)n−h(v(i),v(j))Iv(i) �=v(j) (II.3)

is the perturbation matrix. Here h(v(i), v(j)) is Hamming
distance between the two vectors v(i) and v(j), p is the
perturbation probability of each gene and Iv(i) �=v(j) is the
indicator function:

Iv(i) �=v(j) =

{
1 if v(i) �= v(j),
0 if v(i) = v(j).

From Equation II.2, one can see that the final transition
matrix Ã is the sum of the transition matrix without pertur-
bation A multiplied by (1 − p)n and the perturbation matrix
P̃n. Given a PBN model, the Hamming distance h(v(i), v(j))
between the two vectors v(i) and v(j) is defined. Thus
from Equation II.3, we know that the perturbation matrix
P̃n only depends on the number of genes and the random
gene perturbation probability. When the number of genes and
the gene perturbation probability in different PBNs are same,
the perturbation matrices are same. Xu et al.[17] studied the
properties of the perturbed matrix and proposed expression of
the perturbed matrix.

Theorem II.1. [17] Let P̃n be the 2n × 2n perturbed matrix
of a PBN with n genes. Then we have for n = 1, 2, . . .

P̃n = Q1 ⊗ Q1 ⊗ · · · ⊗ Q1︸ ︷︷ ︸
n terms

−(1 − p)nI2n (II.4)

where
Q1 =

(
1 − p p

p 1 − p

)
.

The Kronecker product ⊗ for two matrices H (n × m) and
B (r × s) is defined as an (rn × sm) matrix

H ⊗ B =

⎛
⎝

H11B · · · H1mB
H21B · · · H2mB

.

.

.

.

.

.

.

.

.

.

.

.
Hn1B · · · HnmB

⎞
⎠ .

III. INVERSE PROBLEM OF PBNS WITH GENE

PERTURBATIONS AND MODIFIED NEWTON’S METHOD

In this section, we first introduce the inverse problem of
PBNs with gene perturbations, and then propose a modified
Newton’s method for computing the perturbation probability p.
The gene perturbation can be applied to gene control analysis.
And the perturbation probability p is the proportion of time
that a control is applied [17]. The inverse problem is to find
the perturbation probability p when the transition probability
matrix A and the steady-state probability distribution x̃ of
PBNs with gene perturbations are known. That is we want
to know the proportion of time that a control is applied in
gene control problem if we want to control a gene changing
to another gene with the steady-state probability distributions
x̃.
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From Theorem II.1, when random gene perturbation is
introduced, the transition probability matrix is given by

Ã = A + P̃n = (1 − p)n(A − I2n) + Q1 ⊗ · · · ⊗ Q1︸ ︷︷ ︸
n terms

.

From Ãx̃ = x̃, we have

Ãx̃− x̃ = [(1−p)n(A− I2n)+(Q1 ⊗ · · · ⊗ Q1︸ ︷︷ ︸
n terms

−I2n)]x̃ = 0.

Furthermore the perturbation probability satisfies 0 ≤ p ≤ 1.
The inverse problem for PBNs with gene perturbation can be
modeled as follows: Let

Qn = Q1 ⊗ · · · ⊗ Q1︸ ︷︷ ︸
n terms

= Q1 ⊗ Qn−1.

Then we have

[(1 − p)n(A − I2n) + (Qn − I2n)]x̃ = 0

and 0 ≤ p ≤ 1.
(III.1)

It is noted that to show that both existence and uniqueness of
the solution for the inverse problem is difficult in theory. As we
know that the inverse problem may have no solution because
the distribution x̃ cannot be the steady-state distribution of the
PBN with gene perturbation for any 0 ≤ p ≤ 1. For example,
suppose transition probability matrix A and the steady-state
probability distribution x̃ of the PBN with gene perturbation
are given as follow:

A =

(
1 0 0.5 0
0 0.2 0 0
0 0 0.5 1
0 0.8 0 0

)
, x̃ = (0.2, 0.1, 0.4, 0.5)T .

Our inverse problem is to solve the following equations,
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.20 − 0.30p + 0.40p2 = 0
−0.08 + 0.66p − 0.28p2 = 0
0.30 − 0.70p + 0.10p2 = 0
−0.42 + 0.34p − 0.22p2 = 0
0 ≤ p ≤ 1.

(III.2)

Because the first equation of (III.2) has no real root, so the
system (III.2) has no real root too. But if we choose x̃ =
(0.9991, 0.0124, 0.0395, 0.0104)T in the above example, one
can get the solution p = 0.01 by using our proposed algorithm,
the modified Newton’s method, which will be introduced later.
The nonlinear system may have more than one solution. It is
very difficulty to show that the existence of the solution.

One possible way to solve the system (III.1) is to solve
every equations in (III.1), then find the common solution(s)
of every equations in (III.1). If these equations have no
common solution(s), then we can conclude that Equations
(III.1) have no solution. Here we call this method a direct
method. But, there are 2n nonlinear equations in (III.1). If the
number of genes, n, is large, this method may require a lot
of computational times. Therefore we have to find an efficient
method to solve (III.1). Before we propose the method, we
give some properties of the nonlinear equations (III.1).

Property III.1. Denote gi(p) = 0, i = 1, 2, 3, . . . , 2n as the

ith equation in (III.1). Let S be a nonempty proper subset of
the set {1, 2, 3, . . . , 2n}, and

G(p) =
∑

i∈S

gi(p).

If the polynomials in (III.1) have a solution p∗ and G(p) is
not always equal to zero for arbitrary 0 ≤ p ≤ 1, then the
equation G(p) = 0, 0 ≤ p ≤ 1 have a solution p∗.

Now the converse-negative proposition of Property III.1 is
the following.

Property III.2. If G(p) = 0(0 ≤ p ≤ 1) has no real solution,
then system (III.1) has no solution.

So if G(p) = 0, 0 ≤ p ≤ 1 have solution, we could solve
the inverse problem by the following step. We choose j �∈ S
and solve gj(p) = 0. Then, if G(p) = 0, 0 ≤ p ≤ 1 and
gj(p) = 0 have no common solution then the inverse have no
solution. Else we choose another set S′ ⊆ {1, 2, . . . , N} and
do the similar step again.

In order to reduce the computational cost and use the
information of the equations in (III.1), one may sum up all
equations in (III.1) and then solve any one of the equations in
(III.1) and find the common solution(s) of the two equations.
But if we sum all equations in (III.1) together, we get nothing
due to the following property.

Property III.3. Let S be a nonempty proper subset of the set
{1, 2, 3, . . . , 2n},

G1(p) =
∑

i∈S

gi(p) and G2(p) =
∑

i�∈S

gi(p).

Then we have G1(p) = −G2(p). That is to say the equation
G1(p) = 0 is equivalent to G2(p) = 0.

Proof: For simplicity, we use some mathematical symbols
in MATLAB. For an arbitrary matrix B ∈ Rm×n, we denote
by

B(r, :), 1 ≤ r ≤ m and

j∑

r=i

B(r, :), 1 ≤ i ≤ j ≤ m

the rth row of matrix B and the summation of row vectors of
matrix B from ith to jth row, respectively.

Since A is the transition probability matrix, we have

2n∑

r=1

A(r, :) = (1, 1, . . . , 1).

By the following the recursive relation

Qn = Q1 ⊗ Qn−1 =

(
(1 − p)Qn−1 pQn−1

pQn−1 (1 − p)Qn−1

)
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we have

2n∑

r=1

Qn(r, :) = (1, 1) ⊗
2n−1∑

r=1

Qn−1(r, :)

...

=

n terms︷ ︸︸ ︷

(1, 1) ⊗ · · · ⊗ (1, 1) ⊗
2∑

r=1

Q1(r, :)

= (1, 1, . . . , 1).

(III.3)

Therefore we have

G1(p) + G2(p)

=

(
2n∑

r=1

[(1 − p)n(A − I2n) + (Qn − I2n)](r, :)

)
x̃

= [(1 − p)n((1, 1, . . . , 1) − (1, 1, . . . , 1))+

((1, 1, . . . , 1) − (1, 1, . . . , 1))] x̃ = 0.

(III.4)

Thus we have G1(p) = −G2(p).

Remark III.1. If we sum up all equations in (III.1), we have

2n∑

i=1

gi(p) = G1(p) + G2(p) = 0,

then we get zero on both sides and this is not useful for solving
p in the inverse problem of PBNs with gene perturbation.

To reduce the computational cost and use the information
of equations (III.1), the best number of equations to be
added together is 2n−1. Because if the number m > 2n−1,
we only use the information of the rest 2n − m(< 2n−1)
equations of (III.1) by Property III.3. We denote F1(p) = 0
as sum 2n−1 equations of III.1. The summation of the rest
2n−1 equations is equivalent to F1(p) = 0. So, and then, we
sum m = 2n−1/2 equations of the rest 2n−1 equations and
denote it by F2(p) = 0. We do this until there are only two
equations and we denote them by F3(p) = 0,. . . ,Fn(p) = 0,
Fn+1(p) = 0. Every nonlinear equation could be solved by
the Newton’s method. We know that if the initial iterate
point is near the true solution, the Newton’s method is
convergent and it converges quadratically [16]. But it is
very difficult to know the approximation of p. So we
choose 0, 0.1, 0.2, 0.3, . . . , 0.9 as initial iterate point for
every Fi(p) = 0, respectively. It is worth noting that we
could randomly choose equations of equations (III.1) to get
Fi(p) = 0. In the method we choose the equations by the
order of the equation in (III.1) in general. This is the step of
the modified Newton’s method.

TABLE II
THE TRUTH TABLE OF THE PBN

State v1v2v3 f
(1)
1

f
(1)
2

f
(2)
1

f
(3)
1

f
(3)
2

1 (0,0,0) 0 0 0 1 0
2 (0,0,1) 1 0 1 1 0
3 (0,1,0) 1 0 0 0 1
4 (0,1,1) 1 1 1 1 0
5 (1,0,0) 0 1 1 0 0
6 (1,0,1) 0 1 1 0 1
7 (1,1,0) 0 1 0 0 1
8 (1,1,1) 1 1 0 1 0

c
(i)
j

0.25 0.75 1 0.6 0.4

Algorithm (The Modified Newton’s Method)
MNewton(A, x̃, ε)
% A is the state transition probability matrix without gene perturbations;
% x̃ is the steady-state probability distributions of PBNs with gene perturbations;
% ε is the termination tolerance of Newton method;
m = 0;
Fn+1(p) = g2n (p); % n is gene number;
tag=1;m=0;i=1;
% Solve Fn+1(p) = 0 using different initial points

by Newton’s method.
Let p = Newton(Fn+1(p) = 0, ε)

While tag==1 and i <= n

Fi(p) =
∑m+2n−i

m+1
gi(p);

m = m + 2n−i ;
q = Newton(Fi(p) = 0, ε);
If p and q have no community values

tag=0;
Return(The solution of Fi(p) = 0 and p have no community value!)
Stop;

End if
Replace p with community values of p and q.
i = i + 1;

End while
If tag==0

Print(The inverse have no solution!)
else

Test the points of p is whether the solution of equations (III.1) or not.
Print the result.

End if
END ALGORITHM

If the inverse problem have solutions, the algorithm iterates
n times and could get the solutions. If the inverse problem
have no solution, the iterate numbers must be smaller than n.
We test the points of p is whether the solution of equations
(III.1) or not in the last ’If’ estimation since the solutions of
Fi(p) = 0 may be not the solution of equations (III.1).

IV. NUMERICAL EXAMPLES

In this section we demonstrate the efficiency of our proposed
algorithm with some numerical examples. We first give a
numerical test by the proposed algorithm in [18], [19] and then
consider a example of a 3-genes network given by Shmulevich
et al. [12]. Finally, we generate a random 128 × 128 sparse
nonnegative matrix as the transition probability matrix of a
PBN to show the effectiveness of the modified Newton’s
method. We compare the modified Newton’s method with
the direct method. All the runs were done in Matlab 2008a
on a CPU 2.1GHZ and 1.7GB memory computer, and the
termination tolerance ε = 1.0e − 12.

In the first numerical example (taken from [19]), we con-
sider a PBN with three genes. The truth table of the Boolean
functions are given in Table II. The state transition probability
matrix is then given by

A =

⎛
⎜⎜⎝

0.40 0 0.45 0 0 0 0.15 0
0.60 0 0.30 0 0 0 0.10 0
0 0.30 0 0 0.25 0.15 0 0
0 0.45 0 0 0 0.10 0 0
0 0 0.15 0 0 0 0.45 0.40
0 0 0.10 0 0 0 0.30 0.60
0 0.10 0 0.40 0.75 0.45 0 0
0 0.15 0 0.60 0 0.30 0 0

⎞
⎟⎟⎠ .

Suppose the perturbation probability p = 0.015, we apply
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TABLE VIII
COMPARE MODIFIED NEWTON’S METHOD WITH DIRECT METHOD

Method Modified Newton’s Direct Method

n size True CPU pM CPU pD

4 16 × 16 0.032 1.7031 0.0320 5.7656 0.0320
5 32 × 32 0.450 2.4375 0.4500 12.9531 0.4500
6 64 × 64 0.040 3.2812 0.0400 37.9687 0.0400
7 128 × 128 0.130 3.5313 0.1300 80.2656 0.1300
8 256 × 256 0.050 5.6875 0.0500 227.6094 0.0500

the modified Newton’s method to get p. The numerical solution
pij of Fi(p) by the Newton’s method are given in Table IV,
and the iterate numbers of every equation by the Newton’s
method are given Table IV. Table V gives the solutions of
every equations in equations III.1 by the Newton’s method
directly. From the Table IV, we know that the numerical solu-
tion by the modified Newton’s method is 0.0150. Comparing
Table IV with Table V, we know that the modified Newton’s
method is effectiveness.

In the second example, we consider a example of a 3-genes
network proposed by Shmulevich et al.[12]. The truth table
and the state transition probability matrix of the PBN are also
given above. Suppose the perturbation probability p = 0.021,
we use the modified Newton’s method to get p.

The numerical solution pij of every Fi(p) = 0 obtained by
using the modified Newton’s method are given in Table VI.
From Table VI, the numerical solution of the inverse problem
of PBNs with gene perturbation is 0.0210 and it recovers p.

In the third example, we generate a random 128×128 sparse
nonnegative matrix as the transition probability matrix of a
7 genes PBN, in this example. The perturbation probability
p = 0.05, the steady-state distribution of the PBN with gene
perturbation can be obtained by the power method. We apply
the modified Newton’s method to get p pretending that p are
not known. The numerical solutions of every Fi(p) = 0 using
different initial iterate points by modified Newton’s method are
given in Table VII. The CPU time of the modified Newton’s
method is 3.8906 seconds. By using the modified Newton’s
method, the gene perturbation probability obtained is 0.0500.

Finally, we generate several random 2n × 2n sparse non-
negative matrices as the transition probability matrices of n
genes PBNs and solve the inverse problem of PBNs with gene
perturbation by the modified Newton’s method or the direct
method, in order to compare numerically the feasibility and
effectiveness of these two methods in the sense of elapsed
CPU time in seconds (denoted as “CPU”). Table VIII gives
the numerical solutions and CPU time by two methods. We
denote “True” as the true gene perturbation probability, “pM”
as the numerical solutions obtained by the modified Newton’s
method, and “pD” as the numerical solutions obtained by the
direct method.

V. CONCLUDING REMARKS

In this paper we consider the inverse problem of PBNs with
gene perturbation and give an effect method for solving the
perturbation probability p. Numerical examples show that our
modified Newton’s method is efficient and effective.
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TABLE III
THE SOLUTION OF EQUATION Fi(p) BY NEWTON’S METHOD.

Initial 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150
F2(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150
F3(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150
F4(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150

TABLE IV
THE ITERATIVE NUMBER OF EQUATION Fi(p) BY NEWTON’S METHOD.

Initial 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1(p) 4 4 4 4 4 4 4 5 5 5
F2(p) 5 7 7 8 8 9 9 9 9 9
F3(p) 4 5 6 6 7 7 9 11 17 14
F4(p) 5 7 7 8 8 9 9 9 9 9

TABLE V
THE SOLUTION OF EVERY EQUATION IN EQUATIONS III.1 BY NEWTON’S METHOD

Initial 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
g1(p) 0.0150 0.0670 0.0670 0.0670 0.0150 0.6368 0.6368 0.6368 0.6368 0.6368
g2(p) 0.0150 0.0150 0.0150 0.4584 0.4584 0.4584 0.4584 0.4584 0.4584 0.4584
g3(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150
g4(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 -1.1572 -1.1572
g5(p) 0.0150 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024
g6(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150
g7(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150
g8(p) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150

TABLE VI
THE SOLUTION pij OF Fi(p) = 0 OF THE SECOND EXAMPLE IN SECTION IV

Initial 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1(p) 0.0210 0.0210 0.0210 0.0210 0.0210 0.0210 0.0210 0.0210 0.0210 0.0210
F2(p) 0.0210 0.0210 0.0210 0.0210 0.0210 0.9059 0.9059 0.9059 0.9059 0.9059
F3(p) 0.0210 0.0210 0.0210 1.5370 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569
F4(p) 0.0210 0.0210 0.0210 0.0210 0.0210 0.9059 0.9059 0.9059 0.9059 0.9059

TABLE VII
THE SOLUTION pij OF Fi(p) = 0 OF THE THIRD EXAMPLE IN SECTION IV

Initial 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
F2(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
F3(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 2.7004 1.2801 1.2801
F4(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 1.0887 1.0887
F5(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 3.7374 1.0934 1.0934 1.0934
F6(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.9899 0.9899 0.9899 0.9899
F7(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 1.0871
F8(p) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.9899 0.9899 0.9899 0.9899
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