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Abstract—In this paper, we study the bifurcation of an epidemic 
model with sub-optimal immunity and saturated 
treatment/recovery rate. Different from classical models, sub-
optimal models are more realistic to explain the microparasite 
infections disease such as Pertussis and Influenza A.  By 
carrying out the bifurcation analysis of the model, we show that 
for certain values of the model parameters, Hopf bifurcation, 
Bogdonov-Takens  bifurcation and its associated homoclinic 
bifurcation occur. By studying the bifurcation curves, we can 
predict the persistence or extinction of diseases.  

Keywords- sub-optimal immunity; saturated 
treatment/recovery rate; Hopf bifurcation; homoclinic bifurcation; 
Bogdonov-Takens bifurcation;  

I.  INTRODUCTION  
In recent years, extensive research has been carried out 

worldwide to develop more realistic epidemic models. For 
compartmental ODE models, several new models for 
incidence rate and treatment/recovery rate have been 
introduced. Subsequent analytical studies show that some of 
these epidemic models possess rich dynamics. 

 In a seminal paper, Ruan and Wang [1] presented a SIR 
epidemic model with the nonlinear incidence rate in the form 
of )1/( 22 aISI +β . In the paper, they consider a reduced 
system and perform an elaborative analysis of equilibrium 
through a quadratic equation. Using transformation to normal 
form, they show that the model undergoes Hopf bifurcation, 
homoclinic bifurcation and Bogdonov-Takens bifurcation.  
Following the paper, a few other papers discuss about the 
same dynamical behavior in the SIR model but with different 
forms of incidence rates such as )1/( 2bIaISI ++β [2] and  

)1/( 22 bIaISI ++β [3].  

Similarly, different treatment/recovery/removal rate are 
considered in order to predict the trend of disease transmission 
more accurately. Unlike the earlier model, the recent models 
may have two endemic equilibria when 10 <R . Hence, the 
eradication of disease depends not only on 0R , but also on the 
initial sizes of all sub-populations. The work in [4] is a 
pioneer work for bifurcation analysis which shows the 
existence of Hopf bifurcation and Bogdonov-Takens 
bifurcation for the model with constant removal rate. After the 
work of [4], various studies of bifurcation for the models with 

other treatment/recovery rate have been carried out. Backward 
bifurcation is shown in a SIR model with piecewise function 
treatment in [5], meanwhile the work in [6] claims the 
existence of Hopf bifurcation in a SIR model with saturated 
treatment rate. Furthermore, in the SIR model with saturated 
incidence rate and saturated treatment rate [7], only backward 
bifurcation is shown to exist, while reference [8] suggests that 
a SIS model with saturated recovery rate possesses 
Bogdonov-Takens bifurcation. However, to date, no analysis 
has been done to study the existence of Bogdonov-Takens 
bifurcation in the SIR model with saturated recovery rate. 
Hence, we intend to further study the bifurcation of the SIR 
model, and we will use the more generalized form of the 
model, namely the sub-optimal immunity model which lies in 
between the SIS and SIR models.  

In this paper, we undertake the bifurcation analysis for an 
epidemic model with sub-optimal immunity and saturated 
treatment/recovery rate. Apart from using the saturated 
treatment/recovery rate, an additional parameter σ is used to 
form the sub-optimal immunity model as in [9]. The new 
model lies in between the SIS and SIR models. The sub-
optimal immunity model will be more appropriate for the 
study of  microparasite infections which usually occurs during 
childhood. After a primary infection, one may get temporary 
immunity (immune protection will wane over time) or partial 
immunity (immunity that may not fully protective). Examples 
of this kind of diseases include Pertussis (temporary immunity) 
and  Influenza (partial immunity) [10].  Different to that in [9], 
we show in this paper that Bogdonov-Takens bifurcation and 
its associated homoclinic bifurcation exist in this sub-optimal 
immunity model. 

Throughout the paper, for sake of simplicity, we choose 
some specific values for the parameters as [2] did. The 
parameter values can be easily replaced by other values as 
long as the conditions are fulfilled. Our analysis was carried 
out for the case where the basic reproduction number 0R  is 
less than unity. Apart from the discussion of Hopf bifurcation, 
we show that the sub-optimal immunity model undergoes 
Bogdonov-Takens bifurcation and its associated homoclinic 
bifurcation.  

II. QUALITATIVE ANALYSIS 
We consider a model with sub-optimal immunity and 

saturated recovery rate 
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SITSIAdt
dS µσβ −+−= )(  

IITSIdt
dI µβ −−= )(  

RITdt
dR µσ −−= )()1(                                                         

(1) 

where all the parameters are positive, A is the recruitment rate 
of susceptible population, β is the disease transmission rate, 
µ is the natural death rate and )(IT is the recovery rate. 

In our analysis at equilibrium point, we assume that 

µ
ARIS =++ , and we take aI

cIvIIT ++= 1)(  in which 

)1( aIc +  and v  are respectively the recovery rate of the 
infected population with and with no treatment.   

. Defining the basic reproduction number 
by ))0((0 T

AR ′+= µµ
β , with aI

cIvIIT ++= 1)( , we obtain 

)(0 cv
AR ++= µµ

β .  Define )()(1 vacvk
AaR ++++= µµβµβ

β .  

Now, we consider the following reduced system 

IvIIRI aI
cIA

dt
dI µβ µ −−−−−= +1)(  

RvIk aI
cI

dt
dR µ−+= + )( 1   ,                      σ−=1k               

(2) 

At equilibrium, 0=dt
dI , 0=dt

dR , and hence from (2), we 

obtain )1(
))1((

aI
caIvkIR +

++= µ . Then by substituting this into the first 

equation in (2)，after some algebra work, we obtain  

[ ] [ ]IvaAakckvIkva )()()( 2 ++−++++ µµµβµβ  

0)( =−+++ Ac βνµµ                                                       
(3) 

Let [ ]2)()( vaAakckv ++−++=∆ µµµβ  

[ ][ ]Ackva βνµµµβ −+++− )()(4  .                          
(4) 

Lemma 1.1 

a) System (2) has a unique positive equilibrium 
),( *** RIE  under any of the following three conditions. 

i)  10 =R  and [ ] 0)()( <++−++ vaAakckv µµµβ , for 

which [ ]
)(

)()(*
µβ

µµµβ
+

++−++−= kva
vaAakckvI , 

)1(
))1((*

*

**

aI
caIvkIR

+

++=
µ

 

ii)  10 >R , for which  

[ ]
[ ])(2

)()(*
µβ

µµµβ
+

∆+++−++−= kva
vaAakckvI , 

)1(
))1((*

*

**

aI
caIvkIR

+

++=
µ

 

iii)  0=∆  and [ ] 0)()( <++−++ vaAakckv µµµβ , for 

which [ ]
[ ])(2

)()(*
µβ

µµµβ
+

++−++−= kva
vaAakckvI , 

)1(
))1((*

*

**

aI
caIvkIR

+

++=
µ

 

b) System (2) has two positive equilibria ),( 111 RIE  and 
),( 222 RIE  if and only if  

10 <R , 0>∆  and [ ] 0)()( <++−++ vaAakckv µµµβ , 
where  

[ ]
[ ])(2

)()(
1 µβ

µµµβ
+

∆−++−++−= kva
vaAakckvI , )1(

))1((
1

1

11
aI

caIvkIR +
++= µ  

[ ]
[ ])(2

)()(
2 µβ

µµµβ
+

∆+++−++−= kva
vaAakckvI , )1(

))1((
2

2

22
aI

caIvkIR +
++= µ  

The Jacobian matrix for system (2) is  

















−




 −+

−−+−−−−+−
=

++

++

µ

βµββ µ

2

2

)1(1

)1(1)(

aI
caI

aI
c

aI
caI

aI
cA

vk

IvRII
M    

The determinant of M is as follows  

( 32
)1(

1 )(2)(det 2 IkvaM
aI

µβ +=
+

 

( ) 22 )()44( IvaAakckva ++−+++ µµµβ  

( )IvakvkcAa )(2)(2 µµµβ ++++−+   

)Ac βνµµ −+++ )(  

The sign of the determinant is determined by the sign of 
32

1 )(2 IkvaS µβ +=  
( ) 22 )()44( IvaAakckva ++−+++ µµµβ  

( )IvakvkcAa )(2)(2 µµµβ ++++−+  

Ac βνµµ −+++ )( . 

Using (3), we get  

( ) 22
1 )()22( IvakckvAaaS +−+−+= µµµβ  

( ) AcIackvkc βνµµµµβ −+++−+++ )(2)(2  

Lemma 1.2 

a)  The unique positive equilibrium ),( *** RIE  in system 
(2) is 

i)    a degenerate equilibrium if 0=∆ , 

[ ] 0)()( <++−++ vaAakckv µµµβ  . 

ii)  a center-type equilibrium if 10 >R  while 0)(tr =M  

b)  The positive equilibrium ),( 111 RIE  in system (2) leads 
to 0)( 11 <IS  while 0>∆ , 10 <R  and 
[ ] 0)()( <++−++ vaAakckv µµµβ . It is thus a saddle 
point.   

c)  The positive equilibrium ),( 222 RIE  in system (2) 
leads to 0)( 21 >IS  while 0>∆ , 10 <R  and 
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[ ] 0)()( <++−++ vaAakckv µµµβ . It is thus a node, focus 
or center. 

III. HOPF BIFURCATION 
In this section, we will show that the model in (2) 

undergoes Hopf bifurcation for some values.       

Let ),1,3,8,8,(),,,,,( 4
1

2
1=kacv µβ for ),( 22 RI and set 

0)(tr =M , then we obtain 2
51=A  while ),1(),( 2

5
22 =RI . 

This happens when 14
3

0 <=R  . 

Replacing I and R by x and y, namely ),(),( 2222 yxRI = , 
we have  

( ) x
x

dt
dx xxyx 31

8
2
51

2
1 9 +−−−−=  

yx x
x

dt
dy −+= +31

22                                                                
(5) 

To translate ),( 22 yx  to the origin, we set 1−= xX , 

2
5−= yY  and rename X,Y as x,y respectively. Then 

( ) )1(31
)1(8

2
5

2
51

2
1 )1(9)1()()1( ++

+−+−++−+−= x
x

dt
dx xxyx  

)()1(2 2
5

)1(31
)1(2 +−++= ++

+ yx x
x

dt
dy                                         

(6) 

Using the Taylor expansion for (6), we have 

),()1( 54
128
273

32
92

8
1

2
1

2
1 yxOxxxxyydt

dx ++−−−+−=  

),( 54
512
273

128
92

32
3

8
17 yxOxxxxydt

dy +−+−+−=            
(7) 

The Jacobian matrix for (7)  at ),( 22 yx  is 













−
−

=
1

1

8
17

2
1

M . 

We thus have 0)(tr =M  and 0)det( 16
1 >=A , and  Hopf 

bifurcation occurs.   

By carrying out transformation xX = , yxY 2
1−= , and 

then renaming X,Y as x,y respectively,  (7) becomes  

),( 54
128
273

32
92

8
9 yxOxxxyxydt

dx ++−+−=  

),( 54
1024
2433

256
812

64
69

16
1 yxOxxxyxxdt

dy ++−+−−=        
(8) 

Making the change of variables xu −= , yv 4= , we 
obtain  

),( 54
128
273

32
9

4
12

8
9

4
1 vuOuuuvuvdt

du +−−++−=  

),( 54
256
2433

64
812

64
69

4
1 vuOuuuvuudt

dv +++−−=                
(9) 

Let 16
1

1 =k  and  

),(),( 54
128
273

32
9

4
12

8
9

1 vuOuuuvuvuF +−−+=  

),(),( 54
256
2433

64
812

64
69

2 vuOuuuvuvuF +++−−= .         
(10) 

We can get the first Liapunov constant, σ , by  





 +++=

∂

∂

∂∂

∂

∂∂

∂

∂

∂
3
2

3

2
2

3

2
1

3

3
1

3

16
1

v
F

vu
F

vu
F

u
Fσ  





 +−





 +−





 ++

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂∂
∂

∂
∂

∂
∂

∂∂
∂

2
2

2

2
1

2

2
2

2

2
1

2

2
2

2

2
2

2
2

2

2
1

2

2
1

2
1

2

116
1

v
F

v
F

u
F

u
F

v
F

u
F

vu
F

v
F

u
F

vu
F

k

         8192
6465= .  

Hence, there is an unstable periodic orbit when A increases 
from 2

51 .  

In the following, we choose A as a bifurcation parameter. 
Let ε+= 2

51A . From (5), we obtain, 

( ) x
x

dt
dx xxyx 31

8
2
51

2
1 9 +−−−−+= ε  

yx x
x

dt
dy −+= +31

22                                                             
(11) 

It is easy to show that  







 ++++= ++++

828
15643649

138
43

828
2021

36
156436

636
35*

2
*
2

22
,),( εεεεεεyx

is the positive equilibrium of the system (11). The Jacobian 
matrix is given by  













−
−=

121

211
*
2

M
MM

x
 where  

2*
2

*
2

*
2

*
2

)31(
24

31
8

224
15*

211 x
x

x
yxM

++
+−−++−= ε  

2*
2

*
2

*
2 )31(

6
31
2

21 2
x
x

x
M

++
−+= .  

Hence, the characteristic equation is given by  

0)1( 2121111
2 *

2 =+−−+ MMM xλλ . 

We thus obtain 
C

BA

m
mm ±

=λ  where  

32 2166156363781339 εεε −−−=Am  

22 365641)367441339( εεεε ++−−−+  

2213313554632195729487932696110 εε −−−=Bm  
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6543 9331213996801491981122408256576 εεεε +−−−
                2246740976826878324397285586( εε −−−+  

2543 365641)1555235510421607776 εεεεε +++−−
     

)365641)647(365641105(72 22 εεεεε ++++++=Cm  

Hence, we have  

i) 0)(Re =ελ  when 0=ε .  

ii) 0)(Im 82944
429981696 ≠=ελ  when 0=ε .  

iii) 05)(Re ≠−=ελεd
d  when 0=ε . 

Theorem 3.1 There exist a 01 >σ  and a function )( 1xεε =  
defined on 11 10 σ≤−< x , which satisfy 0)1( =ε  and when 

0)( 1 <= xεε , system (11) has a unique unstable limit cycle 

which passes through ),( 2
5

1x . 

Fig. 1 shows an unstable orbit for system (2) when 
),1,3,8,8,(),,,,,( 4

1
2
1=kacv µβ  and 52.25=A . 

 

Figure 1.  An unstable periodic orbit when ),1,3,8,8,(),,,,,( 4
1

2
1=kacv µβ  

and 52.25=A . 

IV. BOGDANOV-TAKENS BIFURCATION 
In this section, we will study the Bogdanov-Takens 

bifurcation for some values of the model in (2). 

We choose ),1,,2,(),,,,( 4
1

2
1

2
1=kav µβ for ),( ** RI and let 

0=∆ , and  we obtain 8=c . Setting 19=A , we obtain 
)3,2(),( ** =RI , 0)(trace =M and 0)det( =M . 

Writing I and R as x and y, namely ),(),( **** yxRI = , we 
have  

( )
x

x
dt
dx xxyx

2
11

8
2
1 319

+
−−−−=  

yx
x

x
dt
dy −+=

+ 2
11

2
2
1                                                            

(12) 

To translate ),( ** yx  to the origin, we set 2−= xX , 
3−= yY  and rename X,Y as x,y respectively. Then 

( )
)2(1

)2(8
2
1

2
1)2(3)2()3()2(19

++
+−+−++−+−=
x

x
dt
dx xxyx  

)3()2(
)2(1

)2(2
2
1

2
1 +−++=

++
+ yx
x

x
dt
dy                                     

(13) 

Using the Taylor expansion for (13), we have 

),()1( 54
32
13

8
1

2
1 yxOxxxyydt

dx ++−−+−=  

),( 54
128

13
32
12

8
1 yxOxxxxydt

dy +−+−+−=                 
(14) 

The Jacobian matrix for (14) at ),( ** yx  is 









−
−

=
11
11

M  

We thus have 0)(tr =M  and 0)det( =A . Clearly, the 
matrix M has two zero eigenvalues, and thus the Bogdanov-
Takens bifurcation occurs.   

By carrying out transformation xX = , yxY −= , and 
renaming X,Y as x,y respectively,  (14) becomes  

),( 54
32
13

8
1

2
12

2
1 yxOxxxyxydt

dx ++−+−=  

),( 54
128

53
32
5

2
12

8
3 yxOxxxyxdt

dy ++−+−=                  
(15) 

In order to obtain the canonical normal form, we follow 
the procedure as in [11]. Setting 2

4
1 xxu −= , 2

2
1 yyv −= , 

we obtain  

),( 3vuOvdt
du +=  

),( 32
8
3

2
1 vuOuuvdt

dv +−=                                               
(16)  

In the following, we find the universal unfolding of 
)3,2(),( ** =RI by choosing parameters A and c as bifurcation 

parameters in a small neighbourbood of 
),1,,2,(),,,,( 4

1
2
1

2
1=kav µβ . Let 119 λ+=A  and 28 λ+=c . 

We have  

( )
x

x
dt
dx xxyx

2
1
2

1
)8(

12
1 319

+
+−−−−+= λλ , 

yx
x
x

dt
dy −+=

+
+

)1(4
)8(

2
1

2
1
2λ                                                        

(17) 
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To translate ),( ** yx  to the origin, we set 2−= xX , 
3−= yY  and rename X,Y as x,y respectively. Then 

( ) )2(3)2()3()2()19( 12
1 +−++−+−+= xxyxdt

dx λ     

)2(1
)2)(8(

2
1
2

++
++−

x
xλ  

( ) )3()2(
)2(14
)2)(8(

2
1

2
1
2 +−++=

++
++ yx

x
x

dt
dy λ                                  

(18) 

Using the Taylor expansion for (18), we have 
2

216
1

2
1

12
1

24
1

21 )1( xxyydt
dx λλλλλ +−++−+−−=  

),()()( 54
2256

1
32
13

264
1

8
1 yxOxx +++−−+ λλ  

2
216

1
8
1

216
1

24
1 )()1( xxydt

dy λλλ −−+++−=                                                                                       

),()()( 54
21024

1
128

13
2256

1
32
1 yxOxx +−−+++ λλ  (19) 

Let xX = ,  
2

216
1

2
1

12
1

24
1

21 )1( xxyyY λλλλλ +−++−+−−=  

),()()( 54
2256

1
32
13

264
1

8
1 yxOxx +++−−+ λλ  

and rename X,Y as x,y respectively. Then we obtain  

ydt
dx =  

),,( 32
54

2
3210 λyxOyaxyaxayaxaadt

dy ++++++=  

where 24
5

10 λλ −=a , 216
7

12
1

1 λλ −=a , 24
1

2 λ=a , 8
3

3 −=a , 

2
1

4 −=a  and 2
1

5 =a .  

By setting 
4

2
a
axX +=  (i.e. 22

1 λ−= xX ) and rewriting X 
as x, we have  

ydt
dx =  

),,( 32
54

2
310 λyxOyaxyaxaxbbdt

dy +++++=   

where 2
216

5
214

1
24

5
10 λλλλλ −+−=b , 216

13
12

1
1 λλ −=b , 

8
3

3 −=a , 2
1

4 −=a  and 2
1

5 =a .  

By rewriting the equation using the new time τ  with 
τdxadt )1( 5−=  (i.e. τdxdt )1( 2

1−= ) and then rewriting τ  
as t , we obtain  

)1( 2
1 xydt

dx −=  

( )),,()1( 32
54

2
3102

1 λyxOyaxyaxaxbbxdt
dy +++++−=  

Carrying out the transformation xX = , )1( 2
1 xyY −= , 

and then renaming X,Y as x,y respectively, we have  

ydt
dx =  

),,( 3
4

2
210 λyxOxyaxcxcbdt

dy ++++=   

where 2
216

5
214

1
24

5
10 λλλλλ −+−=b , 216

7
12

1
1 λλ +−=c , 

8
3

2 −=c  and 2
1

4 −=a .  

By the change of variables xX c
a

2

2
4= , yY

c
a

2
2

3
4= , ta

c
4

2=τ  , 

and then renaming X, Y,τ   as x, y, t respectively, we obtain  

ydt
dx =  

),,( 32
21 λττ yxOxyxxdt

dy ++++=  

 where 3
2

2
40

1 c
ab=τ and 2

2

2
41

2 c
ac=τ .  

By putting 2
24

1
1 ττ =  and simplifying it, system (12) has a 

saddle-node bifurcation, and the saddle-node bifurcation 
curve is given by 

0716416480384 2
2

2
12121 =+−++− λλλλλλ  

Theorem 4.1 At the Bogdanov point, the model (2) with 
),1,,2,(),,,,( 4

1
2
1

2
1=kav µβ , 19=A  and 8=c , in a small 

neighbourhood of )3,2(),( ** =RI , has the following 
bifurcation : 

i)  saddle-node bifurcation: the saddle-node bifurcation 
curve is given by  

0)(716416480384 22
2

2
12121 =++−++− λλλλλλλ O  , 

ii) Hopf bifurcation : the Hopf bifurcation curve is given 
by  

0)(542016 22
22121 =+−+− λλλλλλ O , 

iii) Homoclinic bifurcation : the homoclinic bifurcation 
curve is given by  

0)(26196318750600 22
2

2
12121 =+++−+− λλλλλλλ O . 

Fig. 2 shows the homoclinic bifurcation when  05.01 =λ , 
90399713896.02 =λ  for system (17). 
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Figure 2.  Homoclinic bifurcation when  05.01 =λ , 90399713896.02 =λ  

From the result in Theorem 4.1, we study the bifurcation 
curves near the origin on the ),( 21 λλ  plane. The curves pass 
through the origin and there are four regions separated by 
these bifurcation curves. If we take near 2.01 =λ  , we obtain 
the region as in Figure 3. 

The Jacobian matrix for system (17) is  
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



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Figure 3.  The four typical regions separated by the bifurcation curves. The 
horizontal axis is the 1λ -axis and  the vertical axis is the 2λ -axis 

If we take 2.01 =λ , after some simple calculation, we 
obtain the result as shown in the Table 1 below.  

TABLE I.  THE CLASSIFICATION OF EQUILIBRIUM POINTS 

 2λ  iE  )(det M  )(tr M  Q Conclusion 

I 0.1590 1E  (-) (+) (+) Unstable saddle 

  2E  (+) (-) (-) Stable focus  

II 0.1596 1E  (-) (+) (+) Unstable saddle  

  2E  (+) (-) (-) Stable focus  

III 0.1602 1E  (-) (+) (+) Unstable saddle  

  2E  (+) (+) (-) Unstable focus  

IV 0.1610 No positive equilibrium 

                                                            ( ) ( ))(det4)(tr 2 MMQ −=  
 

When ),( 21 λλ  lies in region I as in Figure 3, there is no 
limit cycle or homoclinic orbit and 2E  is a stable focus. If  

),( 21 λλ  lies in region II, there is a unique limit cycle inside 
the positive orbits of system (17) and the orbits approach 

2E as t tends to infinity. In this situation, the disease is 
persistent inside the cycle. When ),( 21 λλ  lies in region III, 

2E  becomes an unstable focus and the limit cycle disappears. 
In this stage,  at finite time, any positive orbits, except for the 
two equilibria 1E and 2E , will tend to the axis 0=R , i.e. the 
disease becomes extinct. When ),( 21 λλ  lies in region IV, 
there is no positive equilibrium and the disease will disappear. 
The classification of the equilibrium points can be easily 
checked by the eigenvalues of the Jacobian matrix, M.  

V. CONCLUSION 
 

In this paper, we have proposed an epidemic model with 
sub-optimal immunity and saturated treatment/recovery rate. 
Through global analysis, the system in (2) has been shown to 
have rich dynamical behaviour including Hopf bifurcation, 
Bogdonov-Takens bifurcation and its associated homoclinic 
bifurcation. We also show that when the bifurcation 
parameters are within certain regions, the disease will be 
persistent or extinct. 
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