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Abstract—In this paper, we study the bifurcation of an epidemic
model with  sub-optimal immunity and saturated
treatment/recovery rate. Different from classical models, sub-
optimal models are more realistic to explain the microparasite
infections disease such as Pertussis and Influenza A. By
carrying out the bifurcation analysis of the model, we show that
for certain values of the model parameters, Hopf bifurcation,
Bogdonov-Takens bifurcation and its associated homoclinic
bifurcation occur. By studying the bifurcation curves, we can
predict the persistence or extinction of diseases.
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L INTRODUCTION

In recent years, extensive research has been carried out
worldwide to develop more realistic epidemic models. For
compartmental ODE models, several new models for
incidence rate and treatment/recovery rate have been
introduced. Subsequent analytical studies show that some of
these epidemic models possess rich dynamics.

In a seminal paper, Ruan and Wang [1] presented a SIR
epidemic model with the nonlinear incidence rate in the form

of BSI*/(1+al?) . In the paper, they consider a reduced

system and perform an elaborative analysis of equilibrium
through a quadratic equation. Using transformation to normal
form, they show that the model undergoes Hopf bifurcation,
homoclinic bifurcation and Bogdonov-Takens bifurcation.
Following the paper, a few other papers discuss about the
same dynamical behavior in the SIR model but with different

forms of incidence rates such as ASI/(1+al +bl 2) [2] and
BSI? [(1+al +bI*)[3].

Similarly, different treatment/recovery/removal rate are
considered in order to predict the trend of disease transmission
more accurately. Unlike the earlier model, the recent models
may have two endemic equilibria when R, <1. Hence, the

eradication of disease depends not only on R, , but also on the

initial sizes of all sub-populations. The work in [4] is a
pioneer work for bifurcation analysis which shows the
existence of Hopf bifurcation and Bogdonov-Takens
bifurcation for the model with constant removal rate. After the
work of [4], various studies of bifurcation for the models with
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other treatment/recovery rate have been carried out. Backward
bifurcation is shown in a SIR  model with piecewise function
treatment in [5], meanwhile the work in [6] claims the
existence of Hopf bifurcation in a SIR model with saturated
treatment rate. Furthermore, in the SIR model with saturated
incidence rate and saturated treatment rate [7], only backward
bifurcation is shown to exist, while reference [8] suggests that
a SIS model with saturated recovery rate possesses
Bogdonov-Takens bifurcation. However, to date, no analysis
has been done to study the existence of Bogdonov-Takens
bifurcation in the SIR model with saturated recovery rate.
Hence, we intend to further study the bifurcation of the SIR
model, and we will use the more generalized form of the
model, namely the sub-optimal immunity model which lies in
between the SIS and SIR models.

In this paper, we undertake the bifurcation analysis for an
epidemic model with sub-optimal immunity and saturated
treatment/recovery rate. Apart from using the saturated
treatment/recovery rate, an additional parameter o is used to
form the sub-optimal immunity model as in [9]. The new
model lies in between the SIS and SIR models. The sub-
optimal immunity model will be more appropriate for the
study of microparasite infections which usually occurs during
childhood. After a primary infection, one may get temporary
immunity (immune protection will wane over time) or partial
immunity (immunity that may not fully protective). Examples
of this kind of diseases include Pertussis (temporary immunity)
and Influenza (partial immunity) [10]. Different to that in [9],
we show in this paper that Bogdonov-Takens bifurcation and
its associated homoclinic bifurcation exist in this sub-optimal
immunity model.

Throughout the paper, for sake of simplicity, we choose
some specific values for the parameters as [2] did. The
parameter values can be easily replaced by other values as
long as the conditions are fulfilled. Our analysis was carried
out for the case where the basic reproduction number R, is
less than unity. Apart from the discussion of Hopf bifurcation,
we show that the sub-optimal immunity model undergoes
Bogdonov-Takens bifurcation and its associated homoclinic
bifurcation.

II. QUALITATIVE ANALYSIS

We consider a model with sub-optimal immunity and
saturated recovery rate
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= A-BSI+0T(I)— 1S
= SI~T(D)~ ud

R (1= )T (1) - 4R
(1)

where all the parameters are positive, 4 is the recruitment rate
of susceptible population, S is the disease transmission rate,

4 is the natural death rate and 7'(7) is the recovery rate.

In our analysis at equilibrium point, we assume that
S+1+R=% , and we take T(/)=vl+

1+ 7 in which
¢/(1+al) and v are respectively the recovery rate of the

infected population with and with no treatment.

Defining  the  basic  reproduction  number
__pm - _ : -
by RO —m , with T(I) =vl+ 1-:—{1[ , W€ obtain
A PAa
Ry = ey - Define Ry = e vty
Now, we consider the following reduced system
dl _ pA
=P~ IR - vl =i =l
k(v]+1+a1) UR k=1-0o
(2)
At equilibrium, £ =0, 22—, and hence from (2), we
kI (v(1+al)+c)

obtain R = . Then by substituting this into the first

u(1+al)
equation in (2), after some algebra work, we obtain

[Batev+ i)JI* + [Bkv + ke + 1= Aa) + pa(p + )]l

+u(pu+v+c)—p4=0
3)

Let A:[,B(kv+kc+y—Aa)+,ua(,u+v)]2

—dlpatkv+ ) uu+v+c)- pA]
“4)
Lemma 1.1
a) System (2) has a unique positive equilibrium
E" v 5 R*) under any of the following three conditions.

1) Ry=1 and [ﬁ(kv+kc+,u—Aa)+ua(y+v)]<O,for

K™ (v(+al " )+c)

which I _ [ﬂ(kv+kc+/1 Aa)+,ua(,u+v)] R*:
u(l+al™)

Pakv+pr) ’

i) Ry >1, for which

k" (v(1+al *)+c)

I* _ —[ﬁ'(kv+kc+/4—Aa)+;Ja(,tz+v)]+\/Z R* _
’ ul+al®)

B 2| faChv+p)]

i) A=0 and [ﬁ(kv+kc+,u—Aa)+,ua(,u+v)]<O for

_ BlUvtke+ p—Ada)+ pa(u+v)] _ K" (v(1+al")+c)
which I = 2] Ba(kv+ )] R = u(l+al’)

b) System (2) has two positive equilibria E\(I,,R,) and
Ey(I,,R,) if and only if

Ry<1l, A>0 and [ﬂ(kv+kc+,u—Aa)+,ua(,u+v)]<0
where

kI, (v(1+al|)+c)
u(l+aly)

7 = —[B(kv+ke+ p—Aa)+ pa(u+v) |-V A R =
- 2 BaCkv+ )] >

_ K (v(I+al,)+c)

I, = Apthvthe+ u—Aa)+pa(usv) A R

2 paChv+ )] u(l+al,)
The Jacobian matrix for system (2) is
_ _ cal _
|G R e i A
- oy ——— cal _
I+al  (1+al)? H

The determinant of M is as follows

e o+ o1

det(M) =

+(Ba@h + ke +4p - Aa)+ pa® (u+ )
+(28(u— Aa+ ke + kv) + 2ua(v + @)l
+pu(u+v+c)— pA)
The sign of the determinant is determined by the sign of
S, =2a* (kv + w1
+(Ba(@ho + ke +4p - Aa) + pa® ()12
+(2ﬂ(y—Aa+kc+kv)+2/m(v+lu))[
+u(u+v+e)=pA.
Using (3), we get
Sy = (ﬂa(z‘la+2kv—kc+2y)—w2(#+v))12
+(28(u + ke +kv) = 2cua)l + p(u+v +c)— pA
Lemma 1.2

a) The unique positive equilibrium E*(I *,R*) in system
(2) is
1) a degenerate equilibrium if A =0,

(B + ke + 11— Aa) + pa(u+v)]< 0 .
i) a center-type equilibrium if R, >1 while tr(M) =0

b) The positive equilibrium E,(I},R,) in system (2) leads

fo S(1)<0 while A>0 Ry <1 and
[ﬁ(kv+kc+ 1= Aa)+ pa(u+ v)]< 0. It is thus a saddle
point.

c) The positive equilibrium E,(I,,R,) in system (2)

leads to  S,(I;)>0 while A>0 Ry<1l and
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[,H(kv+kc+,u—Aa)+,ua(p+v)]<0.Itis thus a node, focus dv _ 1 69,2 _ 4 81,3 1243, 4+O(|u v| )

ar ~aU Tt 64 256
or center.
€
III.  HOPF BIFURCATION Let k = and
In this section, we will show that the model in (2)
undergoes Hopf bifurcation for some values. Fu,v)= u +1 uv—%zf _ﬁ” + O(|u v| )

Let (ﬂ,v,c,a,,u,k)z(%,8,8,3,1,%) for (IZ’RZ) and set

F,(u, v)——ﬁu2 uy +3Ly3 4 28,4 +0(|u v| )
tr(M) =0, then we obtain A:% while (12,R2):(1,%) . (10)

64 256

This happens when Ry =4 <1 . We can get the first Liapunov constant, o , by
Replacing 7 and R by x and y, namely (/,,R,) =(x,,¥,), _1|2R 4 F, . o°F, + °F,
we have ou® oudv? ou*ov o’
dx _ L(ﬂ_ Xx— y)x Ox — | | @R (R | R R (& | 8K\ 0K &°F , 0°F &°F
dt 2 l+3x 1 1 + 21 2 2 +22 |- 21 22 + 21 2z
16\/7 oudv \ ou? ov oudv \  ou? ov ou” ou ov- ov
_ 6465
=2x+75 -y T 8192

(5)

To translate (x,,y,) to the origin, we set X =x-1,

Hence, there is an unstable periodic orbit when A4 increases

from 521
Y=y —% and rename X,Y as x,y respectively. Then

In the following, we choose 4 as a bifurcation parameter.

8(x+1 _ 51 i
%:%(%_(X”Ll)_(y+%)kx+1)_9(x+l)_ 1+(3)E;+)1) Let 4=+ . From (5), we obtain,
dx _ 1 (51 -
= 2(x+ 1)+ sy~ (7 +3) E‘z( +e—x-yh-ox o

© Gy

Using the Taylor expansion for (6), we have a 1)

5 .
%z—%y+(l——y)x——x —%x +ﬁx +O(|x,y| ) It is easy to show that
3662 +564e+1 2021 | 43s | 4936’ +564e+1

dy -y + —x—gx +128x3—mx +0(|x y| ) (X3, 12) = ( tet 36 s Tt 828 j

(7 is the positive equilibrium of the system (11). The Jacobian

The Jacobian matrix for (7) at (x,,y,) is matrix is given by

X
Yo 1 _% M = My, ~ 2 | where
=l M, -1
3
24x,
We thus have tr(M) =0 and det(4) = 6> 0, and Hopf My, = —x2 + +__y72_ 1+§x2 + (1+3x£)2
bifurcation occurs. My =2+—2— 6x;

) . 143x;  (143x3)°
By carrying out transformation X =x, ¥ = x—— y, and

then renaming X, Y as x,y respectively, (7) becomes Hence, the characteristic equation is given by

de _ .9 9 3,27 5

=Y 8x Xy -35x +128x +0(|x,y|)

1,692 _ 81 243 3 We thus obtain A4 = 243”2 where
i T T6 X T X T 256x BT +O(|x,y|) me

®)

Making the change of variables u=-x, v=4y , we

obtain +(—1339 - 7445 — 3652 Y1+ 564¢ + 365>

di 3
M= — v gud +fuv =’ = Fout + O(u, ) my =—32696110—19572948792¢ —13313554632¢>

m, =1339-36378s — 61565 —2165>
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—2408256576&> —149198112* —1399680¢° +93312&° % =

+(~397285586 — 8268783245 — 2467409765*

1 2x
2T Y

(12)

3 4 W1+ 564 + 3652 - L
~216077765” ~355104¢" +155526"W1+5645+366> T randlate (x*.p") to the origin, we set X =x—2.

me = 721105+ 5645 +365% + (47 + 661 + 564¢ + 3657)

Hence, we have
i) ReA(g) =0 when £ =0.
/429981696

if) Im A(e) = 42281

#0 when € =0.
iii) Re-L A(s)=-5#0 when ¢=0.

Theorem 3.1 There exist a o; >0 and a function & = &(x;)
defined on 0<x,—1<0,, which satisfy €(1)=0 and when
e=¢(x) <0, system (11) has a unique unstable limit cycle

which passes through (xl,%).

Fig. 1 shows an unstable orbit for system (2) when
(B.v,c,a, u,k) = ($.8.83,1,7) and 4=25.52.

Figure 1. An unstable periodic orbit when (8, v,c,a, 11,k) = (%,8,8,3,1,%)

and 4=25.52.

IV. BOGDANOV-TAKENS BIFURCATION
In this section, we will study the Bogdanov-Takens
bifurcation for some values of the model in (2).
We choose (S, v,a,,u,k):( 2,; J1,4) for (I",R") and let
A=0, and we obtain ¢=8. Setting 4=19, we obtain
(I",R")=(2,3), trace(M)=0and det(M)=0.

Writing / and R as x and y, namely (1*,R*) = (x*,y*) , We
have

—=%(l9 x-— y)x 3x-

dt 1+ X

Y = y—3 and rename X,Y as x,y respectively. Then

. 8(x+2
&= 19-(r+ D)~ (r+ 3+ D=3+ )~ 2
dy _1 2(x+2)

@ 2(x+2)+1+%(x+2) +3)

13)
Using the Taylor expansion for (13), we have
—y+(1—7y)x——x +35x +0(|x y| )

dy
dar

(14

The Jacobian matrix for (14) at (x*, y*) is

1 -1
M =
We thus have tr(M)=0 and det(4)=0 . Clearly, the

matrix M has two zero eigenvalues, and thus the Bogdanov-
Takens bifurcation occurs.

=—y+x—§x +3—2x —mx +0(|x y|)

By carrying out transformation X =x, Y=x-y, and
renaming X, Y as x,y respectively, (14) becomes

%:y——x +1 xy——x +35X +O(|x y|)

dy
dt

(15)

In order to obtain the canonical normal form, we follow

the procedure as in [11]. Setting u =x-+x*, v=y-1y?,

——x +1 xy——x +12 X +O(|x,y|5)

8

we obtain
du 4 O(|u v|3)
dt ?

%ziuv— u +O(|u v| )

(16)

In the following, we find the universal unfolding of
04 *,R*) = (2,3) by choosing parameters 4 and c as bifurcation
parameters in a

(ﬂyvaasﬂak) = (%sza; :17 ‘1‘)

small neighbourbood of
Let A=19+4 andc=8+4, .

We have
1 (8+4,)x
dt_5(19+ﬂ’1 x—y)x—3x—ﬁ,
dy 1 B)x
dt 27 T 4y
(17)
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To translate (x*,y*) to the origin, we set X =x—-2,
Y = y—3 and rename X,Y as x,y respectively. Then

e = L9+ )~ (x+2) = (y+3)Nx +2) = 3(x +2)

_ (B+A)(+2)
1+3(x+2)
(8+4)(x+2)
dt 2 7D+ A(1+1(x+2) (y+3)

(18)

Using the Taylor expansion for (18), we have
L=l -y+(—th+1A +1——y)x+ T /12x

1 1
ts

3,1
)X +(37+ 256

_1/12 v+ (s /12+1)x+(——— /12)x2

+ (5 + 5k )X + (e —E )t + O, y| ) (19)

256 1024

Let X =x,

Y=4-4,- y+(——ﬂz+ /11+1—2y)x+ /lzx

(g gAY + (Gt ok

and rename XY as x,y respectively. Then we obtain
dx _
ar =Y

dy 2 2 3
ST =aytax+ay+azx” +agxy+asy +O(|x,y,ﬂ|)

— 3 _5 =1, _7 =1 =_3

where ag =4 —34, ay =54~ aa =74, a3=—%,
__1 _1
a4——3 andas—z.

By setting X = x+ Z—i (le. X=ux —%/12) and rewriting X
as x, we have

dx

@Y
D by +b 2 24 0(x, v, A
- =by +hx+asx” +auxy+asy” + (x, v, A)
5 1 5 92 1 13
where bozﬂ,]—zﬂ?‘f'zﬂl/lz—ﬁﬂq , blz_ﬂ’l_ﬁﬂﬁ ,
__3 _ 1 1
a3——§, Cl4——7 and aS_E'

By rewriting the equation using the new time 7 with
dt =(1-asx)dr (i.e. dt = (1—%x)dr) and then rewriting 7

as ¢, we obtain
=y(1-5x)
dy =(1- x)(bo +bx+ a3x +a,uxy + asy + O(|x y,ﬂ,| ))

Carrying out the transformation X =x, ¥ = y(l—%x) ,

and then renaming X,Y as x,y respectively, we have

dx _

ai =Y

dy 2 3

- =by+ax+coyx +a4xy+0(|x,y,ﬁ )

5 1 5 92 1 7

where by =4 —3h+yhb =k . a=—g3h+ih

__3 __1
C2——§ and 614——3.

2 ?
By the change of variables X =<x, ¥ = ‘2‘ y.r=32t,
2 €2
and then renaming X, Y,z asx, y, ¢ respectively, we obtaln
dx _
a =Y

3
%:rl+12x+x2+xy+0(|x,y,l| )

2 2

_ Doy _ G194
=—5-and7, ==
7

2

where 7,

By putting 7, = 1'2 and simplifying it, system (12) has a

saddle-node bifurcation, and the saddle-node bifurcation
curve is given by

—3844, + 4804, +164,4, — 6422 + 7122 =0

Theorem 4.1 At the Bogdanov point, the model (2) with
(B,v,a, i, k) = (+,2 ,;,1,‘1‘) A=19 and c=8,

neighbourhood of (I R’ )=023) , has
bifurcation :

in a small

the following
i) saddle-node bifurcation: the saddle-node bifurcation
curve is given by
— 3844, +4804, +164,4, — 6422 + 7122 + O(A[) =0 ,

ii) Hopf bifurcation :
by

the Hopf bifurcation curve is given

164, — 204, +44,4, — 523 +O0(A[) =0,

iii) Homoclinic bifurcation : the homoclinic bifurcation

curve is given by
— 6002, +7504, — 31842, + 963 + 26123 +0(4") =0.

Fig. 2 shows the homoclinic bifurcation when A, =0.05,
A, =0.03997138969 for system (17).
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Figure 2. Homoclinic bifurcation when 4; =0.05, A, =0.03997138969

From the result in Theorem 4.1, we study the bifurcation
curves near the origin on the (4;,4,) plane. The curves pass
through the origin and there are four regions separated by
these bifurcation curves. If we take near 4, = 0.2 , we obtain
the region as in Figure 3.

The Jacobian matrix for system (17) is

M =X
M=|"" 2| where
M, =m(— 253 4 (54 2y — y)x + (42 + 44— dy)x
—-84, —12-4y), and
My =t (¥ + 4x+24, +20).
1.164- ?’“'
Ny ”
Ry
N P
o162 ,/_/// HL
IV‘/‘I' //
.15 ’,f""//
A i/’i
0.158 /"/’
N ’/
e

015 " g {a5 0198 02 [E T

Figure 3. The four typical regions separated by the bifurcation curves. The
horizontal axis is the A; -axis and the vertical axis is the A, -axis

If we take A4, =0.2, after some simple calculation, we
obtain the result as shown in the Table 1 below.

TABLE L THE CLASSIFICATION OF EQUILIBRIUM POINTS
A E; det(M) tr(M) 0] Conclusion
1 0.1590 E (-) +) (G Unstable saddle
E, ) ) ) Stable focus
11 0.1596 E ) (+) (+) Unstable saddle
E, (+) ) ) Stable focus
1 0.1602 E ) ) ) Unstable saddle
E, ) ) ) Unstable focus
v 0.1610 No positive equilibrium

0 = (tr(M))* - 4(det(M))

When (4;,4,) lies in region I as in Figure 3, there is no
limit cycle or homoclinic orbit and E, is a stable focus. If
(4,4,) lies in region II, there is a unique limit cycle inside
the positive orbits of system (17) and the orbits approach
E, as t tends to infinity. In this situation, the disease is

persistent inside the cycle. When (4;,4,) lies in region III,

E, becomes an unstable focus and the limit cycle disappears.

In this stage, at finite time, any positive orbits, except for the
two equilibria E;and E,, will tend to the axisR =0, i.e. the

disease becomes extinct. When (4,,4,) lies in region IV,

there is no positive equilibrium and the disease will disappear.
The classification of the equilibrium points can be easily
checked by the eigenvalues of the Jacobian matrix, M.

V. CONCLUSION

In this paper, we have proposed an epidemic model with
sub-optimal immunity and saturated treatment/recovery rate.
Through global analysis, the system in (2) has been shown to
have rich dynamical behaviour including Hopf bifurcation,
Bogdonov-Takens bifurcation and its associated homoclinic
bifurcation. We also show that when the bifurcation
parameters are within certain regions, the disease will be
persistent or extinct.
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