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Abstract—Identifying corresponding genes (orthologs) in dif-
ferent species is an important step in genome-wide comparative
analysis. In particular, one-to-one correspondences between genes
in different species greatly simplify certain problems such as
transfer of function annotation and genome rearrangement
studies. Positional homologs are the direct descendants of a single
ancestral gene in the most recent common ancestor and by defi-
nition form one-to-one correspondence. In this work, we present
a simple yet effective method (BBH-LS) for the identification
of positional homologs from the comparative analysis of two
genomes. Our BBH-LS method integrates sequence similarity and
gene context similarity in order to get more accurate ortholog
assignments. Specifically, BBH-LS applies the bidirectional best
hit heuristic to a combination of sequence similarity and gene
context similarity scores. We applied our method to the human,
mouse, and rat genomes and found that BBH-LS produced
the best results when using both sequence and gene context
information equally. Compared to the state-of-the-art algorithms,
such as MSOAR2, BBH-LS is able to identify more positional
homologs with fewer false positives.

I. INTRODUCTION

Genome-wide comparative analysis of different species is
only possible if we can identify conserved elements across
species boundaries [1]. For many studies, the elements under
consideration is the set of protein coding genes. Therefore,
the identification of corresponding genes (orthologs) between
different species is an important step in any genome-wide com-
parative analysis. In particular, one-to-one correspondences
between genes in different species simplify certain applica-
tions such as transfer of function annotation [2] and genome
rearrangement studies [3].

Consider a set of extant genomes and their most recent
common ancestor (MRCA). For each gene in the MRCA,
there is at most one direct descendant of the gene in each
of the extant genomes. The direct descendants of a gene in
the MRCA form a set of positional homologs [4]. A single
ancestral gene may have multiple descendants due to gene
duplication, or no descendants because of gene loss. In the
case of gene duplication, we distinguish between the gene that
remains in the original location and the copy inserted into a
new location. The gene that retains its ancestral location is the
direct descendant.

Positional homologs represent a set of genes in one-to-
one correspondence with each other where each member
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Fig. 1. The gene tree for three genes g, h, and h′ that descended from a single
ancestral gene in the most recent common ancestor (MRCA) of genome G and
H . Gene g is orthologous to both h and h′, but only g and h are positional
homologs because h is the original gene that was duplicated to get h′. Genes
h and h′ are paralogs as they are separated by a duplication event.

best reflect the original location of the ancestral gene in the
MRCA. Similar concepts in the literature include exemplars
[3], ancestral homologs [5], and main orthologs [6]. Orthologs
are genes separated by a speciation event, while paralogs are
genes separated by a duplication event. Orthologs and paralogs
together make up the set of homologs [7]. Positional homologs
are a subset of orthologs. Figure 1 shows the gene tree for three
genes found in two genomes and it illustrates the concept of
positional homologs, orthologs, and paralogs.

The problem of finding the set of positional homologs
between two genomes is known as the ORTHOLOG ASSIGN-
MENT problem [6]. Current methods for the ORTHOLOG
ASSIGNMENT problem fall into three categories: distance
minimization, similarity maximization, and rule-based. Dis-
tance minimization methods relies on the parsimony principle.
They assume that the removal of all the genes except for the
positional homologs minimizes the genomic distance (usually
some form of edit distance with genomic operations) between
two genomes. Genomic distance measures such as the reversal
distance [8] and breakpoint distance [9] have been considered
using a branch-and-bound approach [3] as the corresponding
computational problems are NP-hard [10]. MSOAR2 [11] uses
a number of heuristic algorithms to assign positional homolog
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pairs in several phases to minimize the number of reversals,
translocations, fusions, fissions, and gene duplications between
two genomes.

Closely related to distance minimization are the similarity
maximization approaches. By identifying conserved structures
between genomes, we can determine the similarity between
them. We can model the ORTHOLOG ASSIGNMENT problem
as finding the set of positional homologs that maximize the
degree of similarity between two genomes. Bourque et al. [5]
uses heuristics for the MAX-SAT problem to maximize the
number of common or conserved intervals. The problem of
maximizing the number conserved intervals is NP-hard [12].
Blin et al. [13] proposed a greedy method based on algorithms
for global alignment that first finds a set of anchors and then
recursively match genes found in large common intervals.

All of the preceding methods need a pre-processing step
to compute gene families. This is typically accomplished
using sequence similarity search followed by clustering of
similar genes [14]. After that, sequence similarity is essen-
tially reduced to a simple binary relation; two genes are the
equivalent if they are in the same gene family and different
otherwise. The main step uses heuristics to find a subset of
genes that optimizes an NP-hard problem on gene orders. In
short, the preceding methods use sequence similarity to build
gene families and gene order information to further refine the
gene families to get one-to-one gene matchings.

In contrast, rule-based methods do not need to build gene
families. A widely used method for finding pairwise orthologs
based on sequence similarity is the bidirectional best hit (BBH)
heuristic. Two genes g and h form bidirectional best hits if
the similarity between g and h is greater than that between g
and any other gene (h is the best hit for g) and vice versa.
In [4], a pair of BBHs are positional homologs if they are
next to another pair of BBHs. Subsequently, [15] relaxed this
condition and defined a local synteny test to determine whether
a given pair of genes is a positional homolog pair. A gene pair
passes the local synteny check if there are at least two pairs
of genes (excluding the gene pair being tested) nearby with
a sequence similarity above a certain threshold. Note that the
local synteny test does not consider the sequence similarity
between the gene pair being tested. Since positional homologs
are a subset of all orthologs, other rule based methods designed
for finding orthologs [16], [17] can also be used to identify
positional homologs by restricting ourselves to one-to-one
orthologous groups.

So far, existing methods have used sequence similarity infor-
mation and gene order separately. In this paper, we propose to
combine sequence similarity and gene context similarity into a
single similarity score and identify positional homologs using
the bidirectional best hit heuristic.

This has the advantage that the method is easy to implement
and computationally efficient. Furthermore, we can easily vary
the weightage of each type of similarity. We expected sequence
similarity to play a larger role. Surprisingly, we get the best
results using equal weightage for sequence and gene context
similarity. Our method outperforms more complex methods,

Fig. 2. Conserved synteny blocks between human and mouse genome
generated by the Cinteny web server [19]

such as MSOAR2, in identifying positional homologs between
human, mouse, and rat.

II. METHODS

Our approach is to approximate positional homologs as
bidirectional best hits using a scoring scheme that integrates
both sequence and gene context similarity scores.

Bidirectional (or reciprocal) best hits (BBH) is a widely
used heuristic for finding orthologs between two species.
Altenhoff et al. [18] compared a number of ortholog inference
algorithms and found that BBH’s overall performance is
surprisingly good despite the simplicity of the method. In
particular, they found that orthologs predicted by BBH show
close functional relatedness. Another advantage of BBH is that
it is easy to compute and commonly used in the literature.

However, using sequence similarity alone is not enough
to identify the positional homolog among several orthologs
[4]. In such cases, gene context can be used to disambiguate
between the paralogs because positional homologs tend to have
more similar gene context as evidenced by the presence of
large synteny blocks (see Figure 2).

Furthermore, [20] showed that in 29–38 percent of the
orthologs they investigated in bacteria, the gene pair with
the lower sequence similarity have a higher gene context
similarity. Hence, they advised combining gene context infor-
mation with protein sequence information to predict functional
orthologs. In this work, we integrate sequence similarity score
with a gene context similarity score that reflects the shared
gene neighborhood between two genes.

In the following subsections, we give the details for com-
puting sequence and gene context similarity scores and explain
how to combine them to compute bidirectional best hits.

A. Computing sequence similarity scores

We define the sequence similarity score between two genes
as the Smith-Waterman alignment score between the respective
peptide sequences. As a gene may have multiple transcripts,
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we use the transcript with the longest peptide sequence to
represent the gene. We use the SSEARCH program from the
FASTA v36 package [21] to compute the Smith-Waterman
alignment score between all pairs of peptide sequences using
default parameters optimized for high sensitivity (BLOSUM50
substitution matrix and E-value cutoff of 10).

We use peptide sequences as the basis of sequence com-
parison as they have a number of advantages over using
nucleotide sequences [22]. Peptide sequences are not affected
by synonymous substitution and hence able to detect more
distant homology. Furthermore, the alignments are faster to
compute since the peptide sequence is only one third the length
of the nucleotide sequence. Heuristic search algorithms, such
as BLAST, are often used to find homologous sequences since
they avoid computing the expensive dynamic programming
alignment. However, a serious drawback is that the derived
scores (bit score or E-value) are not symmetric and are difficult
to easily integrate with other scores. On the other hand, the
Smith-Waterman alignment score is symmetric and modern
implementations are sufficiently fast for our purpose.

Since we want to integrate both sequence similarity and
gene context similarity scores, we normalize the Smith-
Waterman scores so that it ranges from 0 to 1 with a score
of 1 indicating maximum sequence similarity. The Smith-
Waterman alignment score is roughly linearly proportional to
the length of the peptide sequences compared; longer peptide
sequences tend to have higher alignment scores. Therefore,
we remove this dependence on the length of the peptide
sequence and normalize the score to range between 0 and 1 by
dividing by the maximum Smith-Waterman score of the two
self alignments. We formally defined the normalized Smith-
Waterman score, swnorm, as follows:

swnorm(g, h) =
sw(g, h)

max{sw(g, g), sw(h, h)}
where sw(g, h) is the Smith-Waterman alignment score

between the peptide sequences of genes g and h.

B. Computing gene context similarity scores

Gene context similarity refers to the similarity in the ge-
nomic context of two genes. In contrast to sequence similarity,
there is no widely accepted method to determine the level of
gene context similarity between two genes. In this work, we
make use of the concept of local synteny proposed in [15],
[20].

Jun et al. [15] proposed a local synteny test that considers
three genes upstream and downstream of two genes of interest
to decide if they are orthologs. They modelled the sequence
similarity between the two sets of six genes as a bipartite
graph; there is an edge between two genes if their BLASTP E-
value is less than 1e−5. They then compute a maximum match-
ing of the graph. Two genes are putative orthologs if the size
of the maximum matching is greater than one. In other words,
they test if there is at least two other matching gene pairs in the
vicinity of the gene pair of interest. They fixed the parameters
(BLASTP threshold and size of gene neighborhood) in their

G

H

g

h

Fig. 3. Computing the local synteny score for g and h. We consider three
genes upstream and downstream of the two genes of interest and add an edge
between two genes if their BLASTP E-value is less than 1e−5. The thick
edges show one of the possible maximum matching. The local synteny score
of g and h is 4 since there are 4 edges in the maximum matching.

method by finding the values that maximizes the agreement
with InParanoid [17] and Ensembl Compara [23] orthologs.)
They showed that 93 percent of sampled inter-species pairs
in five mammalian genomes (human, chimpanzee, mouse, rat,
and dog) identified by their local synteny test are also found
by InParanoid. By analyzing the remaining seven percent of
the pairs, they conclude that the use of a local synteny test
can resolve ambiguous many-to-many orthologous groups into
one-to-one pairs.

While the binary test proposed in [15] detects the presence
of other matching gene pairs in the vicinity of g and h, it does
not capture the strength of this local synteny (or gene context
similarity) nor does it make use of the sequence similarity
of the gene pair being tested. Thus, it may cause errors
in special cases: (a) false positives when the local context
similarity is high, but the sequence similarity is low, or (b)
false negatives when the local context similarity is low (only
one other matching pair), while the sequence similarity is high.

In BBH-LS, we extend the binary test proposed by [15]
by defining a local synteny score, lss(g, h), that captures the
strength of the local synteny between g and h. The local
synteny score of two genes g and h is the size of the maximum
matching between the six genes surrounding g and h (see
Figure 3). This gives us a number between 0 and 6, which
we normalize by dividing by 6. This is similar to the gene-
neighborhood conservation score [20].

Formally, we define the normalized local synteny score,
lssnorm, as follows:

lssnorm(g, h) =
|max matching of graph G = (U ∪ V,E)|

6

where U is the set of six genes around g, V is the set of
six genes around h and there is an edge (u, v) in E if the
BLASTP E-value of u and v is less than 1e−5.

C. Combining sequence and gene context similarity and com-
puting bidirectional best hits

Given the normalized sequence similarity scores (swnorm)
and normalized gene context similarity scores (lssnorm), we
combine them into a single similarity score (sim) with a
parameter α to represent the weightage of gene context
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similarity. Formally, we define the combined similarity score,
sim , as follows:

sim(g, h) = (1− α)× swnorm(g, h) + α× lssnorm(g, h)

Using the combined score, we compute the set of bidirec-
tional best hits by sorting all gene pairs in decreasing score and
scanning this list once. A gene pair (g, h) is a bidirectional best
hit if sim(g, h) is strictly greater than sim(g, h′) for all other
genes h′ and sim(g, h) is strictly greater than sim(g′, h) for
all other genes g′. This guarantees that the set of bidirectional
best hits is always one-to-one.

III. RESULTS AND DISCUSSION

We evaluate our BBH-LS method by applying it to the
human, mouse, and rat genomes. For each pair of genome,
we compared the performance of BBH-LS, BBH using only
normalized Smith-Waterman score (BBH), MSOAR2 [11],
InParanoid 4.0 [17], OMA [22], Ensembl Compara [23], and
OrthoMCL [14].

Ideally, we should verify the inferred positional homologs
by checking whether they perform the same function. Due to
the lack of experimentally verified orthologs, we adopt the
evaluation strategy used by MSOAR2. The idea is to make
use of the official gene symbols for each gene as a proxy
for its function. Gene symbols are manually curated based
on gene function [24]. However, in the absence of experi-
mentally verified function, genes may be manually assigned
a gene symbol based on their sequence/structural similarity
to other genes. This implies that there is some correlation
between sequence similarity and gene symbols. Nevertheless,
the additional manual curation put into the assignment of gene
symbols makes them a reasonable measure.

Using this approach, we can classify the predicted positional
homolog pairs into the following three categories:
• true positive: both genes share a common gene symbol
• false positive: gene symbols are completely different
• unknown: either one of the two genes have not been

assigned a meaningful1 gene symbol
The peptide sequences and locations of genes in each of

three genomes were download from the Ensembl Release 602.
There are 20801, 22842, and 22925 genes in the human,
mouse and rat genome. We downloaded official gene symbols
from the following species specific databases: HUGO Gene
Nomenclature Committee3, Mouse Genome Informatics4, and
Rat Genome Database5.

A. Parameter tuning for BBH-LS

Our scoring scheme uses the parameter α to controls the
weightage of gene context similarity score. If α is 1, then we

1We filter away symbols matching the regular expression “orf” in human
genes, “Rik$” or “ˆGM[0-9]+$” in mouse genes, and “ˆLOC[0-9]+$” or
“ˆRGD[0-9]+$” in rat genes.

2retrieved from ftp://ftp.ensembl.org/pub/release-60/fasta/ in Nov 2010
3retrieved from http://www.genenames.org in Dec 2010
4retrieved from http://www.informatics.jax.org in Dec 2010
5retrieved from http://rgd.mcw.edu in Dec 2010

Fig. 4. Performance of BBH-LS for different weightage of gene context
similarity to sequence similarity on the human-mouse dataset. Left axis
indicates the number of pairs of true positives and the right axis indicate
the number of unknown pairs and false positives.

Fig. 5. Performance of BBH-LS for different weightage of gene context
similarity to sequence similarity on the mouse-rat dataset. Left axis indicates
the number of pairs of true positives and the right axis indicate the number
of unknown pairs and false positives.

only use gene context similarity. If α is 0, then we only use
sequence similarity.

We want to determine the optimal value of the parameter
α on the human-mouse and mouse-rat dataset. To do this,
we ran BBH-LS on the human-mouse and mouse-rat dataset
over a range of values of α and tabulated the number of true
positives, false positives and unknown pairs for each value.
Figure 4 and Figure 5 shows how the number of true positives,
false positives and unknown pairs varies as a function of α for
each dataset.

For the human-mouse dataset (Figure 4) we observe that the
number of true positives increases rapidly as α increases and
then decreases at the same rate after reaching a maximum of
14133 when α is 0.53. However, the number of false positives
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and unknown pairs also increased slightly as α increases. The
same general trend for the true positives is observed for the
mouse-rat dataset shown in Figure 5 (maximum of 12996
when α is 0.52).

We initially thought that the weightage of gene context
similarity score should be much lower that of the sequence
similarity as many existing methods make use of sequence
similarity but not gene context similarity. To our surprise, we
found that setting α close to 0.50 maximizes the number of
true positives for both datasets. In the following experiments,
we set α as 0.50.

It is estimated that the last common ancestor of human
and mouse existed 87 million years ago while the mouse-
rat ancestor existed 16 million years ago [25], furthermore
there are 297 large scale rearrangement events between human
and mouse but only 106 rearrangement events between mouse
and rat [26]. Despite the difference in the genomic distance
in these two datasets, the best value of α is consistently
around 0.50. Additional experiments using genomes of varying
evolutionary distances will be necessary to determine whether
this observation holds more generally.

B. Performance on Human-Mouse-Rat dataset
We obtained the output of the methods in our comparison

by running the respective programs on the input data, except
for OMA and Ensembl Compara as we did not have access
to the programs. We downloaded the orthologs predicted by
OMA6 and Ensembl Compara7 from their respective websites.
InParanoid, OMA, and Ensembl Compara produces pairs of
orthologous groups instead of positional homolog pairs. We
get ortholog pairs by post-processing the output. InParanoid
builds its groups from pairs of seed orthologs, we extract the
seed orthologs from each group. For OMA, Ensembl Compara,
and OrthoMCL, we use only the one-to-one groups.

Figure 6 shows the number of true positives (TP) and false
positives (FP) for each method on three datasets. The results
for OrthoMCL were not included in Figure 6 as is an outlier;
for human-mouse dataset OrthoMCL has 8936 TP and 498 FP,
for human-rat dataset there are 7409 TP and 530 FP, and for
mouse-rat dataset there are 7812 TP and 819 FP.

For the human-mouse dataset, BBH-LS (α = 0.50) identi-
fied the largest number of true positives (14125), followed
by Ensembl Compara (13856), and MSOAR2 (13718). In-
Paranoid which uses BLAST to compute sequence similarity
does significantly worst that BBH using normalized Smith-
Waterman alignment scores. In terms of the number of false
positives, the methods we evaluated fall into three categories:
low false positives (OrthoMCL, OMA, Ensembl Compara),
medium false positives (InParanoid, BBH, BBH-LS), and
high false positives (MSOAR2). OMA and Ensembl Compara
performed surprisingly well given that we only consider the
one-to-one groups that were generated.

The results for the human-rat dataset shown in Figure 6
is similar to that of the human-mouse data except that the

6retrieved from http://omabrowser.org in Dec 2010
7retrieved from http://www.ensembl.org in Dec 2010

Fig. 6. Plot of number of true positives vs number of false positives in
the output of BBH-LS, BBH, MSOAR2, InParanoid, OMA, and Ensembl
Compara for the human-mouse, human-rat, and mouse-rat dataset

MSOAR2

BBH-LS InParanoid

9322

1105

837 589

2028

1938

1262

Fig. 7. Venn diagram showing the overlap between the true positives reported
by BBH-LS, MSOAR2, and InParanoid for the human-mouse dataset.

number of true positives produced by Ensembl Compara and
OMA has decrease relative to the other methods, but Ensembl
Compara still has more true positives than InParanoid. For the
mouse-rat dataset (Figure 6), OMA and Ensembl Compara is
now worse than InParanoid. Another interesting characteristic
of the mouse-rat dataset is the higher number of false positives,
roughly doubled that of the human-mouse or human-rat dataset
for all the methods.

Overall, in all three experiments, our BBH-LS method
consistently produced the highest number of true positives as
validated using gene symbols with a medium level of false
positives.

Figure 7 shows a more detailed comparison of the true
positives reported by BBH-LS, MSOAR2, and InParanoid. A
total of 17081 true positives pairs are identified by at least
one of the three methods and 57.5 percent (9322/17081) are
identified by all three methods. Therefore, only slightly over
half of the true positive pairs exhibit strong signals and are
easy to detect. The rest require the combination of a number
of different sources of information.

In the following, we illustrate a number of specific instances
where gene context similarity made a significant differences.
Figure 8 shows an instance where the high gene context
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Fig. 8. BBH erroneously paired RASGRF2 (human) to RASGRF1 (mouse)
because of high Smith-Waterman score, this was corrected by BBH-LS with
the help of local synteny score. Bold edges are the pairing from BBH-LS,
thin edges are the pairing from BBH, sw = Smith-Waterman score, lc = local
synteny score

LILRA5

LILRA5

LAIR2CDC42EP5LENG9LILRA4 LAIR1

CDC42EP5PIRA5 LILRA6

TTHY1 LENG8

LENG9LAIR1 TTHY1 LENG8

sw = 1035
ls = 2

sw = 132
ls = 5

sw = 621
ls = 6

Human
chr 19

Mouse
chr 7

Fig. 9. BBH-LS paired LILRA5 (human) with PIRA5 (mouse) and LAIR2
(human) with LIRA5 (mouse) due to the high local synteny produced by
the five pairs of genes in between. The correct pairing should be LILRA5
(human) with LILRA5 (mouse) and this was picked up by BBH using just
the normalized Smith-Waterman score.

similarity between related genes overcame the low sequence
similarity between the true positives and converted what would
be a false positive for BBH to a pair of true positives. There
are a total of 12 of such cases. However, in four cases, the
local synteny score caused a true positives identified by BBH
to become a pair of false positives. Figure 9 illustrates one of
these cases.

IV. CONCLUSION AND FUTURE WORK

The ORTHOLOG ASSIGNMENT problem is challenging in
practice due to gene duplications and gene loss. Several
sophisticated methods, which make use of complex heuristics
(InParanoid) or require solving computationally hard problems
(MSOAR2), have been proposed to tackle this problem. How-
ever, we show in this paper that the simple bidirectional best
hit heuristic, coupled with a scoring scheme that combines
both sequence and gene context similarity, is surprisingly
good at identifying positional homologs. In all three pairwise
comparison between human, mouse, and rat genomes, our
BBH-LS method identified the most number of positional
homolog (as validated using gene symbols) with a medium
number of false positives.

We are currently working on reducing the number of false
positives by considering the difference in the score of the best
hit and second best hit.
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