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Abstract—Identifying dysregulation modules for complex dis-
eases, such as B-cell lymphomas, can provide insights into the
mechanisms of diseases and help to identify novel drug targets.
In this work, based on molecular interaction network, we applied
a network flow model to identify the dysregulation modules for
three subtypes of non-Hodgkin’s lymphomas, including Burkitt’s
lymphoma (BL), follicular lymphoma (FL), and mantle cell
lymphoma (MCL). In our identified dysregulation modules, there
are multiple genes that were reported in literature to be related to
B-cell lymphomas, which demonstrate that our presented method
is really effective for identifying dysregulation modules related
to diseases.

Keywords: B-Cell Lymphomas, network flow model, dysregu-
lation modules

I. INTRODUCTION

Complex diseases, such as cancer, are caused by multiple
factors, involving dysregulation of distinct biological pro-
cesses, which make it difficult to understand the pathogenic
procedure underlying the diseases. Recently, a large amount of
high-throughput data, e.g. protein-protein interaction and gene
expression, are available, which provides a chance to identify
oncogenes and dysregulated pathways for certain diseases. For
example, based on protein interactome map, Wachi et al. found
that the differentially expressed genes in lung squamous cancer
tissues tend to be well connected in the protein interaction
network [1]. Chen et al. presented a computational method
to predict AD-related proteins based on protein interaction
data [2]. Mani et al. introduced the interactome dysregulation
enrichment analysis (IDEA) algorithm to predict oncogenes
in B-cell lymphomas [4]. At the same time, gene expression
data were widely used to detect disease-related genes based
on differential expression analysis [3–8]. For instance, Ergun
et al. constructed a gene network, and with expression profiles
they found that the androgen-receptor (AR) can be used as the
top candidate marker to detect the aggressiveness of prostate
cancers [3].

Despite the success made by above mentioned methods,
most of them focus on detecting single disease-related genes,
which cannot give a global map of the processes affected
by disease. Furthermore, candidate genes provided by these
methods based on one dataset sometimes do not work on
another dataset. In this paper, based on molecular interaction
network, we applied our previously developed network flow

model [9, 10] to identify the dysregulation modules for three
subtypes of non-Hodgkin’s lymphomas, including Burkitt’s
lymphoma (BL), follicular lymphoma (FL), and mantle cell
lymphoma (MCL). In our identified dysregulation modules,
there are multiple genes that were reported in literature to
be related to B-cell lymphomas, which demonstrate that our
presented method is really effective for identifying dysregula-
tion modules related to diseases. In particular, we found that
7 genes (i.e. ABL1, BRCA1, CDC2, JAK3, LYN, MYC, and
POU2F1) occurred in the dysregulation modules for all three
distinct non-Hodgkin’s lymphomas, which implies that these
7 genes may be important for the pathogenic procedure of
B-cell lymphomas.

II. MATERIALS AND METHODS

A. B cell Interactome

In this work, B cell interactome was obtained from
the B cell Interactome database (http://amdec-bioinfo. cu-
genome.org/html/BCellInteractome.html) which includes 5737
proteins and 64649 unique pairwise interactions. The BCI is a
mixed-interaction network which is composed of three types
of interactions [4], including protein-protein interactions (PPI)
[4], protein-DNA interactions (PDI) [11], and transcription
factor-modulator interactions (TFMI) [12]. The three different
data were integrated with a Bayesian evidence integration
approach [4].

According to the interactome dysregulation enrichment
analysis (IDEA) algorithm [4], the dysregulated interactions in
three distinct non-Hodgkin’s lymphomas were identified based
on gene expression profiles from normal, tumor-related, and
experimentally manipulated B cells. For the three distinct non-
Hodgkins lymphomas, there are 722 dysregulated interactions
and 573 proteins in BL, 192 dysregulated interactions and
207 proteins in FL, and 406 dysregulated interactions and
419 proteins in MCL. However, the dysregulated interactions
identified by IDEA are independent with each other, which
cannot provide a global map of the dysregulation pathways or
modules underlying diseases considering that diseases gen-
erally require multiple genes to work in concert. Towards
this end, we reconstructed the interactome by integrating all
the dysregulation interactions with the interactions between
those genes involved in dysregulation interactions, where the
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newly added interactions were further required to have a score
large than 0.9 to reduce possible false positives. The biggest
connected component was used for further analysis. As a
result, the BL interactome includes 540 proteins and 1580
interactions, FL interactome includes 188 proteins and 326
interactions, and MCL interactome contains 383 proteins and
882 interactions.

B. Identification of B-cell lymphomas dysregulation modules

In this part, we applied our previously developed network
flow model to detect dysregulation modules for B-cell lym-
phomas based on the interactome map. The interactome map
is represented as a weighted undirected graph G(V, E, W ),
where the vertex vi ∈ V represents a protein and the edge
E(i, j) denotes the interaction between proteins i and j. The
weight wij ∈ W accompanying edge E(i, j) represents the
confidence score of the interaction based on the likelihood
ratio calculated by Bayesian evidence integration approach [4].
Given the weighted undirected graph G(V, E, W ) and some
known disease genes, we aim to detect the dysregulation mod-
ules based on the assumption that genes in the dysregulation
modules tend to interact with each other. Furthermore, we
formalized the problem as identifying a compact connected
subnetwork with maximum weight, where the genes in the
subnetwork interact intensively with known disease gene. In
brief, the model is formulated as following.

Maximize
{xi,yij ,zij}

∑

i∈V

∑

j∈V

wijyij − λ
∑

i∈V

∑

j∈V

yij (1)

Subject to
yij ≤ xi, (2)

yij ≤ xj , (3)
∑

j∈V

yij ≥ 1, if i ∈ {S} , (4)

∑

j∈V

yij ≥ 2xi, if i /∈ {S} , (5)

∑

i∈V ′

Zsi = R − 1, (6)

∑

i∈V

Zij −
∑

k∈V ′

Zjk = 1, j ∈ H, (7)

∑

i∈V

Zij −
∑

k∈V ′

Zjk = xj , j ∈ V ′′, (8)

∑

i∈V

Zij ≤ (R − 1)xj , j ∈ V ′, (9)

xi = 1, i ∈ H, (10)

Zij ∈ {0, ..., R − 1} , i ∈ V, j ∈ V ′, (11)

xi ∈ {0, 1} , i ∈ V ′′, (12)

yij ∈ {0, 1} , i, j ∈ V, (13)

where S is the source of the network flow, i.e. the known
disease gene, V ′ = V −{S}, H is the set of the known nodes

except the source node S, V ′′ = V − {H}, H = H
⋃ {S},

xi is a binary variable for protein i ∈ V to denote whether
protein i is selected as a component of the module, yij is also
a binary variable to denote whether the interaction represented
by E(i, j) is a part of the module. The constraint

∑
j∈V

yij ≥
2xi is to make ensure that xi has at least two linking edges
once it is selected in the obtained module, while the constraint∑
j∈V

yij ≥ 1 means that the source protein S has at least one

link to other proteins. The constraints yij ≤ xi and yij ≤ xj

ensure that only when proteins i and j are both selected as
components of the module, the corresponding reaction denoted
by the edge Eij would be considered. The constraint (6) means
that there are R − 1 units of flow entering the network from
the source S. The constraint (7) ensures that one unit of flow
will leave the network for the known protein. The constraint
(8) means that one unit of flow will leave the network when
one protein is selected. The constraint (9) means that once a
protein is selected, the maximum flow entering this protein is
no more than R − 1.

The first term of the cost function means that we aim at
finding a module with maximum weight, while the second
term controls the size of the module. The parameter λ can
be tuned in an easy manner. This model is a standard ILP
problem which is difficult to find optimal solutions since
ILP is an NP-hard problem. To make the model suit for
large-scale interaction networks, we relax the the constrains
xi ∈ {0, 1}, yij ∈ {0, 1} to xi ∈ [0, 1], yij ∈ [0, 1],
and Zij ∈ {0, ..., R − 1} to Zij ∈ [0, R − 1]. With these
relaxations, we can apply mixed integer linear programming
(MILP) algorithms to solve the problem.

III. RESULTS

A. Identification of dysregulation module for Burkitt’s lym-
phoma

Burkitt’s lymphoma (BL) is a type of B-cell non-Hodgkin’s
lymphoma (NHL) that mostly occurs in young people between
the ages of 12 and 30. It is found that Burkitt’s lymphoma
is associated with a chromosomal translocation of the MYC
gene [13]. Therefore, MYC was used as the source node in our
network flow model to identify the dysregulation module for
BL. With the interactome map consisting of 540 proteins and
1580 interactions, a BL dysregulation module was identified
as shown in Fig. 1, which takes MYC as source node of the
module with R = 40 and λ = 0.95 and contains 74 proteins
and 269 interactions.

Among the 74 genes in our predicted BL dysregulation
module, we found that 27 genes are reported to be related
to lymphoma. Table I lists the 27 genes and the papers’
corresponding PubMed IDs that report the relationship be-
tween the genes and lymphoma. Especially, four genes in
our identified modules were reported to be associated with
Burkitt’s lymphoma, including DOK1, E2F1, NR4A1 and
BCR. DOK1 was found to be affected at both expression and
structure levels in a subset of Burkitt’s lymphoma samples
[15], which indicates that it may play an important role in
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Fig. 1. BL dysregulation module, where MYC was used as the source node
in the network flow model and shown as a pink circle while other proteins
as green circles.

BL. However, DOK1 was not even in the top 500 genes
identified by IDEA algorithm [4]. E2F1 is a member of the
E2F family of transcription factors that play a crucial role in
the control of cell cycle. It was found that E2F1 is involved
in the formation of most sporadic Burkitt’s lymphoma (sBL)
tumors according to the study by Privado [16]. They showed
that the reduction of this gene in sBL cells will inhibit tumor
formation and decrease their proliferation rate, and proved
that E2F1 collaborates with MYC in sBL formation. E2F1
was only ranked 139 by IDEA algorithm. NR4A1 encodes
a member of the steroid-thyroid hormone-retinoid receptor
superfamily. When the encoded protein is translocated from
the nucleus to mitochondria, it will induce apoptosis. It was
found that Burkitt’s lymphoma is related to NR4A1 gene
[17]. BCR displays serine/threonine kinase activity. Tyrosine
phosphorylation of a number of proteins will rapidly increase
when one stimulates B lymphocytes through their antigen
receptor (BCR) resulting in a cascade of biochemical changes
that will initiate B-cell proliferation and differentiation or
growth inhibition. Tuscano et al. showed that BCR ligation
leads to apoptosis of several Burkitt’s lymphoma cell lines, and
BCR and CD22 signaling can co-stimulate B-cell proliferation
and induce apoptosis in Burkitt’s lymphoma cell lines [18].
BCR was only ranked 96 by IDEA algorithm.

In addition, pathway enrichment analysis [19, 20] on
our identified dysregulation module showed that cell cycle
(P=1.05E-10), Fc epsilon RI signaling pathway (P=4.43E-
08), ErbB signaling pathway (P=1.17E-07), Jak-STAT signal-
ing pathway (P=1.98E-07), pathways in cancer (P=2.88E-07),
focal adhesion (P=1.05E-10), and B cell receptor signaling
pathway (P=6.88E-06) are significantly enriched.

The evidence from literature and pathway enrichment analy-

TABLE I
THE GENES THAT ARE REPORTED TO BE RELATED TO LYMPHOMA IN THE

PREDICTED BL DYSREGULATION MODULE IN LITERATURE WITH

CORRESPONDING PUBMED IDS [22].

Gene PMID

AHR 19821039; 16985026
BAX 12749011; 15073604

BCR
10438726; 11027651; 9233773; 9533441; 12384401;
15380345; 12594826; 7947283; 19332026; 9052872

CASP3 11866986; 20450729; 14657946
CASP8 19414860
CASP9 19414860
CDC2 12068134; 14533937
CDC25B 14767575
CDKN1B 16122798
CTBP 18212045
DOK1 16338067
E2F1 19406837
GRB2 19716163
INPP5D 10382761
IRF7 15492278; 17393359
JAK3 12934099; 16554750

LYN
8264235; 18070987; 20043832; 17640867; 8688094;
7513431

MYC
7558417; 2307371; 1945409; 10713166;
7923569; 7958890 (top 6 among all 99)

NCOR2 15930272; 9753732

NPM1
8187071; 17488663; 8859196; 15233906;
11280786; 9121481 (top 6 among all 64)

NR4A1 7589118
PARP1 20196871
PDGFRA 18950958
PTPRC 1829834; 1845482; 1669003
STAT3 17439836; 14506160; 15161657; 18509351
STAT5A 16502315
STAT6 19423726; 1840141; 17210636; 15044251

sis demonstrates that our identified dysregulation module is in-
deed related to Burkitt’s lymphoma and our method is effective
to identify dysregulation module from molecular interaction
network. In addition, the four genes we identified related to
BL were not ranked high by IDEA method, implying that our
method can complement with IDEA to identify dysregulation
processes.

B. Identification of dysregulation module for follicular lym-
phoma

Follicular lymphoma (FL) is another type of non-Hodgkin’s
lymphoma (NHL), which is characterized by translocation be-
tween chromosome 14 and 18 that results in the overexpression
of the BCL2 gene. Therefore, BCL2 was used as the source
node in our network flow model to identify the dysregulation
module for FL. Based on the interactome map consisting
of 188 proteins and 326 interactions, a FL dysregulation
module was identified as shown in Fig. 2 with R = 40 and
λ = 0.95, and contains 40 proteins and 90 interactions. There
are 20 genes that are reported to be related to lymphoma
among the 40 genes in our predicted FL dysregulation module.
Table II lists the 20 genes and the papers’ corresponding
PubMed IDs that report the relationship between the genes
and lymphoma. In particular, SYK has been reported to be
associated with follicular lymphoma (FL) [21]. SYK encodes a
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Fig. 2. FL dysregulation module, where BCL2 was used as the source node
in the network flow model and shown as a pink circle while other proteins
as green circles.

member of the family of non-receptor type Tyr protein kinases
which are involved in diverse cellular dysregulations, including
proliferation, differentiation, and phagocytosis. Leseux et al.
suggested that SYK-mTOR pathway has played an important
role in FL survival, and SYK could be a promising new target
for B-cell lymphoma therapy [21]. In the results by IDEA
algorithm, SYK was ranked 17 [4].

Furthermore, pathway enrichment analysis on our identi-
fied dysregulation module showed that pathways in cancer
(P=5.89E-16), cell cycle (P=2.96E-10), apoptosis (P=2.38E-
08), Jak-STAT signaling pathway (P=6.75E-07), MAPK
signaling pathway (P=4.26E-06), Notch signaling path-
way (P=1.46E-04), and B cell receptor signaling pathway
(P=1.30E-03) are significantly enriched. These results make it
clear that our identified dysregulation module is indeed related
to follicular lymphoma and our method is effective to identify
dysregulation module from molecular interaction network.

C. Identification of dysregulation module for mantle cell lym-
phoma

Mantle cell lymphoma (MCL) is an uncommon type of
non-Hodgkin’s lymphoma (NHL). MCL cells generally over-
express cyclin D1/BCL1 (CCND1) due to a t(11:14) chromo-
somal translocation in the DNA [14]. Therefore, CCND1 was
used as the source node in our network flow model to identify
the dysregulation module for MCL. Based on the interactome
map consisting of 383 proteins and 882, a MCL dysregulation
module was identified as shown in Fig. 3 with R = 40 and
λ = 0.95, which contains 62 proteins and 208 interactions.

Among the 62 genes in our predicted MCL dysregulation
module, we found that 27 genes are reported to be related
to lymphoma. Table III lists the 27 genes and the papers’

TABLE II
THE GENES THAT ARE REPORTED TO BE RELATED TO LYMPHOMA IN THE

PREDICTED FL DYSREGULATION MODULE IN LITERATURE WITH

CORRESPONDING PUBMED IDS [22].

Gene PMID

AHR 19821039; 16985026

BCL2
18945749; 2223650; 18925696; 9349233;
8623759; 19120369 (top 6 among all 99)

CASP8 19414860
CDC2 12068134; 14533937
CDK2 16765349; 16150942
FOS 15507668
FYN 11453661
INPP5D 1989047; 12885297
IRF7 15542650; 15492278; 17393359
JAK3 12934099; 16554750

LYN
8264235; 18070987; 20043832; 17640867; 8688094;
7513431

MUC1 11729213; 12796388; 14555387; 11493472

MYC
7558417; 2307371; 1945409; 10713166;
7923569; 7958890 (top 6 among all 99)

MYCN 18391076
PARP1 20196871
PLCG2 9575194; 9865907
POU2F2 11904338; 14608905; 904338; 16778825

SYK
16912221; 19092849; 19296913; 19965662; 9865907;
19333898; 19608873

TRAF1 17197926; 15644776; 11046039

ZAP70
19575876; 15133473; 20029467; 16280661; 16426914;
18348159; 15487457

Fig. 3. MCL dysregulation module, where CCND1 was used as the source
node in the network flow model and shown as a pink circle while other
proteins as green circles.

corresponding PubMed IDs that report the relationship be-
tween the genes and lymphoma. Specially, two genes in our
identified modules were reported to be associated with mantle
cell lymphoma (MCL), including CDC6 and CDK6. CDC6
plays a key role in DNA replication, and Pinyol et al. suggested
that deregulation of the licensing factors CDC6 may play a
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role in the pathogenesis of the chromosomal instability of a
subset of MCL [23]. The protein encoding by CDK6 is a
member of the cyclin-dependent protein kinase (CDK) family
which are known to be important regulators of cell cycle
progression. Zhao et al. showed that miR-29 is a prognostic
marker and pathogenetic factor by targeting CDK6 in mantle
cell lymphoma [24]. In the results by IDEA algorithm, CDC6
was ranked 457 while CDK6 was ranked 30.

TABLE III
THE GENES THAT ARE REPORTED TO BE RELATED TO LYMPHOMA IN THE

PREDICTED MCL DYSREGULATION MODULE IN LITERATURE WITH

CORRESPONDING PUBMED IDS [22].

Gene PMID

CCND1
20062012; 9846986; 8204893; 7772515;
9010577; 9209645 (top 6 among all 13)

CCND2 8455931; 8045261
CCNE1 19454496
CDC2 12068134; 14533937
CDC25A 12745652; 19305144; 14767575
CDC6 19101572
CDK6 11940479; 20086245; 10879740
DOK1 16338067
FYN 11453661
GAB2 14530346
GRB2 19716163
IGF1R 19423729
ITK 19535334
JAK3 12934099; 16554750
JUN 15507668
JUND 15507668; 12907453
LCP2 14984504

LYN
8264235; 18070987; 20043832; 17640867; 8688094;
7513431

MAPK1 17065146
MUC1 11729213; 12796388; 14555387; 11493472

MYC
7558417; 2307371; 1945409; 10713166;
7923569; 7958890 (top 6 among all 99)

PLCG2 18596745; 9575194; 9865907
SOCS1 19734449; 16287070; 16598306; 17867599; 16532038
SOS1 9374522
STAT3 17439836; 14506160; 15161657; 18509351
STAT5A 16502315
VAV1 15964830; 9178638; 14586401

Furthermore, pathway enrichment analysis on our identified
dysregulation module showed that cell cycle (P=1.05E-10),
ErbB signaling pathway (P=1.17E-07), Jak-STAT signaling
pathway (P=1.98E-07), pathways in cancer (P=2.88E-07),
focal adhesion (P=2.70E-06), and B cell receptor signaling
pathway (P=6.88E-06) are significantly enriched. These re-
sults demonstrate that our identified dysregulation module is
indeed related to mantle cell lymphoma.

D. Common markers for three distinct non-Hodgkin’s lym-
phomas

Although BL, FL and MCL are three different non-
Hodgkin’s lymphomas, they may share some common marker
genes. We compared the predicted dysregulation modules for
the three lymphomas. Figure 4 shows the venn diagram of the
genes in the three modules. There are 7 genes (i.e. ABL1,
BRCA1, CDC2, JAK3, LYN, MYC, and POU2F1) that are

contained in all of the three modules. The protein encoded by
ABL1 has been involved in processes of cell differentiation,
cell division, cell adhesion, and stress response. ABL1 is
found important to chronic myelogenous leukaemia (CML).
At the same time, CML is associated with extranodal B-cell
lymphoma [26]. Therefore, ABL1 is possibly associated with
B-cell lymphoma. The dysregulation of BRCA1 pathway has
the risk for a subset of lymphomas [28]. Jin et al. proved that
CDC2 is involved in the genesis or progression of malignant
lymphoma, and they suggested that CDC2 can be a useful
marker for response to chemotherapy [27]. Nagy et al. reported
that specific inhibition of janus tyrosine kinase (JAK3) via
NC1153 induces apoptosis of certain lymphoma cell lines
[29]. LYN can control proliferation and survival in most B-
cell NHLs and can be a therapeutic target [30]. MYC has
been reported that its rearrangements are seen not only in BL,
but also in FL, MCL and other lymphomas [25]. POU2F1
is a member of the POU transcription factor family, whose
deficiency may play a role in B-cell lymphoma. All these
evidence from literature indicates that these 7 genes may be
important for the pathogenic procedure of B-cell lymphomas
and used as markers for B-cell lymphomas.

Fig. 4. Venn diagram for the genes shared among the three predicted
dysregulation modules.

IV. CONCLUSION

In this paper, we applied a network flow model to detect
the dysregulation modules for three distinct non-Hodgkin’s
lymphomas (Burkitt’s (BL), follicular (FL), and mantle cell
lymphoma (MCL)). In our identified dysregulation modules,
a lot of genes are reported to be related to lymphoma in
literature. In detail, the ratios are 27/74, 20/40 and 27/62 for
BL, FL and MCL, respectively. In particular, we found 7 genes
(i.e. ABL1, BRCA1, CDC2, JAK3, LYN, MYC, and POU2F1)
that are contained in all three dysregulation modules, and they
are also found to be associated with lymphomas, which imply
that these 7 genes are important for pathogenic procedure of
lymphomas.
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