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Abstract— Characterization and identification of protein 
complexes in protein-protein interaction (PPI) networks is 
important in understanding cellular processes. With the core-
attachment concept, a novel core-attachment algorithm is 
proposed by characterizing the protein complex core from the 
perspective of edges. We reinvite a protein complex core to be a 
set of closely interrelated edges rather than a set of interrelated 
proteins. We first identify the edges must belong to a core, and 
then partition these edges to extract cores. After that, we select 
the attachments for each complex core to form a protein 
complex. Finally, we evaluate the performance of our algorithm 
by applying it on two different yeast PPI networks. The 
experimental results show that our algorithm outperforms the 
MCL, CPM, CoAch in terms of number of precisely predicted 
protein complexes, localization as well as GO semantic 
similarity. Our proposed method is validated as an effective 
algorithm in identifying protein complexes and can provide 
more insights for future biological study. It proves that edge 
community is a better topological characterization of protein 
complex. 

Keywords-protein-protein interaction networks; protein  
complex; edge community; core-attachment 

I. INTRODUCTION 
Protein complexes encompass groups of genes or proteins 

involved in common elementary biological processes [1]. 
They play a critical role in integrating multiple gene products 
to perform useful cellular functions. Identifying protein 
complexes is an important and challenging task in post 
genomic era. 

Many computational methods have been proposed to 
predict protein complexes in PPI networks, such as MCL [2], 
MCODE [3], RNSC [4] and CPM [5]. Most of the existing 
methods relied on the assumption that proteins within the 
same complex would have relatively more interactions [6]. 
So the problem of detecting protein complexes is translated 
into finding dense sub-graphs in PPI networks.  

Gavin et al. [7] took a further study on the organization of 
protein complexes, demonstrating that a protein complex 
should generally contain a core and attachments. Core 
proteins have relatively more interactions among themselves 
and each protein complex has a unique set of core proteins. 
Each attachment protein usually binds to two or more core 
proteins depending on the size of core protein set. Based on 
this core-attachment concept, Wu et al. [8] presented the 
CoAch algorithm, which extracted the protein complex cores 

from each vertex’s neighbor   hood graph. Leung et al. [9] 
proposed the CORE algorithm, a statistical framework to 
identify protein complex cores. Both approaches outperform 
the existing non core-attachment based computational 
methods dramatically, demonstrating the significance of the 
core attachment structure. 

Recently, Ahn et al. [10] suggested an unorthodox 
approach which reinvented communities as groups of edges 
rather than vertices. They defined the similarity between each 
pair of adjacent edges. After that, they employed an 
agglomerative hierarchical clustering technique to build a 
dendrogram where each leaf is an edge from the original 
network and branches represent edge communities. Since all 
the existing core-attachment approaches focus their attention 
on grouping vertices, it is natural to consider that whether we 
can characterize protein-complex cores and attachments 
based on edges or not. 

Inspired by this insight, in this paper, we develop an 
algorithm to detect protein-complex cores and attachment 
proteins in PPI networks. Quite different from all the existing 
core-attachment approaches, our algorithm characterizes and 
identifies protein-complexes based on edges. The key idea of 
our algorithm consists of two main stages: (1) detect all the 
complex cores. We first identify the edges must belong to a 
core. The bridgeness [11] and clique size [12] of an edge are 
employed with an immediate purpose to differentiate the 
roles of edges: edges in cores, edges out of cores. After 
collecting all the in-core edges, we cluster these edges by the 
edge similarity to obtain the edge communities. The induced 
vertices of an edge community are considered as proteins in 
the protein-complex core; (2) identify attachments for each 
core to form protein complexes. We apply our algorithm on 
two different yeast PPI networks and the experimental results 
show that compared with MCL, CPM, and CoAch, our 
algorithm can discover protein-complex precisely and get a 
better score in localization as well as in GO semantic 
similarity. 

 

II. PRELIMINARIES 
Prior to the detail description of our concrete algorithm, let 

us introduce some conceptions widely used in the 
forthcoming sections.  
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A. Bridgeness 
Edges in a network can be divided into two kinds 

according to their different roles: some enhance the locality 
like the ones inside a cluster, others contribute to the global 
connectivity like the ones connecting various clusters. In 
order to differentiate which kind of roles an edge plays, 
Cheng et al. propose an index called bridgeness [11] to 
quantify the edge significance in maintaining connectivity. 
The bridgeness of an edge E is defined as 

E

E

x yS S
B

S
= ,      (1) 

where x  and y  are the two vertices of the edge E . 

xS , yS and ES  are the clique sizes of x , y  and E .  The 
clique size of a vertex or an edge is defined as the size of the 
maximum clique that contains this vertex or this edge [12]. 

B. Edge similarity 
Ahn et. al [10] defined the inclusive neighbors of a vertex 

i  as: 

{ }( ) ( , ) 1n i x d i x+ ≡ ≤  ,  (2) 

where ( , )d i x  is the length of the shortest path between 
vertices i  and x . The set simply contains the vertex itself 
and its neighbors. From this, the similarity between edges ike  

and jke is 
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C. Induced vertices 
For a graph ( , )G V E= , P is a set of edges and P E⊂ . 

The induced vertices set of P is defined as { , }
ije P i j∈∪ .  

III. METHOD 
In this section we discuss the steps of our algorithm in 

turns. To explain more intuitively our algorithm, an example 
is presented in Fig.1. 

 
 
 

 
 
 

             

          

          
 
    
 

       

      
Fig. 1. The diagram of our method. The procedure of our algorithm mainly 
consists of two stages: detection of protein complex cores and identification 
of attachments. The vertices in red color are cores and the vertices in yellow 
color are attachments. 

A. Characterizing the protein complex core via edges 
A protein complex core is a small group of proteins which 

show a high mRNA co-expression patterns and share high 
degree of functional similarity. It is the key functional unit of 
the complex and largely determines the cellular role and 
essentiality of the complex. Although no common definition 
has been agreed upon, it is usually accepted that protein-
complex cores correspond to small, dense and reliable sub-
graphs in PPI networks [7].  

In this section, we try to characterize protein complex 
cores via edges. Since protein complex cores are dense and 
small, it is very plausible to take clique whose size is larger 
than 3 as a core. Because the proteins in the same core share 

The 
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high degree of functional similarity, which implies that the 
proteins in the same core are similar in topology. Therefore, 
we have enough reasons to believe that the bridgeness of an 
edge in a protein complex core should be as low as possible. 
Likewise, the edges in the same core share high degree of 
similarity.  

Based on the analysis above, a protein complex core we 
defined should satisfy following three constraints: 
(1) The clique size values of edges in a core are large enough, 
say 4;  
(2) The bridgeness values of edges in a core are relatively 
low, implying that they function as an intra-edges 
contributing to the local connectivity of networks involved; 
(3) The topological similarity between any edge pairs should 
be closely interrelated.  

A subgraph consists of 3 clique or a combination of 3 
cliques could also be regarded as a core if the bridgeness of 
all the edges in this sub-graph equals to 1 and the similarity 
between any edge pairs is relatively high.  

B. Extracting the protein complex core 
Based on the definition of protein complex cores, we are 

now ready to describe our proposed algorithm to extract them. 
In our algorithm, we first pick up the edges that must be in 
cores. Although these edges are in-core edges, they are in 
different cores. In order to decide which edges belong to the 
same core, we group them by the similarities between them. 
In this way we get some edge community and consider the 
edges in the same community are the edges in the same core. 
The induced subgraphs of the edge communities are the cores 
we want to extract. 

Algorithm 1 illustrates the overall framework to extract 
protein-complex cores. For each edge e  in the PPI network 

( , )G V E= , we calculate its clique size and bridgeness value 

in line 3-4. Then we construct a virtual graph 'G  in line 6. 
The vertices in 'G  are the same vertices in G  and there is no 
edge in 'G  initially. In line 7-13, we check every edge in 
graph G  and add to graph 'G the edges that satisfy the 
constraints in line 8 or line 10; therefore, the graph 'G  only 
contains the edges belonging to cores and we can regard 
graph 'G  as a combination of protein complex cores. After 
that, in line 16, we use edge-partition algorithm to extract 
protein complex cores in each connected component in 'G , 
and the details of edge-partition algorithm are described in 
Algorithm 2. 
Algorithm 1. Protein-complex core extracting algorithm 
Input: The PPI network ( , )G V E= ; 

Bridgeness threshold ω ; 
Similarity threshold τ ; 

Output: The set of protein-complex cores, SC. 
1: ;SC = Φ  //initialization 
2: for each edge e E∈  do 
3:     calculate the clique size eS  of e ; 

4:     calculate the bridgeness eB  of e ; 

5: endfor 
6: construct a virtual graph ' ' '( , )G V E= , satisfying 

'V V= and 'E = Φ ; 
7: for each edge e E∈  do 
8:     if 4eS ≥  and eB ω<  do 

9:         add the same edge to 'G ; 
10:   elseif 3eS =  and 1eB =  do 

11:         add the same edge to 'G ; 
12:     endif  
13: endfor 
14: obtain a set of connected components in 'G ; 
15: for each connected component comp do 
16:     Cores=edge-partition(comp);  

// Cores is a set storing the protein complex cores  
// identified in the  connected component comp 

17:     insert all the elements in set Cores to SC; 
18: endfor 

Algorithm 2 is used to cluster those in-core edges. It needs 
a parameter, called similarity threshold τ , to decide the 
cluster granularity. For each edges in the component 

( , )cp cpcomp V E= , if it isn’t in a known community, we will 

insert it into an empty set named by _edges core  in line 7. 
Then we find the edges similar with any of the edge in set 

_edges core  in line 9, and insert these edges into set 
_edges core  in line 10 (When we talk about two edges are 

similar, we mean the similarity between them is bigger than 
the parameter τ . In our experiments, τ  is set to 0.6). This 
process will stop until we couldn’t insert any edge into set 

_edges core . The edges in _edges core  constitute a new 
edge community. If there are more than one element in set  

_edges core , the induced vertices of the _edges core  will 
be regarded as a protein-complex core and inserted into set 
Cores in line 15-17.  
Algorithm 2 edge-partition (comp)  
Input: The connected component ( , )cp cpcomp V E= ; 
            Similarity threshold τ ; 
Output: The set of protein-complex cores, Cores 
1: Cores = Φ ; 
2: _Searched Edges = Φ ; 

  // Set _Searched Edges  stores the edges in known  
// communities. 

3: for each edge cpi E∈  do 

4:   if _i Searched Edges∉  do 
5:     insert i  into _Searched Edges ; 
6:     _edges core = Φ ; 
7:      insert i  into _edges core ; 
8:      for each edge j ∈ _edges core  do 
9:         if ∃  edge _k Searched Edges∉   

and ( , )S k j τ>  do  
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10:  insert k  into _edges core ; 
11:  insert k  into _Searched Edges ; 
12:       endif 
13:     endfor 
14:  endif 
15:  if ( _ ) 1size edges core >  do 

// ( _ )size edges core  is the number of edges in 
// set _edges core  

16:      insert _vertices core  into Cores   
// _vertices core  is the induced vertices of _edges core  

17:  endif 
18: endfor 
19: return Cores 

C. Detecting attachment proteins 
After obtaining all the protein complex cores, what 

remains to do is to extract the peripheral information of each 
core and select the reliable attachments cooperating with 
them to form a protein complex.  

We still detect attachment proteins via edges. Given a PPI 
network ( , )G V E= , the set of all the in-core edges in G  is 

labeled as in

coreE . For a complex core ( , )C CC V E= ,  the 
attachment edge connecting a core protein in C and an 
attachment protein of  C  is defined as: 

( ) { | , , . . ( , ) }in

core Cattach C p p E p E q E s t S p q ω= ∈ ∉ ∃ ∈ < , 
where ω  is a closeness parameter which is used to control 
the closeness of the attachment proteins and the core. In our 
experiments, ω  is set to 0.4. In this way, the attachments are 
closely associated with the complex core, showing that these 
attachments are in stable and reliable cooperation with the 
core. 
  The steps of the Finding Attachment Proteins procedure are 
described in Algorithm 3. 
Algorithm 3 Finding Attachment Proteins (SC) 
Input: The set of detected cores SC ; 
            The PPI network ( , )G V E= ; 

The closeness parameter ω ; 
The set of all the in-core edges in

coreE ; 
Output: The protein complexes set PC  
1: PC = Φ ; 
2: for each core C SC∈  do   // ( , )C CC V E=  

3:    for each edge in

corep E∉  do 

4:         if   ( , )Cedge q E and S p q ω∃ ∈ >    do 
5:            insert the induced vertices of q  into core C  
6:         endif 
7:    endfor 
8:    insert C  into PC  
9: endfor 
10: return PC  
  

IV. RESULTS AND DISCUSSIONS 

A. Datasets 
We use two different yeast PPI networks to validate our 

algorithm, including the Database of Interaction Protein (DIP) 
[13] and  Gavin [7] obtained from high-throughput 
technology. The DIP dataset  consists of 4928 proteins and  
17,201 interactions and the Gavin dataset  consists of 1430 
proteins and 6531 interactions.  

To evaluate the predicted protein complexes, a benchmark 
set is constructed from the MIPS [14], Aloy et al. [15] and  
SGD database [16] based on the Gene Ontology (GO) 
notations. This benchmark set consists of 428 protein 
complexes firstly presented in [17]. 

B. Evaluation criteria 
1) Precision, Recall and F-measure 

Before giving the definition of precision, recall and F-
measure, we should define some other concepts first. The 
neighborhood affinity score between a real complex b  in the 
benchmark and a predicted complex p  is used to determine 
whether they match with each other or not, and is defined as  

( )
2

, b p

b p

V V
NA p b

V V
=

×


.  

If ( ),NA p b ω≥ , then they are considered to be matching, 
and ω  is usually set as 0.2. Let B  be the set of real 
complexes, it is the benchmark, and P  be the set of 
clustering results. cpN is the number of predicted complexes 
which match at least a real complex, the mathematic 
expression is { }| , , ( , )cpN p p P b B NA p b ω= ∈ ∃ ∈ ≥ . cbN  
is the number of real complexes which match at least a 
predicted one, the mathematic expression 
is { }| , , ( , )cbN b b B p P NA p b ω= ∈ ∃ ∈ ≥ . Precision and 
recall are defined as [18]:  

| |
cpN

Precision
P

=               
| |

cbN
Recall

B
=                          

F-measure which is the harmonic mean of precision and 
recall, is defined as:  

2 / ( )F Precision Recall Precision Recall= × × + . 
It is used to evaluate the overall performance of the 
different techniques. 
2) Co-localization 

Since protein complexes are formed to perform a specific 
cellular function, proteins within the same complex tend to 
share common functions and be co-localized. Generally, 
higher co-localization scores [17] show that proteins within 
the same protein complexes tend to share higher functional 
similarity, and hence they can be used to evaluate the overall 
quality of predicted protein complexes[8]. 

The co-localization score is defined as the maximal 
fraction of proteins in a complex found at the same 
localization [17].  
3)  GO semantic similarity 
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Semantic similarity is another way to evaluate the quality 
of predicted protein complexes. It is the comparison of Gene 
Ontology (GO) terms associated with the proteins within a 
complex. In 2006, Schlicker et al. [19] proposed a new 
scoring method to calculate the semantic similarity. This 
scoring method basically generates another protein-protein 
interaction scores network containing functional relationships 
based on the GO annotations. The network is then used to 
calculate average inner-complex scores for the predicted 
complex set. The higher this score, the better our prediction 
is. 

C. Complex set comparative evaluation 
In this section, we compare the performance of our 

algorithm with MCL, CPM and CoAch.  
1) Precision, Recall and F-measure Comparison 

Table 1 shows the comparison results in Gavin network. In 
table 1, our method precisely predicts 237 complexes. It 
demonstrates that our method can detect more complexes 
than the other three algorithms. Because we identify much 
more complexes, the precision of our method is lower than 
the other three algorithms. Correspondingly, we get the 
highest recall, which is 28.0%, 90.8% and 14.9% higher than 
MCL, CPM and CoAch respectively. The F-measure of our 
method on Gavin network is the highest of the four 
algorithms. 

We also compare performance of the four algorithms on 
DIP dataset. The comparison results are shown in table 2. On 
DIP dataset, our method correctly predicts more complexes 
than the other three algorithms. The precision of our 
algorithm is 121.4% and 11.0% higher than MCL and CPM. 
The precision of CoAch is only 1.88% higher than ours. We 
get a pretty good F-measure, which is 78.9% and 51.2% 
higher than MCL and CPM, and only 3.9% lower than 
CoAch.  

 
TABLE I.   

THE COMPARISON OF VARIOUS ALGORITHMS USING GAVIN 
NETWORK  

Algorithm 
cp

N  P  
Precision 

(%) 
Recall 

(%) 
F-measure 

(%) 
MCL 112 232 48.3 30.7 37.5 
CPM 54 98 55.1 20.6 30.0 

CoAch 164 325 50.5 34.2 40.7 
Our method 237 556 42.6 39.3 40.9 
 
 

TABLE II.   
THE COMPARISON OF VARIOUS ALGORITHMS USING DIP 
NETWORK  

Algorithm 
cp

N  P  
Precision 

(%) 
Recall 

(%) 
F-measure 

(%) 
MCL 140 835 16.8 46.3 24.6 
CPM 82 245 33.5 25.7 29.1 

CoAch 283 746 37.9 57.7 45.8 
Our method 328 881 37.2 53.7 44.0 
 
2) Colocalization similarity 

To evaluate the localization consistency of our predicted 
complexes, we use two localization benchmark datasets. One 
is published by Kumar et al. [20] and the other one is 
published by Huh et al. [21]. The final localization score is 

calculated as the geometric mean of the co-localization 
scores based on the “Kumar” and “Huh” datasets. We used 
the ProCope[19] tool to calculate the co-localization. 

Figure 2 shows the co-localization scores of complexes 
detected by various approaches on Gavin dataset and DIP 
dataset. The average co-localization score of our method on 
Gavin network is 0.71, which is 26.0%, 29.5% and 44.0% 
higher than CoAch, MCL and CPM respectively. The 
average co-localization score of our method on DIP network 
is 0.71, which is 14.2%, 29.7% and 59.5% higher than 
CoAch, MCL and CPM. 
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Fig. 2. The localization similarity comparisons on two datasets 

3) GO semantic similarity 
The GO semantic similarity score of a complex is the 

average relevance similarity of all protein pairs in this 
complex. The GO semantic similarity score of a set of 
complexes is the weighted mean over all complex GO scores 
and calculated separately for the “biological process”, 
“cellular component” and “molecular function” ontologies. 
Then the final GO score of a set of complexes is calculated as 
the geometric mean of the three ontologies scores.  

Figure 3 shows the results for the comparison of GO semantic 
similarity scores on two datasets. These scores are calculated by 
ProCope tool. The GO semantic similarity score of our 
method on Gavin network is 0.87, which is 6.1%, 10.5% and 
18.7% higher than CoAch, MCL and CPM respectively. The 
GO semantic similarity score of our method on DIP network 
is 0.84. which is 7.7%, 31.2% and 30.2% higher than CoAch, 
MCL and CPM. 
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Fig. 3. The GO semantic similarity comparisons on two datasets. 

V. CONCLUSIONS 
In this paper, we propose a novel core-attachment 

algorithm by characterizing the protein complex core from 
the perspective of edges. First, we characterize protein 
complex cores via edges. Then we propose a method to 
extract the protein complex cores we defined. After that, we 
select the attachments for each complex core to form a 
protein complex. Finally, we estimate the performance of our 

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

76 Zhuhai, China, September 2–4, 2011



algorithm by comparing it with MCL, CPM and CoAch 
algorithms. The experimental results show that our method 
and CoAch are better than MCL and CPM, and our algorithm 
is better than CoAch in many respects. These demonstrate 
that core-attachment is a better way to characterize protein 
complexes and edge communities is a better way to 
characterize protein complex cores. Our proposed method is 
validated as an effective algorithm in identifying protein 
complexes and can provide more insights for future 
biological study. 
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