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Abstract—Systems biology calls for studying system-level 
properties of genes and proteins rather than their individual 
chemical/biological properties. Up to date, most studies aiming 
at this goal are confined to topology-based approach. However, 
proteins have tertiary structures and specific functional roles, 
especially in metabolic systems. Thus topological properties 
such as connectivity, path length, etc., are not good surrogates 
for protein properties. In the present work, we developed a 
method to directly assess protein system-level properties based 
on system dynamics and in silico knockout tests. Applying the 
method to E. coli central carbon metabolic system, we found 
that transaldolase and transketolase-b had great impact on the 
system in terms of both system states and dynamical stability, 
while glucose-6-phosphate isomerase exerted very little 
influence. This finding is highly consistent with experimental 
characterization of metabolic essentiality. We also found that 
enzymes could affect a distant metabolite or enzyme even 
greater than a close neighbor. Our work may create a new angle 
for evaluating protein criticality in a system. 

Keywords—Criticality; System-level property; System 
dynamics; Metabolic system 

I.  INTRODUCTION  
Systems biology focuses on studying properties of 

molecules like genes and proteins at the system level, 
especially their constitutive and functional role as system 
components. By exploring their interplay with the overall 
system, we can evaluate how critical a building block is and 
how different parts vary in properties [1, 2]. Based on such 
knowledge, we can understand how a system is formed, how 
the system-level function is achieved and whether it can be 
modified according to our needs, thus enhancing researches in 
drug target selection, synthetic bio-system engineering, 
complex diseases, etc [3, 4]. E. coli is the best-studied 
organism, for which knowledge has accumulated in each of its 
biological hierarchies, e.g. genetic regulation, genomic 
information, metabolism, etc [5-7]. The central carbon 
metabolism contains glycolysis and pentose phosphate 
pathways as principal parts (supplementary file, Figure S1). It 
is the most common and conservative pathway among 
prokaryotes as well as having close resemblance in eukaryotes 
[8, 9]. Up to date, many genome-scale networks have been 
built on the organism and pathway to reveal essentiality of 
genes and proteins [10, 11]. However, most of such studies 
are based on network topology. They define system-level 
properties as connectivity of a molecule or shortest path 

lengths, etc [12, 13]. Such properties usually have poor 
consistency with experimental characterization, especially on 
the protein level. For example, multiple studies suggest that 
proteins with large connectivity in a protein-protein 
interaction network do not correspond to essentiality. Also, 
many enzymes associated with large number of accompanies 
exert very little influence on cell growth rate [6, 14, 15].  We 
think the possible reason is that these modeling and analysis 
methods do not account for specific biochemical/biological 
functions of proteins, only purely regarding them as vertices 
in an abstract graph.  

Under such consideration, we developed a method based 
on kinetic system, which can accurately reflect system 
dynamics and has explicit context on the biophysical/ 
biochemical basis [5, 16]. Because E. coli central carbon 
metabolic system is the only one with comprehensive kinetic 
data, we used it as our model. By in silico knocking out an 
enzyme, we explored how it influenced the system state, i.e. 
whether state fluctuations were restricted in a limited area or 
spread throughout a broader range; and how large their 
amplitudes were. Moreover, we investigated the dynamical 
stability of the residual system to see whether the system 
maintained or lost metabolic robustness after removing the 
enzyme (Figure 1). From these computations, we gave 
characterization of protein criticality and our discoveries were 
consistent with published experiments. Furthermore, our 
methods may create a new viewpoint for protein criticality 
characterization. 

 
Figure 1. Schematic illustration of the protein criticality characterization 
method. Subfigure A and B show vertices exerting very different impacts on 
the system states. When a particular vertex is perturbed, the impact is within a 
very limited area near the epicenter (red circle in A). When another vertex is 
perturbed, the impact spreads throughout the network, with many distant 
vertices severely affected (red circle in B). Here color gradient corresponds to 
influence amplitude, with empty color representing zero effect. Subfigure C 
and D show the dynamical property of stable and unstable equilibriums. A 
stable equilibrium (Xeq) attracts its neighboring trajectories to it (C); and an 
unstable one repels its neighboring trajectories (D). A stable equilibrium may 

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

60 Zhuhai, China, September 2–4, 2011



collapse due to perturbations on critical system components. Vertices exerting 
severe impacts on system states, or cause qualitative changes in system 
dynamics upon perturbation are attributed with critical system-level 
properties. 

II. RESULTS 

A. System State Fluctuation 
We first simulated the kinetic system to obtain metabolite 

kinetics and flux distributions under normal conditions. Next, 
we carried out in silico knockout of enzymes by modifying 
the corresponding parameters and re-simulating the system. 
Following the definition in previous researches, we regarded 
concentrations as the primary state of metabolic system [6, 
17]. We calculated state deviations of the modified system 
from the original one and we got the fluctuation amplitude of 
each metabolite upon the enzyme’s removal. Here we 
encoded them with a vector f. Second, we assessed the area of 
the influence by calculating the distances of metabolites from 
the removed enzyme and encoded them with a vector d. This 
allowed us to see whether the influence was within a limited 
radius or propagated to distant parts of the system. In short, 
we used a vector pair U = (d,f) to represent system state 
fluctuation (see section METHODS for details).  

We computed 3 enzymes associating to a common 
metabolite fructose-6-phosphate: Transketolase-b (TKb), 
transaldolase (TA), and glucose-6-phosphate isomerase (PGI). 
Since these enzymes mutually formed alternative pathways, 
we computed their system-level properties to examine if they 
shared similar characteristics or had distinct 
constitutive/functional roles in the system. Interestingly, we 
found that they had very asymmetric properties as revealed by 
our method. TKb had relatively large influences on many 
metabolites in the system compared with TA and PGI, 
especially for glucose, sedoheptulose-7-phosphate, and 
erythrose-4-phosphate (Figure 2A). TA also had influences on 
many metabolites, with ribulose-5-phosphate, 
ribose-5-phosphate, xylulose-5-phosphate, and 
sedoheptulose-7-phosphate having the greatest amplitudes 
(Figure 2B). TKb’s overall influences were especially 
superior to TA at the distance ≥ 3 (Figure 2A and 2B), 
indicating that TKb could impact distant areas more strongly 
than TA and exert a more persistent impact with respect to 
distance. In contrast to them, PGI had a very little influence 
with none of the amplitudes being large. Its deletion did not 
exert as much fluctuation as TKb and TA at the distances of 1 
and 2, and the influences were even negligible when distance 
≥ 3 (Figure 2C). Hence, for system-level properties so far as 
system state fluctuation was considered, TKb and TA were 
much superior to PGI.  

More interestingly, we found that the most severely 
influenced metabolites did not always concentrate in the very 
neighborhood of the perturbed enzyme. For example, the 
largest 2 impacts of TKb were at the distances of 2 and 3 but 
not at the distance of 1 (Figure 2A and 2D). Similar patterns 
were also seen from the results of TA and PGI (Figure 2B and 
2C). This suggested that in contrast to the intuition that 
perturbation would cause largest changes to its neighborhood, 
enzymes could exert distant effects due to the leverage of 
system dynamics. We also examined how enzyme knockout 
influenced the system from the enzyme-centric view with our 
method. With each enzyme representing a reaction, we 

computed flux change amplitudes and impact radius on the 
enzyme-centric metabolic network in the same way as stated 
previously. The results showed a similar pattern 
(supplementary Figure S2).  

 
Figure 2. System state fluctuations caused by TKb, TA and PGI deletions. 
(A) and (B) show that TKb and TA exert relatively large influence on system 
states, where the amplitudes are much stronger than those of PGI. TKb has 
larger impact than TA at distances >3. On the contrary, PGI exerts obviously 
small impact upon its deletion. The overall amplitudes are much smaller and 
they become especially negligible at distances >3, indicating PGI’s influence 
is within a limited area (Subfigure C). The results show that TKb and TA 
cause larger state fluctuation to the system than PGI, indicating they have 
different system-level properties. Here subfigure titles “dTKb, dTA and 
dPGI” mean “deletion of TKb, TA and PGI respectively”; x-axis is metabolite 
indexes, see supplementary Text S1 for the mapping of indexes to full names; 
y-axis is the distance of metabolite from the deleted enzyme; z-axis is the 
impact amplitude. Subfigure (D) is a direct demonstration of (A) in biological 
context. It is organized as a metabolite network with TKb highlighted in blue 
and metabolites arranged along green circles representing distance levels. The 
amplitude is proportional to color gradient (upper right corner, “red-yellow” 
corresponds to “strong-slight”). (A) and (D) show that 2 of the 3 most affected 
metabolites locate on the 2nd and 3rd distance levels and the overall impact on 
these levels are not inferior to that on the 1st level, exemplifying that an 
enzyme can affect distant metabolites even greater than its closest neighbors 
and TKb deletion mediates a persistent impact with respect to distances. 

B. System Dynamical Stability 
We found that the original system had an asymptotically 

stable equilibrium point Xeq in a large range of the 
parameter/state space, which made all trajectories in a wide 
neighborhood tending to it. This gives rise to metabolic 
robustness, as slight perturbations in initial values do not 
cause large changes in system states  [18, 19]. Since this 
property is well in accord with Lyapunov stability, we could 
characterize an enzyme’s criticality by examining the 
bifurcations of Xeq exerted by removal of the enzyme in 
mathematics. Such bifurcations include: (1) whether knocking 
out this enzyme made the residual system have no equilibrium; 
(2) if the residual system still had equilibrium, how far its 
location deviated from Xeq; and (3) was its stability property 
changed (the orbit structure in its neighborhood changed). 
Equilibrium was computed by dynamical simulation and 
optimization methods. When it was located, its location 
deviation from Xeq was calculated and its neighborhood orbit 
structures were described by the rules of topological conjugate 
(see section METHODS for details).  

After in silico knockout of TKb, the residual system had 
large qualitative change in dynamics. It had an equilibrium far 
away from Xeq (Figure 3A) and had very different stability 
property. It was an unstable one with the trajectory 
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representing sedoheptulose-7-phosphate kinetics being 
divergent and the 2 dimensions representing 
ribulose-5-phosphate and xylulose-5-phosphate forming a 
limit cycle when certain initial value held. By setting different 
initial values on the 2-dimensional plane of the limit cycle and 
investigating trajectory dynamics, it was seen that the limit 
cycle was an unstable one. Trajectories on the plane inside its 
range converged to the equilibrium’s projection on the plane; 
and trajectories outside its range spread quickly through both 
dimensions (Figure 4A).  Likewise, deleting TA also caused 
the system equilibrium to relocate to a similar distance 
(Figure 3B). Also, this equilibrium had similar neighborhood 
orbit structures to those of TKb (Figure 4B). It was also an 
unstable one with one dimension being divergent and another 
two dimensions forming an unstable limit cycle. For TA, the 
divergent dimension was 6-phosphogluconate and the two 
cycling dimensions were xylulose-5-phosphate and 
sedoheptulose-7-phosphate. In contrast to TA and TKb, PGI 
again showed a very different property. After deleting PGI, 
the residual system still had an equilibrium locating very near 
to Xeq (Figure 3C).  Moreover, this equilibrium was also 
asymptotically stable, with all dimensions converging to it 
(Figure 4C).  Therefore, the stability property of the residual 
system of PGI knockout was just like that of the original 
system, while the knockout of TKb or TA qualitatively 
changed the system dynamics. Hence, for system-level 
properties so far as dynamical stability was considered, TKb 
and TA were more critical than PGI.  

 
Figure 3. Equilibrium deviations caused by TKb, TA and PGI deletions. 
(A): The equilibrium deviation caused by TKb deletion, the 3 dimensions 
shown are metabolite glu, pyr, and sed7p respectively. They are chosen 
because deviations are the most significant along the 3 dimensions. The 
green diamond denotes Xeq, which is the equilibrium of the original system. 
The red solid represents XTKb, the equilibrium of the residual system upon 
TKb deletion. The blue arrow marks the distance of shift. (B and C): The 
equilibrium deviation caused by TA, PGI deletion, respectively. 
Equilibriums are denoted as XTA and XPGI. Legends are the same as (A). The 
results show that TKb and TA cause obviously larger equilibrium shifts than 
PGI. PGI hardly shifts the original equilibrium, thus the residual system 
upon its deletion still equilibrates in the neighborhood of the original 
equilibrium. Abbreviations used here: glu – glucose, pyr – pyruvate, sed7p - 
sedoheptulose-7-phosphate. 

 
Figure 4. Orbit Structures in the neighborhood of equilibriums of the 
TKb-deletion, TA-deletion and PGI-deletion systems. The figures are 
drawn according to topology conjugate. Thus point (0,0,0) in the coordinates 
just represents the equilibrium, not the quantities. The figures only manifest 
that the curves are topologically equivalent to the orbits in the neighborhood 
of the equilibrium, not to be interpreted as real-value trajectories. The figures 
describe the qualitative system dynamics. (A): The orbit structure near XTKb 
upon TKb deletion. The 3 dimensions are ribu5p, xyl5p and sed7p, which 
differ in dynamics from the original system. All the other dimensions exhibit 
similar dynamics as the original system. The dimension sed7p is divergent, 
while ribu5p and xyl5p can form an unstable limit cycle. The 3 colors 
represent 3 orbits with different initial values, corresponding to convergence, 
limit cycle and divergence on the 2D plane (ribu5p, xyl5p). (B): The orbit 
structure near XTA upon TA deletion. The orbit structure is similar to that of 
TKb deletion, but the 3 dimensions differing in dynamics from the original 
system are xyl5p, sed7p and 6pg. (C and D): The orbit structure near XPGI 
upon PGI deletion is exactly the same as the orbits near Xeq in the original 
system (WT). No matter which initial value is set, the orbits eventually 
converge to the equilibrium. Orbits in dimensions of (ribu5p, xyl5p, sed7p) 
and (xyl5p, sed7p, 6pg) are shown in (C) and (D) respectively. The results 
show that XTKb and XTA are unstable, while XPGI is stable. Deleting TKb or 
TA causes qualitative changes in system dynamics while deleting PGI does 
not have such impact, implying TKb and TA have more critical system-level 
properties than PGI. Abbreviations used here: ribu5p – ribulose-5-phosphate, 
xyl5p – xylulose-5-phosphate, 6pg – 6-phosphogluconate. 

C. Comparison with Experimental Characteriztion 
We compared our characterization of system-level 

properties with characterization of essentiality from 
experimental basis. Kim et al.’s work on E. coli metabolism 
defined a set of essential metabolites and demonstrated 
experimentally that if the flux-sum of an essential metabolite 
reduced by more than 50%, the cell growth rate would 
decrease by more than 50% correspondingly [6].  There were 
12 metabolites in central carbon metabolism overlapping with 
the set of essential metabolites. We examined the flux-sums of 
the 12 metabolites by utilizing the simulation power of the 
kinetic model on perturbations, including enzyme deletion. A 
naive method was modifying the correspondent enzymatic 
parameter to zero and leaving the rest of the system as they 
originally were. However, the theory of Minimization of 
Metabolic Adjustment (MOMA) suggested that when a 
perturbation occurred, the system adjusted itself to some 
extent towards a state that was relatively close to normal [17].  
Since MOMA was accepted as a rationale, we adopted it in 
flux simulation upon enzyme deletions, formulating the 
computation as an optimization problem and solving it 
numerically (see section METHOD for details).  We found 
that the flux-sums of the essential metabolites were reduced 
much more than 50% by deleting TKb or TA (Figure 5A and 
5B), thus TKb or TA deletion would result in more than 50% 
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reduction in cell growth rate according to Kim et al. On the 
contrary, deleting PGI did not cause any of the essential 
metabolite flux-sum to drop by 50% (Figure 5C), thus had 
relatively slight effect on cell growth. This indicated that TKb 
and TA had much more weight in functional essentiality than 
PGI, which supported our characterization of criticality.  

Noteworthy, enzyme TKb is encoded by gene tktB, TA is 
encoded by talA, and PGI is encoded by pgi. According to 
Baba et al.’s work on E. coli single-gene knockout mutants 
that measured cell growth rates upon various gene deletions, 
the cell growth rates of the tktB and talA knockout mutants 
eventually dropped to a low level that was only about 30% (or 
below) of the wild type growth; while the growth rate of the 
pgi knockout mutant stayed at a level well above 50% [20]. 
This result was also in accord with our prediction. 

 
Figure 5. Sum of fluxes of essential metabolites. (A): Flux-sum values of 
12 essential metabolites after TKb is deleted. The x-axis represents 
metabolites and y-axis represents the flux-sum values. The blue bars 
represent the flux-sum values in the original system; the red bars represent 
flux-sum values in the system with enzyme knockout. All metabolites suffer 
devastating flux reductions. (B): Flux-sum values of 12 essential metabolites 
after TA is deleted. Legends are identical to (A). All metabolites also suffer 
devastating flux reductions upon TA deletion. (C): Flux-sum values of 12 
essential metabolites after PGI is deleted. The flux-sums of all essential 
metabolites are sustained above 81% of the original value. Some metabolites 
even have increased fluxes due to metabolic compensation effect of 
alternative pathways. The observations support our conclusion that TKb and 
TA have more critical properties over PGI in the system. Abbreviations used 
here: g6p – glucose-6-phosphate, f6p – fructose-6-phosphate, gap – 
glyceraldehydes-3-phosphate, dhap – dihydroxyacetonephosphate, 3pg – 
3-phosphoglycerate, pep – phosphoenolpyruvate, rib5p – ribose-5-phosphate, 
e4p – erythrose-4-phosphate, g1p – glucose-1-phosphate. 

III. DISCUSSIONS 
Studying system-level properties of biomolecules is 

essential to systems biology [2, 21]. But most studies are 
based on network topology and not working very well at the 
protein level [6, 14, 15]. To overcome the drawbacks of these 
approaches, we propose a method based on kinetic modeling. 
In a kinetic system, how a component influences the system is 
determined by both its position and kinetic parameters. 
Position is equivalent to a topological property, while kinetic 
parameters reflect specific biochemical/biological functions. 
Both kinds of information are integrated in kinetic modeling 
and revealed by dynamical simulation [16, 22]. 

By using our method in E. coli central carbon metabolism, 
we have found two categories of enzymes with very distinct 
properties. We find that deleting TKb or TA mediates large 
impact on the system in terms of system state fluctuation, 

while PGI knockout exerts very small influence. This 
indicates TKb and TA might be more critical building blocks 
in the system than PGI. Besides simulating state fluctuations 
from the metabolite-centric view, we have also evaluated how 
the enzymes impact flux distributions in the enzyme-centric 
network, where a similar pattern is observed. We also find 
enzymes can mediate large influence on distant metabolites or 
enzymes. For example, TKb can exert a large impact on 
glucose, whose distance from TKb is 3; similarly, TA can 
impact on a remote compound ribulose-5-phosphate. 
Although PGI has small impact amplitudes, its strongest 
actions are not at the distance of 1 but at the distance of 2. 
This is because bio-systems have complex structures 
consisting of branches, alternative pathways and loops, as 
well as various kinetic parameters differing in orders of 
magnitudes [1, 6, 23]. Such structure acts as a special leverage, 
determining special ways of interaction and effect propagation. 
Only kinetic modeling can reveal such behaviors. Hence, our 
kinetic model based method is useful in knowledge discovery. 
By computation, we can detect remote interacting spots as 
well as assessing their properties at the system level. Such 
analyses can give us more clues on selecting potential 
regulatory targets for use in drug development, metabolic 
engineering, etc. 

Also, TKb or TA knockout mediates qualitative change in 
system stability while system dynamics remains almost 
unchanged upon PGI knockout. Bio-systems in normal 
conditions are subjected to biological robustness as they 
structurally consist of abundant branches, alternative 
pathways and loops [6, 18, 23]. Thus valid formula of a 
bio-system usually has a stable equilibrium, which can attract 
neighborhood trajectories to it, allowing slight changes to be 
tolerated without disturbing normality. Intuitively, if 
perturbing a component destroys a stable equilibrium and 
qualitatively changes system dynamics, the component should 
be regarded as critical. By examining equilibriums and their 
properties, we can assess whether the system has or losses 
stability. The results indicate that TKb and TA are more 
critical building blocks in the system than PGI.  

By utilizing the power of kinetic model for approaching 
real-time events, we simulate fluxes after enzyme deletions. 
We relate the results to a previous study of functional 
essentiality [6]. The comparison shows that our 
characterization of criticality is well supported by functional 
essentiality. In addition, it is noteworthy that multiple 
metabolites (e.g. ribulose-5-phosphate, sedoheptulose-7- 
phosphate, etc.) in the pentose phosphate pathway have 
increased flux-sums (Figure 5C). This is because the cutoff of 
PGI gives rise to alternative pathway activation of TKb and 
TA, 2 backup paths for generating the essential metabolite 
fructose-6-phosphate. Thus the fluxes through relative 
reactions are compensated, resulting in local amplified 
flux-sums for these metabolites. This is a likely result in 
accordance to the MOMA theory [17]. Although MOMA can 
compensate system state and fluxes to some degrees, our 
results show that perturbations on critical building blocks such 
as TA and TKb cannot be smoothed by such compensation 
(Figure 5A and 5B). This is because the compensation effect 
of MOMA is mainly mediated by alternative pathways [6]. 
When a critical component is deleted, leaving inferior 
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components as backup to rely on, the system state cannot be 
compensated efficiently. This is the case of TA or TKb 
deletion. On the contrary, deleting PGI leaves its two superior 
alternative pathways at the “ON” state and system state can be 
efficiently compensated through MOMA. This gives a hint on 
how system-level property evaluation can help in bio-system 
modifications as drug development and metabolic engineering. 
We can delete some system components with inferior 
properties, and this action will result in the alternative 
compensation effect of their alternative pathways with 
superior properties. And the phenotypes of targets at some 
local areas will have automatic compensation due to the 
leverage of system structure and MOMA effect. Therefore, 
comprehensive methods of exploring system-level properties 
can help us make use of bio-complexity in engineering, as 
well as in knowledge discovery.  

We develop our method of characterizing protein 
criticality based on kinetic models. But noteworthy, the 
application of our method is not confined to metabolic 
systems. For instance, we can derive gene transcription rate 
by the power-law formulism, the Hill equation of functional 
influence, or equations of chemical kinetic actions to form a 
dynamical model of genes and transcription factors. Or we 
can describe the ligand-receptor and protein-protein binding 
effects by the mass action law and build models for signaling 
networks [22]. We even do not have to obtain a set of exact 
parameters that can fit the modeled solutions to experimental 
observations. In such cases, kinetic models can still be used to 
analyze the generic behavioral potential of the system, e.g. in 
what parameter ranges will the system exhibit certain 
dynamics and how they change with parameters. Such 
qualitative predictions can also be useful in revealing general 
principles governing complex biological systems. And 
naturally, complicated bifurcation dynamics will be harder to 
analyze. But the idea of our method can be well applied once 
the coexisting dynamical characteristics in bifurcation are 
associated with specific biological implications, just similar to 
the cases in theoretical biology [24]. By integrating 
knowledge from different levels and using theoretical generic 
forms of models [16, 25], kinetic modeling will be eventually 
feasible for more organisms. Hence instead of the 
conventional topology-based approaches, we propose that 
complex system be studied by casting the network into kinetic 
equations and computing the system dynamics; and 
meanwhile, properties of individual system components can 
also be studied on this basis. Overall, our method may provide 
a new viewpoint in revealing constitutive/functional 
properties of building blocks in a biological system.  

IV. METHODS 

A. Kinetic Modeling 
We utilized existing kinetic data in E. coli metabolism and 

adopted a published modeling framework as our working 
platform [5]. The model included all enzymes in glycolysis 
and pentose phosphate pathways. There were 24 enzymes and 
6 transport/biosynthetic reactions relating to external 
processes. There were 18 internal metabolites and 12 external 
metabolites and biosynthesis products. If we considered all 
these reactions and metabolites, there were 30 metabolites and 
30 reactions in our model (supplementary Figure S1). The 

model could also be recasted into an enzyme-centric network, 
by adding a directed connection from enzyme A to B if any of 
A’s products was B’s substrate. We could explicitly see the 
interactions among enzymes (through metabolites) from the 
enzyme-centric view. A schematic representation of it was 
shown in supplementary Figure S3. 

All kinetic rate equations were formulated according to 
biochemical mechanisms [5]. Most of them were casted in the 
uni-/bi-substrate Michaelis-Menten formulism. The kinetics 
for each metabolite was expressed by an ordinary differential 
equation (ODE, Eqn (1)). 

 ( , ) ( , )dX A R X P B X P
dt

= ⋅ +  (1) 

Here vector X denoted system state and P denoted kinetic 
parameters. R was a function vector collocated by all rate 
equations, and A was the stoichiometric matrix. B was the 
term standing for extra reactions (e.g. transport, metabolite 
utilization for cellular growth, etc). Most parameters could be 
found in published studies and the rest could be estimated 
using the experimental conditions, as well as steady-state 
reaction rates and concentrations reported in previous studies 
[5, 26, 27]. For complete descriptions of metabolites, 
reactions, forms of kinetic rate equations and ODEs, see 
supplementary Text S1. 

B. Dynamical Simulation and State Fluctuation 
By substituting in an initial value, a typical Cauchy 

problem was formed and numerical integration curves could 
be computed for Eqn (1). We used the Gear method in 
computation so as to alleviate the stiffness problem of the 
ODE system [28]. With an initial value for normal conditions, 
we obtained the dynamical states of the system X0, i.e. 
concentration kinetics of metabolites under normal conditions. 
After deleting an enzyme, we computed the kinetics of the 
residual system Xe to see how it deviated from the original 
state. Thus the influence of the deleted enzyme could be 
assessed. Assuming solution X was organized as a matrix and 
each column represented the kinetics of a metabolite, we 
could calculate the amplitude of metabolite k’s state 
fluctuation as 

 0

2

e
k k kf X X= −

 

 (2) 

We could calculate the distances of metabolites from the 
deleted enzyme by the metabolite-centric network. 
Metabolites directly associating with the enzyme were 
assigned a distance of 1; metabolites not directly associating 
with the enzyme but associating with the 1st distance level 
metabolites within a direct single reaction were assigned a 
distance of 2, and so on. We combined the distance and 
amplitude results to see in which ranges influences occurred 
and how strong they were. We also computed the flux 
distributions of the residual system based on the metabolites 
concentrations and rate equations. Thus we could observe 
how the flux distributions deviated from the original system 
and assessed them in the same way as Eqn (2). The distances 
of effects could be directly counted from the enzyme-centric 
network. Furthermore, we could combine amplitude and 
distance data into a single measurement for assessing the 
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overall impact, both for metabolite-centric network and 
enzyme-centric network (Eqn (3)).  

 ( , ) ,n
k k

k
M d f f d n N+= ∈∑  (3) 

C. Dynamical Stability 
By observing the trends in system trajectories within 

adequately long time intervals and large parameter ranges, we 
could find the trajectories tending to some area if the system 
had equilibrium. And if it did not have equilibrium, the 
trajectories spread out along some dimensions running beyond 
several orders of magnitudes if simulation intervals were 
adequately long. In order to locate the equilibrium, we used 
the system state at the end time point of simulation as an 
initial guess, and utilized the trust-region method to solve the 
problem [29]. By carefully refining the numerical tests, 
equilibriums could be computed and distances from the 
original Xeq could be calculated by the Euclid norm.  

We defined the dynamical stability property following 
Lyapunov stability, which has explicit context in physics and 
is suitable for describing metabolic robustness [30, 31]. The 
stability of an equilibrium is determined by the eigenvalues of 
the Jacobian matrix evaluated at the equilibrium (Eqn (4)). If 
all eigenvalues have negative real parts, the equilibrium is 
asymptotically stable; if any of them has a positive real part, 
the equilibrium is unstable; and if the Jacobian matrix has a 
pair of purely imaginary conjugate eigenvalues, a limit cycle 
is likely to bifurcate out of the equilibrium. 

 
( )( , )

eq

eq

X
X X

A R X P
J

X
=

∂ ⋅ 
=  ∂ 

 (4) 

The Hartman-Grobman Theorem and Center Manifold 
Theorem prove that if the Jacobian matrix evaluated at an 
equilibrium has 2 conjugate purely imaginary eigenvalues, Ns 
eigenvalues with negative real parts and Nu eigenvalues with 
positive real parts, the trajectories of Eqn (1) near the 
equilibrium are topologically equivalent to those of Eqn (5). 
Here β was a part of the kinetic parameters and σ was +1 
according to our system. In other words, trajectories (near the 
equilibirum) of Eqn (5) are topological conjugates with those 
of Eqn (1). And because Eqn (5) is much simpler, we could 
investigate it instead of studying the complex Eqn (1). In this 
way, we explicitly drew the orbit structures of Eqn (5) near 
the equilibrium and could know the qualitative system 
dynamics of Eqn (1) accordingly. 
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D. MOMA and Flux-sum 
MOMA suggested that metabolic systems were subjected 

to biological robustness. When perturbed, it was able to 
adjust itself to a state that was relatively close to the original 
state. We could formulate this process as an optimization 
problem as in Eqn (6).  
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Here Pμ was the parameter set with corresponding enzymatic 
parameter deleted, X0 was the original state and C0 was the 
initial value.  A state that was closest to X0 in the feasible 
space could be solved with the genetic algorithm, a heuristic 
numerical approach that can alleviate computation difficulty 
in large variable space to some extent.  

We adopted the definition of essential metabolite and 
flux-sum in Kim et al.’s work on E. coli metabolism [6]. The 
12 essential metabolites occurred in central carbon 
metabolism were shown in Figure 5. Here the flux-sum of 
metabolite k was defined as Eqn (7), 

 ( , )
k

k ki i
i

A R X P
∈Ω

Φ = ⋅∑  (7) 

where Ωk was the index set of reactions producing metabolite 
k. 

After MOMA computation, we obtained one (or more) set 
of parameters and system states. Using rate equations, we 
simulated the fluxes and calculate flux-sums according to 
Eqn (7). 
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