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Abstract—Studying protein complexes is very important in bi-
ological processes since it helps reveal the structure-functionality
relationships in protein complexes. Most of the available al-
gorithms are based on the assumption that dense subgraphs
correspond to complexes, fail to take into account the inherence
organization within protein complex and the roles of edges. To
investigate the roles of edges in PPI networks, we show that
the edges connecting less similar vertices in topology are more
significant in maintaining the global connectivity, indicating the
weak ties phenomenon in PPI networks. By using the concept of
bridgeness, a reliable virtual network is constructed, in which
each maximal clique corresponds to a core. By this notion,
the detection of the protein complexes is transformed into a
classic all-clique problem. A novel core-attachment based method
is developed, which detects the cores and attachments, respec-
tively. Finally, a comprehensive comparison between the existing
algorithms and our algorithm has been made by comparing
the predicted complexes against benchmark complexes. The
experimental results on the yeast PPI network show that the
proposed method outperforms the state-of-the-art algorithms and
analysis of detected modules by the present algorithm suggests
that most of these modules have well biological significance in
context of complexes, implying that the role of interactions is a
critical and promising factor in extracting protein complexes.

keywords: protein-protein interaction network; protein
complexes; weak tie effect; clique

I. INTRODUCTION

Interpretation of the completed biological genome se-
quences initiated a decade of landmark studies addressing
the critical aspects of cell biology on a system-wide level,
including gene expression analysis [1], [2], gene disruptions
detection [3], [4], identification of protein subcellular location
[5], [6] and so on. Among them one important and challenge
task in proteomics is the detection of protein complexes
from the available protein-protein interaction (PPI) networks
generated by various experimental technologies such as yeast-
two-hybrid [7], affinity purification [8], mass spectrometry [9],
etc.

Protein complexes, consisting of molecular aggregations of
proteins assembled by multiple protein interactions, are of
the fundamental units of macro-molecular organizations and
play crucial roles in integrating individual gene products to
perform useful cellular functions. It is confirmed by the fact
that the complex ’RNA polymerase II’ transcribes genetic
information into messages for ribosomes to produce proteins.
Unfortunately, the mechanism for most of biological activities

is still unknown and hence accurately predicting protein com-
plexes from the available PPI data has a considerable merit
of practice because it allows us to infer the principles of
biological processes.

The general methods for protein complexes prediction are
based on experimental and computational notions. Experi-
mentally, the Tandem Affnity Purification (TAP) with mass
spectrometry [9] turns out to be popular. However, it is far
away from a satisfying answer because there are several limits
on the TAP [11], [8]. That’s why the computational approaches
are becoming promising alternatives to complement the exper-
imental ones.

Generally, protein interaction data can be effectively mod-
eled as a graph (also called a network) by regarding each
protein as a vertex and each interaction as an edge. It is still
non-trivial to design an efficient algorithm to mine protein
complexes from PPI networks largely due to the fact that
there has not been an exact definition for a protein complex.
To overcome it, Tong et al [13] assumed that a complex
corresponds to a dense subgraph since proteins in the same
complex interact frequently among themselves, and similar
discussion was also made in [14].

Markov Cluster Algorithm (MCL) [18], [17] is a popular
method by simulating random walks within graphs. Molecular
Complex Detection (MCODE) [19] relied on the topological
structure of a network to infer the protein complexes. CFinder
[20] defined a dense subgraph by using the k-cliques. Other
non-topological properties such as the functional information
[23] and data of protein binding interface [24] are also
incorporated into algorithms with an immediate purpose to
improve the accuracy of prediction. In addition, there are some
other for detection of protein complexes relying solely on
TAP date [25], [26], [27]. Recently, Gavin et al [8] have
proved that the protein complexes consists of two compo-
nents: core component and attachment component. It sheds
light on the protein complex detection. Leung et al [15]
proposed the CORE algorithm, a statistical framework to
identify protein-complex cores. Wu et al. [16] presented the
excellent algorithm, named by Coach. Ma et al. [30] also
proposed a core-attachment algorithm by exploring the graph
communicability. They all outperforms the existing state-of-
the-art methods dramatically, indicating the critical role of the
core-attachment structure in discovering protein complexes.
Further information concerning the computational approaches
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for predicting protein complexes can be referred to [28], [29].
At present a major problem confounding the existing com-

putational algorithm is that, available PPI networks are too
sparse, for instance, the average numbers of interactions per
protein are 5.29, 6.98, and 10.62 in DIP [39], Krogan [27], and
Gavin [8], respectively. In these PPI networks, many protein
complexes are difficult to extract since the sparse networks are
full of noises [41]. Unfortunately, previous algorithms did not
pay enough attention to the problem since they only filter the
noises by deleting nodes with degree 1 based on the fact that
the interactions between proteins have lower reliability to the
topological reliability measures [42].

Aside from issues of noise, all the existing computational
approaches only make use of the topological structure infor-
mation from vertices without the roles of edges. It, however,
is unreasonable since an edge may play an important role
in enhancing the locality or be significant in maintaining the
global connectivity. For example, the famous weak ties theory
[31] indicates the job opportunities and new ideas are usually
from persons with weak connections. Furthermore, the weak
ties can be used to characterized the topological properties of
networks such as the stability of biological functions [32], the
accuracy of network structure prediction [33], the structure
in mobile communication networks [34]. Motivated by these
observations, we pose the following question:
Q: whether the roles of edges can be used in protein complexes
detection?

In this paper, we investigate the possibility to extract protein
complexes by exploring the roles of edges and provide an
affirmative answer to the above question. First, we prove that
in PPI networks the edges connecting less similar nodes are
more significant in maintaining the global connectivity. By
using the weak ties, a reliable virtual network is constructed
from the original PPI network, in which each maximal clique
corresponds to a protein complex. A novel core-attachment
based method is developed, which detects the cores and attach-
ments, respectively. A comprehensive comparison between the
existing algorithms and our algorithm has been made by com-
paring the predicted complexes against benchmark complexes.
The experimental results on the yeast PPI network show that
the proposed method outperforms DPClus [36], DECAFF [37],
MCL [18], MCODE [19] and Coach [16]. Further, the analysis
of detected modules by the present algorithm suggests that
most of these modules have well biological significance in
context of complexes, suggesting that the roles of edges are
critical and promising in discovering protein complexes.

This paper is organized as follows. Section II shows the
weak ties phenomenon in PPI networks. Section III contains
the algorithm. The experiments and conclusion are proposed
in Section IV and V, respectively.

II. WEAK TIES PHENOMENON IN PPI NETWORKS

Edges in a network usually have two roles to play: some
contribute to the global connectivity like the ones connecting
two clusters while others enhance the locality like the ones in-
side a cluster. In social networks, the two roles are reflected as

two important phenomena, being respectively the homophily
and weak ties effects [38]. Homophily demonstrates that
connections are more likely to be formed among individuals
with close background, common characteristics. On the other
hand, the weak ties phenomenon shows that the less similar
individuals are prone to be connected with weaker strength.
It has been proved that the weak ties phenomenon exists in
the mobile communication [34] and document networks [35].
But, the weak ties effects are less studied for the PPI network.

To investigate the weak ties effects in PPI networks, we
quantify how the topological structure changes according to an
edge percolation process. In detail, if the weak ties effect exists
in terms of topological similarity, the network disintegrates
faster when we delete edges successively in an ascending
order of the similarity than in descending order. Similar to
[35], two measures are employed to quantify how topological
structure changes when the edges are removed. The first one
is the fraction of vertices contained in the giant component,
represented by RGC . The second one is the normalized
susceptibility, defined as

S̃ =
∑

s<smax

s2/N, (1)

where s is the size of a connected subgraph, N is the size of
the whole network and the sum includes all connected compo-
nents. An obvious gap occurs when the network disintegrates
[43].

Prior to study the percolation, the definition of bridgeness
of an edge should be discussed. In [35] it is defined as

B =
√
CuCv/C(u,v), (2)

where (u, v) is an edge with u, v being the endpoints, Cu is
the size of the maximal clique containing vertex u and C(u,v)

is the size of the maximal clique containing (u, v). It fails to
take into account the difference between u and v. Actually,
if (u, v) is a bridge, the roles of u, v should differ greatly.
Therefore, a new bridgeness is defined as

B(u,v) = (1 − J(u, v))

√
Cu\vCv\u

C(u,v)
, (3)

where J(u, v) is the Jaccard similarity, i.e., J(u, v) =
|N(u)∩N(v)|
|N(u)∪N(v)| with N(u) being the neighbors, and Cu\v is
the size of the maximal clique containing u without v. The
1 − J(u, v) measures the dissimilarity between the pair of
endpoints while the latter component quantifies the relation
between the neigbors of two endpoints. The topological sim-
ilarity for protein pair is defined as

Sim = A+ βA2 + β2A3, (4)

where β is parameter controlling the relevant importance of
each component and A is the adjacency matrix of the network
involved. Here, we set β=0.618.

Fig.1 shows the edge percolation results on the DIP data,
which shows RGC decreases much faster when the less similar
edges are removed firstly. As shown in Fig.1(b), a sharp peak
occurs when the edges removed from the weakest to the
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Fig. 1. Plots(a) and (b) are for the topological similarity, while (c) and (d) are
for bridgeness. In (a) and (b), the min- (max-) lines represent the processes
where the edges are removed from the least (most) similar to the most (least)
similar ones. In (c) and (d), the min- (max-) lines denote the processes where
the edges with smaller (larger) bridgeness are removed firstly.

strongest one, demonstrating the disintegration of the networks
involved. Careful comparison of Fig.1(a)(b) further shows that
no percolation phase transition appears since there is no clear
peak. These strongly supports the weak ties phenomenon in
the PPI networks. How good the bridgeness characterizes the
weak ties phenomenon has been investigated in Fig.1(c)(d).
Fig.1 (c) indicates that RGC decreases much faster when the
stronger bridges are removed firstly. As shown in Fig.1(d), a
sharp peak occurs when the edges removed from the strongest
to the weakest one, demonstrating the disintegration of the
networks involved. It is enough to assert that the bridgeness
is an excellent alternative to describe the tie strength.

In addition, the relations between the topological similarity
and bridgeness are studied in Fig.2, which demonstrates that
there is a negative correlation between bridgeness and topo-
logical similarity, i.e., the weaker the similarity between a pair
of proteins is, the stronger its bridgeness is. In next section,
we will show how the bridgeness can be used to discover
complexes.
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>

Fig. 2. The relation between bridgeness and topological similarity in
PPI networks: <B> is the average bridgeness values of edges with same
topological similarity.

III. METHOD

The key idea behind our algorithm consists of two main
steps: (1) construct a reliable network by exploring the roles

of edges; (2) identify the protein complexes.

A. Constructing a reliable network

Gavin et al [8] have pointed out that the core of a complex
has relatively more interactions while the attachment proteins
bind to the core proteins to form a protein complex, implying
that the connectivity of a core is better than the whole complex.

To assess the topological proximity of a core, the measure of
proximity of a pair of vertices should be handled beforehand.
The most commonly used measures for topological proximity
would be the graph distance, that is, the length of the shortest
path connecting the pair of vertices. However, this quantity
is not appropriate for the biological networks largely because
of the two drawbacks: first, it does not take into account the
global structure of the networks; second, it is very susceptible
to the noises, e.g., a single missing edge may reduce proximity
significantly. Thus, vertices connected via different paths are
likely to be functionality closer than vertices connected via a
single path. In detail, give an edge, say (u, v), it is reasonable
to consider that the information transferred from u to v
through the right channels. The more the channels, the better
connectivity is. Actually, in biological network, the genetic
information is transferred by the pathways. From the aspect
of the graph theory, it is natural to consider the channels as
various walks connecting u, v. Likewise, we also take into
consideration the strength of paths: the strength of the effect
via longer paths with more intermediate vertices is very likely
to be lower than via shorter ones with fewer intermediaries.
Given a walk of length k, say v1 → v2 → · · · → vk+1, its
strength is defined as the product of the weights on each edge
in the walk, i.e.,

∏k
i=1 wi,i+1 where wi,j is the weight on the

edge (vi, vi+1).
Given a un-weighted PPI network, how to assign weights

to edges is one of the key steps in our algorithm. As shown in
Fig.2, there is a negative correlation between bridgeness and
topological similarity. Thus, a novel similarity for interactions
based on the bridgeness in Eq.(3) is proposed as

D(u, v) = exp(−B(u,v)). (5)

The larger the bridgeness of an interaction is, the less similar
it is.

Now it is sufficient to deal with the similarity between a
pair of proteins via various lengths of walks. (Dk)uv denotes
the sum of strengths of all walks of length k connecting u
and v [44]. Since the connectivity in cores is high, any pair
of proteins in the same core should be tightly connected by
short walks. Therefore, the similarity for a pair of proteins is
the sum of strengths of walks connecting them, which can be
a generalization of Eq.(4) as

S = W + βW 2 + β2W 3, (6)

where W is a matrix with element (W )ij = D(i, j).
For any protein pairs, if the similarity between them is large

enough, we have enough reason to believe they should be
connected, otherwise, un-connected. To construct a virtual and
reliable network, similar to [30], a definition is proposed as
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Definition 1 The reliable network Φ(G, τ) = (Vτ , Eτ ) of
the PPI G = (V,E) is the graph with Vτ = V and
Eτ = {(u, v)|u, v ∈ V, ψ(Su,v, τ) = 1}, where ψ(x, τ) is
a function defined as

ψ(x, τ) =

{
1 if x ≥ τ ,

0 otherwise.

There are two good physic interpretation for S: first of all,
if the similarity of a pair of proteins is considered as the
reliable score on the corresponding edge, Φ(G) can also be
considered as a reliable network, second, it can be understood
as a perturbation of the original network by adding edges
between vertices if there are enough short walks connecting
them and deleting edges between vertex pairs if there are fewer
short walks connecting them.

In this way, the core of a protein complex corresponds to
a maximal clique in the virtual network. In the follows, we
design algorithm to discover complexes by extracting cores
and attachments, respectively.

B. A core-attachment algorithm

The first task is to extract all the maximal cliques in the
virtual network, known as the classic all cliques problem, an
NP Hard problem. Therefore, the exact algorithms are prohibit
largely due to the complexity. Thus, we turn to some heuristic
algorithms to avoid the time issue. The Coach algorithm
detects the dense subgraphs very quickly and accurately from
each vertex’s neighborhood graphs [16]. We adopt the Protein-
complex core mining algorithm in the Coach to identify
approximately all cliques in the communicability graph Φ(G).
Of course, others can be used to identify the cliques, for
example, the greedy algorithm, the tabu search and so on.

What we would like to point out is that although we
adopt the same strategy to detect the cores our algorithm
differ greatly from Coach algorithm for two reasons: first, our
algorithm detects core in a virtual network based on the weak
ties phenomenon and L-percolation, while the Coach on the
original network; second, the strategies for the attachment vary
greatly.

Given a core denoted by a induced subgraph G(U) with U
is the protein set of the core and the virtual network Φ(G) =
(V,Eτ ), one crucial step when revealing the attachments is to
construct the candidate protein set CS(U). For simplicity, we
limit ourselves to only these proteins connected to at least one
in U , i.e. CS(U) = {v|v ∈ V \ U, ∃u ∈ U ⇒ (u, v) ∈ Eτ}.

What remains to be done is to determine the correct mem-
bership of each protein in CS(U). To quantify the closeness
of v ∈ U to the core, a function is need. Here we present one
based on the concept of bridgeness. If v is an attachment of
GU , there should be no protein u ∈ U such that interaction
(u, v) is bridge. In other words, there must be many short
walks connecting v and vertices in U . Thus, we can define a
new similarity function as

cl(v, U) =

∑
u∈U Svu

|U | + 1
, (7)

which quantifies the average closeness of v to U from the
aspect of connectivity. The larger cl(v, U) is, the more walks
connecting v and the core. Thus, a vertex v ∈ S is selected
as an attachment when the cl(v, U) ≥ acl(U ∪ N(U)) =∑

v∈S
cl(v,U)

|N(U)|+|U| , indicating that the selected attachment has more
connection ways with U than the average connectivity in
N(U).

The procedure can be described in Algorithm 1.

Algorithm 1 Our algorithm
Input:

G: the PPI network;
τ : the parameter controls the strengthes of edges;

Output:
PC: the set of protein complexes;

1: Compute the bridgeness for each interaction in G accord-
ing to Eq.(3);

2: Compute similarity matrix S as shown in Eq.(6);
3: Construct the virtual network Φ(G);
4: Extract the cores using Protein-complex core mining al-

gorithm [16];
5: Detect the attachments for each core;

IV. EXPERIMENTS

In this section we test the performance of our algorithm
by verifying the prediction accuracy and biological meanings
of the predicted protein complexes. it is coded using the
MATLAB version 7.11.

A. Dataset

The Database of Interaction Protein (DIP) [39] is adopted,
which consists of 4928 proteins and 17,201 interactions. To
evaluate the predicted protein complexes, a benchmark set is
constructed from the MIPS [40], Aloy et al. [21] and SGD
database [22] based on the Gene Ontology (GO) notations.
This benchmark set consists of 428 protein complexes.

In order to make a comprehensive comparison, the four
competing algorithms, Coach algorithm [16], DPClus [36],
DECAFF [37] and MCL [18], are selected deliberately.

B. F-measure and Coverage rate

The basic information of predictions by various compared
algorithms is summarized in Table 1. From it, the MCL
identifies 1116 complexes, of which 193 mach 242 real protein
complexes; DPClus extracts 1143 complexes, of which 193
match 274 real complexes, DECAFF detects 2190 protein
complexes, of which 605 match 243 ones and Coach reveals
746 complexes, of which 289 match 249 real ones. Our
algorithm predicts 604 protein complexes, out of which 230
match 220 real ones in the benchmark.

Fig.3 shows the overall comparison in terms of F-measure
[25] and coverage rate [12] on the DIP data. Although it is
2.9% lower than Coach algorithm, the F-measure of our algo-
rithm is 43.2%, which is 16.7%, 16.5% and 6.0% higher than
MCL, DPClus and DECAFF, respectively. It demonstrates that
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TABLE I
THE RESULTS OF VARIOUS ALGORITHMS USING DIP DATA

MCL DPClus DECAFF Coach Our’s
Predicted complexes 1116 1143 2190 746 620

covered proteins 4930 2987 1832 1832 1702
Ncp 193 193 605 285 230
Ncb 242 274 243 249 220

our algorithm can predict protein complexes very accurately.
From Fig.3, it is very easy to see that our method obtains the
highest coverage rate of 42.8%, which is 7.9%, 9.6%, 11.4%
and 16.2% higher than Coach,MCL, DPClus and DECAFF,
respectively. It shows that the predicted complexes by our
algorithm can cover the most proteins involved in the real
complexes.

From Fig.3, we can make a conclusion that our algorithm is
obviously outperform the MCL, DPClus and DECAFF, and it
makes a better balance between the F-measure and Coverage
rate than the Coach. Such results further demonstrate that the
critical phenomenon in the PPI can be used for enhancing the
prediction accuracy.

F−measure Coverage rate
0

0.1

0.2

0.3

0.4

0.5

MCL
DPClus
DECAFF
Our method
Coach

Fig. 3. The performance comparison for various algorithms on DIP data:
the F-measure and Coverage rate.

C. P-value

To further investigate the biological significance of the
predicted complexes, the P -value is adopted here. The func-
tional homogeneity P -value is the probability that a given set
of proteins is enriched by a given functional group merely
by chance, following the hypergeometric distribution. It is
the probability of co-occurrence of proteins with common
functions. Accordingly, a low P -value of a predicted complex
indicates that the collective occurrence of these proteins in the
complex does not merely combine by chance and thus achieves
high statistical significance. The values are calculated by the
GO::TermFinder [10].

We discarded all clusters with P -value above a cutoff
threshold. In the experiments, we chose a cutoff of 10−2 for
each protein complex because it offers a compromise between
complex-cluster matching rate and a clustering passing rate.

Table II shows the comparison results in terms of the
proportion of significant protein complexes over all predicted
ones. In the Table, our algorithm achieves the best performance

TABLE II
STATISTICAL SIGNIFICANCE OF PROTEIN COMPLEXES OBTAINED BY

VARIOUS ALGORITHMS ON DIP DATA

MCL DPClus DECAFF Coach Our’s
Predicted complexes 1116 1143 2190 746 620
Significant complexes 312 352 1653 622 519
Proportion (%) 34.2 30.8 75.5 83.4 83.7

(83.7%), implying the majority of predicted complexes are
significant. Furthermore, the Coach has a comparative per-
formance with our algorithm but the MCL and DPClus can
only predict a small proportion of significant complexes. To
further demonstrate the predicted protein complexes, 5 protein
complexes with very low P -values, predicted by our method.
The second columun is Table III refers to the ratio of the
annotated proteins to ones in the identified complex.

The P -values of predicted complexes by our algorithm
support that the role of interactions in PPI is a promising on
enhancing the accuracy of prediction.

101 102
100

101

102

Size of protein complexes

Nu
m

be
r o

f p
ro

te
in 

co
m

ple
xe

s

101 102
100

101

102

101 102
100

101

102

101 102
100

101

102

101 102

101

102

(C)

(E)(D)

(B)(A)

Fig. 4. Protein complex size distribution of various method and the
benchmark set: (A) the benchmark set; (B) the Coach; (C) our algorithm;
(D) the DPClus; (E) the MCL.

The module size distribution of predicted protein complexes
for each compared methods on the DIP network has been
shown in Fig.4. From it we can conclude that the major
trend generated by our algorithm is very similar to that of
the complexes in the benchmark set, which suggest that the
definition of protein complex based on the weak tie effect
is reasonable. However, the Coach can identify much less
modules than these in the benchmark set, and its trend is
different from that of the benchmark set. What we would like
to point out is that the size distributions of the DPClus and
MCL algorithms are very different from the previous ones.

Notice that our algorithm is quite different from those based
on discovering the dense subgraphs because it makes use of
the weak tie effect and various length paths. To verify the
difference on the densities of the predicted complexes, we
compared the Coach algorithm with our method in terms of
the graph densities of the predicted complexes, shown in the
Fig.5. It is easy to figure out that more than 50% complexes
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TABLE III
SELECTED COMPLEXES PREDICTED BY OUR METHOD ON DIP DATA

ID Match P -value Predicted complexes Function

1 90.5% 5.44E-44 YBL002W YBR009C YBR154C YDL140C YDL150W YGL070C
YJR063W YKL144C YKR025W YNL113W YNR003C YOR116C
YOR151C YOR207C YOR210W YOR224C YOR341W YPR010C
YPR110C YPR187W YPR190C

DNA-directed RNA
polymerase activity

2 94.4% 8.77E-40 YDL150W YKL144C YKR025W YNL151C YNR003C YOR116C
YOR207C YPR110C YBL002W YBR154C YDR045C YJR063W
YNL113W YOR224C YOR341W YPR010C YPR187W YPR190C

RNA polymerase activity

3 100% 7.57E-26 YPL138C YDR469W YBR175W YHR119W YBR258C YAR003W
YKL018W YLR015W

histone methyltransferase ac-
tivity (H3-K4 specific)

4 88.2% 1.49E-20 YBL093C YBR253W YDR443C YNL025C YNL236W YOR140W
YBR193C YCR081W YDL005C YER022W YGL151W YGR104C
YHR041C YOL051W YOL135C YPL042C YPL248C

transcription regulator activity

5 100% 2.64E-21 Q0085 YBL099W YDR298C YDR377W YJR121W YKL016C
YML081C-A YPL078C YPR020W

proton-transporting ATPase ac-
tivity, rotational mechanism

predicted by the Coach algorithm whose densities are more
than 0.9, while only 40% complexes predicted by our method
whose densities are larger than 0.9. Furthermore, our algorithm
can discover more protein complexes whose densities in range
[0.6 0.9], which suggest that the density is not the only manner
to characterize the protein complex and others are necessary
and reasonable.
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Fig. 5. The comparison on the density of predicted protein complexes from
various algorithm.

D. Effects of parameters

The effects of parameters involved in the algorithm are
studied in this subsection.

The value of τ controls the size of a core, the total
number of cores in the virtual graph, and the connectivity
’strength’ of the network involved. Therefore, we investigate
its effect on the size of the virtual network. Fig.Fig.6 shows
how the number of edges in the virtual network changes for
various values of τ . From it, we cans see that the size of
the virtual graph decreases dramatically when the value of τ
increases from 0 to 0.4. Specifically, the size is approximately
3 × 104 if τ = 0.02. The reason is that when the value of τ
increases, only the edges whose connectivity is strong enough
are maintained.
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Fig. 6. The comparison on the density of predicted protein complexes from
various algorithm.
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Fig. 7. The plot of the F-measure and Coverage rate for different values τ .

The parameter β controls the weights on the edges. Thus,
we study its effect on the accuracy of prediction. Fig.7
demonstrates that the F-measure decreases, while the coverage
rate increases when β increases. A possible reason is that the
size of a maximal clique in the virtual network decreases when
β increases, resulting in many small cores by dividing the
large cores in the virtual graphs with small β. As β increases,
more and more proteins in the PPI data are covered because
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the number of predicted protein complexes increases. For this
reason, the coverage rate keeps increasing. The value of β is
0.618.

E. Robustness analysis

The robustness analysis for the proposed algorithm is dis-
cussed in this subsection. The benchmark networks adopted
here originated from Ref.[12]. In detail, from the protein
complexes annotated in the MIPS database [40], an interaction
network named a test graph is constructed by regarding each
protein as a node and connecting each pair of nodes in the
same complexes. The test graph has a poor value for assessing
the robustness of the algorithms because each protein complex
corresponds to a clique in the test graph. To solve this problem,
the altered graphs are constructed from the test graph by
adding or deleting the edges in various proportions. For the
sake of convenience, the altered graph is denoted by AGadd,del

where add and del show the percentage of added and deleted
edges, respectively.

In this experiment, only the MCL and Coach algorithms are
selected for a comparison. The reason is that it is reported that
the MCL is the most robust algorithms [12], and the Coach
algorithm is the best core-attachment based method.
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Fig. 8. The comparison on the density of predicted protein complexes from
various algorithm.

The Fig.8(A) shows how the geometric accuracy fluctuates
as the number of edges increases. Increasing proportions of
edges were randomly added to the test graph from 0% to
100%. Both the MCL and our algorithm are barely affected
by the additions of up to 100% edges, while the performance
of Coach is acceptable for low values of noise, they change
dramatically when the percentage of added edges increases to
40%. A good reason is that our algorithm is much more stable
than the Coach algorithm is that, as the percentage of added
edges increases, the added edges connecting to the vertices in
different cliques yield larger complexes(through merging the
small complexes). In this case, the altered graph is not suitable
for correctly extracting the complexes by the Coach algorithm.
However, our algorithm can remove the noise dramatically

because it extracts the protein complexes in a virtual network,
where some of the added edges are filtered by increasing the
value of the threshold τ .

Fig.8(B) displays the impact of edge addition on the sep-
aration. We can see that both the MCL and our algorithm
have good performances when the percentage of the added
edges increases to 80%, while the performance of the Coach
algorithm decreases when the percentage of added edges
increases to 20%.

The impacts of edge removals on the geometric accuracy
and separation are shown in Fig.8(C)(D), respectively. The
Fig.8(C) demonstrates that both the MCL and our algorithm
outperform the Coach algorithm and ours has competitive
performance when the percentage of the removed edges is
less than 20%. A possible reason is that, as more and more
edges are deleted, it becomes more and more difficult to re-
obtain the deleted edges. When the percentage of removed
edges is more than 20%, the virtual network constructed by
our algorithm differs greatly from the original test graph. The
general trends in Fig.8(D) are similar to those displayed in
Fig.8(C).

V. CONCLUSION

Protein complexes are key and basic molecular units in
cellular functions and computational approaches to discovering
accurately the unknown protein complexes hidden in the
available PPI data are critical need. At present all these com-
putational algorithms focus on the roles of proteins without
taking into account the roles of interactions.

In this paper, we investigate the possibility to predict protein
complexes with the roles of edges in PPI networks. Firstly, the
weak tie phenomenon in the PPI network is proved by using
the concept of bridge. Secondly, a reliable and virtual PPI
network is constructed making use the relations of topological
similarity and bridgeness. Finally, a core-attachment algorithm
is designed. The experimental results demonstrate that the
roles of edges in biological network is more promising than
the roles of proteins, implying the significant importance of
the roles of interactions.
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