
Copy Number Detection Using Self-weighted
Least Square Regression

Xiaorong Yang
College of Statistics & Mathematics

Zhejiang Gongshang University
Hangzhou, 310018, China

Email: xryang@mail.zjgsu.edu.cn

Ke-Ang Fu
College of Statistics & Mathematics

Zhejiang Gongshang University
Hangzhou, 310018, China

Email: fukeang@hotmail.com

Abstract—In this article, an efficient algorithm to detect the
breakpoints in DNA copy number alterations is considered. In
view of the influence of the heavy noises, the self-weighted
least square estimation is adopted to downweight the covariance
matrix of the wild observations (outliers), which ensure the
convergence between the estimated parameters and the true
values. The proposed approach makes use of the most of the
data itself to reduces the complexity of the model, and presents
an insightful discussion for discovery of copy number alterations.

I. INTRODUCTION

DNA copy number alterations characterize the potential
biomarkers of the human diseases. Amount of techniques con-
tribute to the structural detection in the expression of gene mi-
croarrays. With the development of genome-wide analysis of
DNA copy number, various high resolution platforms emerge,
such as comparative genomic hybridization (CGH) array and
single nucleotide polymorphism (SNP) arrays. Related litera-
tures always focus on the identification of the change points of
the amplified or deleted segments. For instance, [1] developed
a partition method called circular binary segmentation (CBS),
which seeks for two break points at a time by considering
the segment as a circle. It is a modification of the traditional
binary segmentation. [2] used an unsupervised hidden Markov
model (HMM) approach to sort the chromosome into different
states representing different copy numbers. Later on, dynamic
programming developed by [3] was used to search the change
points. This approach was further improved by [4] with a
penalized likelihood being combined. [5] tried to denoising the
data by wavelet smoothing method in the detection process.
[6] proposed a LASSO based least regression with L1 penalty
to access DNA copy number alterations.

The goal of the data analysis is to obtain the accurate struc-
ture of the sequence, and the cost of the computation time is
also of important. Some existing approaches with complicated
models or nuisance parameters are only feasible theoretically.
Moreover, the resolution of arrays is much higher than before,
the data itself contains heavy noises due to all kinds of
mistakes generated during the experiments or manipulations.
The expression data is usually modeled as regressions plus
residuals. Traditional methods always restricted the models

with Gauss noises or noises with finite moments. Although
current methodological advancements in bioinformatics or
computational biology, models with Gaussian assumption in
stochastic processes are still widely assumed in various cases,
it does not mean the assumptions are unfeasible in practical
problems. As mentioned, data is usually contaminated or
presents some dependent properties, therefore, new approaches
which have the capability to deal with heavy noise are desired.

Among the frequently used model, the regressive process
models the observed value as a true copy number at a specific
marker plus a random noise. The ordinary regressive estima-
tion such as the least square method gives the same weight to
the wild observations which cannot reduce the effect of these
points on the covariance matrix and make the convergence
between the estimated parameters and the true values no longer
hold. Motivated by practical applications, our interest is to
reduce the effect of the wild points in the sequence. We employ
a self-weighted regression estimation to deal with the models
involving heavy noises including infinite variance residuals.
This method is distribution free for residuals. In a sense, the
proposed method can be widely used.

The rest of this paper is organized as follows. Section 2
shows the models and methods. Section 3 describes the results
of data analysis. And the discussion is presented in Section 4.

II. MODELS AND METHODS

In this section, we describe the model fitted the copy number
alterations, and state the statistical hypothesis test. The change
points detection problem is formulated as an optimization,
which could use a recursive algorithm to get a quick reply.

A. The Regression Model

For a CGH profile or a SNP array, we assume Yi is the
log2 ratio of intensity of marker i on a chromosome. Yi can
be realized by a true relative copy number μi at marker i
plus a random noise (we call it residual), see the following
formulation

Yi = μi + εi, i = 1, 2, · · · , n, (1)
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where n is the number of markers on a given chromosome.
Since the copy number data are ordered by the locations
of the markers and have spatial dependence due to physical
dependence, the intensities of any adjacent markers are very
close to each other.

Set μ0 = 0, and define βj = μj − μj−1, then βj can be
regarded as as the jump between the (j−1)th and jth markers.
Then model (1) can be reformulated into the following one

Yi =

i∑

j=1

βj + εi, , i = 1, 2, · · · , n.

The above model can be rewritten as

Yi = IT βi + εi, , i = 1, 2, · · · , n, (2)

where I is a i × 1 unit vector, and βi = (β1, β2, · · · , βi)
T . If

there is no copy number alteration, βi = (μ0, 0, · · · , 0)T =
β0. Consequently, we aim at testing the following null hypoth-
esis that βi remains constant, i.e.

H0 : βi = β0

against the alternative one that at least one component of βi

varies over positions.
In practical application, m change points are allowed to

appear in a chromosome. Then βi shifts from one stable state
to different ones. Altogether, there are m + 1 segments in
which the components are constants. We consequently use the
partition index Im = {i1, i2, · · · , im} to denote the set of
change points, hence model (2) is equivalent to

Yi = IT βj + εi,

i = ij−1, ij−2 · · · , ij ; j = 1, 2, · · · , m + 1, (3)

and obviously, i0 = 0, and im+1 = n.

B. The Self-weighted Least Square Estimation

Usually, the parameters βj in model(3) is derived by ordi-
nary least square estimation, i.e.

β̂j = arg min

n∑

i=1

(Yi −
i∑

j=1

βj)
2,

see [6] for example. Asymptotic normality and weak conver-
gence of the estimators are required in statistical inference,
or else the obtained estimators are meaningless. However, to
get these properties, finite moment assumptions on residual
sequence {εi} are usually needed. As mentioned, in bio-data
analysis, noises heavily influence the results. Large positive or
negative values of residuals produce the response variables to
be outlier. Sometimes, the same error produces many leverage
points such that response variables have heavy tails, which
results in the existence of large deviation. To ensure the
convergence between estimated parameters and the true value,
the we modify the objective function as

β̂j = argmin

n∑

i=1

ωi(Yi −
i∑

j=1

βj)
2, (4)

where the weight ωi is a function of {Y1, · · · , Yn}, and that
is why we call it ”self-weighted least square estimation”.

By the proposed approach, even if the residuals {εi} have
infinite variance, i.e. the data have heavy noises, we still obtain
a good estimation which approximates of the true values well.
The weights used in our method are analogues to the influence
function in [7]:

wt =

{
1, if at = 0,

C3/a3
t , if at �= 0,

(5)

where at = |Yt|I(|Yt|≥C) and C > 0 is a constant.

C. Structural Changes

We pay close attention to the structural change of the DNA
copy number, therefore, a statistical test is stated here. For the
simplest case, if there is only one change point at position j,
i.e., m = 1, the F test statistic can be calculated by

Fj =
ε̂T ε̂ − ε̂(j)T ε̂(j)

ε̂(j)T ε̂(j)/(n − 2k)
, (6)

where ε̂(j) is the ordinary least square residual at position j,
and ε̂ is the residual from the unsegmented model. The above
defined F statistics are then computed for i = nh, · · · , n −
nh(nh > k), where nh = [nh] is a trimming parameter chosen
by the practitioner. We reject the null hypothesis H0 if their
supremum is too large.

If the partitions Im is given, the least square estimates for
βj can be easily obtained. The residual sum of squares (RSS)
is given by

RSS(i1, i2, · · · , im) =
m+1∑

j=1

rss(ij−1 + 1, ij), (7)

where rss(ij−1 + 1, ij) is the usual minimal residual sum of
squares in the jth segment. However, in practice, the change
points are rarely given exogenously but are unknown, the
purpose is to find the estimation î1, · · · , îm that minimize the
objective function

(̂i1, · · · , îm) = arg min
(i1,i2,··· ,im)

RSS(i1, i2, · · · , im). (8)

The global minimizers in (8) is not easy to derive, if we
execute a grid search, the computing complexity would be of
order O(nm). For any m > 2, the computation time will out
of affordability. To overcome the problem, many hierarchical
algorithms have been proposed, like the recursive partitioning
by [8], the joining subsampling method by [9], etc. These
approaches are much more efficient than global search, and
are of order O(n2) for any m. In a maximum likelihood
framework, [10] discussed the change points estimation prob-
lems, which extended the early work in [11]. Following the
idea ”Bellman’s principle”: the optimal segmentation satisfies
the recursion in (9) (see below), [12] presented a dynamic
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Fig. 1. Detected change points for BAC array. The data spots are the log2
ratios of the observations. The vertical lines indicate the predicted change
points of the array.

programming algorithm for pure and partial structural change
models in an ordinary least square regression context.

RSS(Im,n)

= min
mnh≤j≤n−nh

[RSS(Im−1, j) + rss(j + 1, n)]. (9)

It implies that we only need to know the ”optimal previous
partner” for each breakpoint j in an m-partition. The com-
putation cost will decrease significantly since the recursive
relation rss(i, j) = r(i, j − 1) + r(i, j)2 holds, where r(i, j)
is the recursive residual at time j of a sample starting at i.
One can refer [12] and [13] for details.

III. RESULTS

We applied our approach to some public datasets. Simu-
lations of heavy noise dataset will be generated to test the
performance of the method. Also, high resolution SNP array
will be included to see the efficiency of the algorithm (see
section IV for details).

A. Application to public dataset

To evaluate our method, we first apply the algorithm to two
public datasets. The first one is BAC array (http://www.nature.
com/ng/journal/v29/n3/suppinfo/ng754 S1.html). The dataset
was used by [1], [2], [5], [14] and others to evaluate their
methods. This BAC array contains measurements for 2053
BACs spotted (spots with no expression values were deleted)
in triplicates. The second one is a CGH array used in [6] (http:
//bioinformatics.med.yale.edu/DNACopyNumber). The detec-
tion results by both ordinary least square estimation and self-
weighted least square estimation are visualized in Fig. 1 and
Fig. 2 for BAC array and CGH array, respectively. The weights
used is defined as (5) with the cutoff value C = 0.35, which
corresponds to the critical value of a copy number of three or
one, see also [6].
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Fig. 2. Detected change points for CGH array. The data spots are the log2
ratios of the observations. The vertical lines indicate the predicted change
points of the array.

The vertical lines in both Fig. 1 and Fig. 2 are the locations
where the predicted change points are. Both the top sub-
figures indicate that the detection results by ordinary least
square estimation will be interfered by noise because we give
the equivalent weights to each observation. Therefore, the
segmentations are quite different with the truth. However, if we
used the proposed method to modify the weights of outlier, the
copy number alterations can be inferred correctly. It implies
that our approach is a powerful tool in the applications for
contaminated dataset, as we make good use of the data itself.

B. Simulation

The simulation data used in this paper is referred as that
of [6]. However, we modify the residuals as random variables
generated from Cauchy distribution, which have infinite vari-
ance (i.e. heavy tail noises).

We assume that the true log2 ratios of 1000 markers follow
model (1) with {μi} defined in Table I.

The residuals {εi} follow the Cauchy distribution with loca-
tion parameter 0 and scale parameter 1. Both the mathematical
expectation and the variance of Cauchy distributed variable are
infinite, which mean the residuals are heavy tailed.

Since the residuals has no mathematical expectation, the
absolute values of the observations are pretty large, some

TABLE I
SIMULATION DATA: LOG2 RATIO OF 1000 MARKERS

i 1-100 101-150 151-450
µi 0 1 0
i 451-600 601-900 901-1000
µi 0.585 0 -1
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Fig. 3. Visualization of simulation data with residuals’ range from -5 to 5.
The data spots are the log2 ratios of the observations.

are great than 1500. We visualized all 1000 observations
in Fig. 3 with the range of vertical axes range from -5 to
5. From Fig. 3, we notice that the scatter plot of the data
exhibits disorderly and unsystematic, we can hardly catch the
true copy number alterations. The detection problem becomes
troublesome. The detected change points by both ordinary least
square estimation and self-weighted least square estimation
are visualized in Figure 4. Cauchy distribution may generates
extremely large values, therefore, the scale of vertical axes
varies from -1500 to 500 in the top windows in Fig. 4. It
makes the breakpoints invisible. In order see the performance
of our method, we visualized the detected change points of
the data again in the bottom of Fig. 4, but we remove the
residuals such that the original copy number of each marker
could be clearly displayed. From the comparison, we find that
our approach eliminate the influence of the noises. However,
the traditional least square estimation is thoroughly inefficient.

IV. DISCUSSION AND CONCLUSION

Various statistical approaches for analyzing the copy num-
ber data were developed in the past few years. Our algorithm
is a kind of regression based method in essence. While the
realization of the detection based on a dynamic programming
with the complexity of order O(n2). An analogous approach
is a LASSO based penalized least square estimation in [6].
The LASSO based method fails with default parameters if we
modify the residuals from a Cauchy distribution. Moreover, we
once tried to apply this method to a 250K SNP array, it took
more than 6 hours to run the algorithm for each sample array,
but nothing could be found. The failure might because the
LASSO based method is time-consuming for high resolution
data. We also apply our algorithm to each chromosome of the
same array, the average response time is 25 minutes.

The selection of the weights is mild. Under some restric-
tions, if proper weights is given (for example, the E(ωt+ω2

t ) <
∞, where E denote the mathematical expectation.), it can
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Fig. 4. Detected change points for simulation data. The data spots are the
log2 ratios of the observations. The vertical lines indicate the predicted change
points of the array.

easily downweights the covariance of the wild observations.
There are many different weights can be chosen, such as
wt = (1 + C‖Yt‖2)−3/2, I(max1≤i≤p |Yt−1| ≤ C). A basic
principle of selection of the weights is that ”the larger the
observations are, the smaller the weights should be”. The
detection results are not sensitive to the selected weights if
the above principle satisfied. However, the cutoff of value (i.e.
the constant C in weights) should be meaningful (like we use
0.35 because it corresponds to the absolute values of log2 ratio
of copy number deletion or amplification). Moreover, different
weights will results in different response time of the algorithm.
The theory of the weight selection can go through [15], [16]
and [17] for details. The weights defined in (5) work more
efficient than others.

In this article, we proposed an efficient algorithm to detect
the breakpoints in the copy number alteration. To avoid the
influence of the heavy noises, we adopt the self-weighted
least square to downweight the covariance matrix of the
wild observations, which make the convergence between the
estimated parameters and the true values hold. The proposed
approach makes the most of the data itself and dramatically
reduces the complexity of the model. The superiority of our
method is that the distribution of the residuals in the model
is free, therefore it presents an insightful discussion for copy
number alteration discovery.
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