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Abstract—Complex chronic diseases are usually not caused by 
changes in a single causal gene but by an unbalanced regulating 
network resulting from the dysfunctions of multiple genes or 
their products. Therefore, network based systems approach can 
be helpful for the identification of candidate genes related to 
complex diseases and their relationships. The Axial 
spondyloarthropathy (SpA) is a group of chronic inflammatory 
joint diseases that mainly affects the spine and the sacroiliac 
joints, yet, the pathogenesis of SpA remains largely unknown. In 
this paper, we conducted a networked systems study on the 
pathogenesis of SpA. We integrated data related to SpA, from 
the OMIM database, proteomics and microarray experiments of 
SpA, to prioritize SpA candidate disease genes in the context of 
human protein interactome. Based on the top ranked SpA 
related genes, we constructed a PPI network and identified 
potential pathways associated with SpA. The PPI network and 
pathways reflect the well-known knowledge of SpA, i.e., immune 
mediated inflammation, as well as imbalanced bone modeling 
caused new bone formation and bone loss. This study may 
facilitate our understanding of the SpA pathogenesis from the 
perspective of network systems. 

Keywords- spondyloarthropathy, disease gene, protein-protein 
interaction network, pathway, microarray expression, proteomics 

I.  INTRODUCTION  
Axial spondyloarthropathy (SpA) is a family of chronic 

inflammatory joint diseases of the spine and the sacroiliac 
joints, and ankylosing spondylitis (AS) is one of the major 
prototypes of SpA. The two central features of SpA are 
inflammation and new bone formation, especially in the spine 
[1]. Inflammation first occurs around the sites where 
ligaments attach to bone. As the inflammation heals, there 
is new bone formation in the ligament, causing the 
thickening or hardening of the underlying bone, and 
eventually the fusion of the vertebral bodies and even the 
spinal stiffness. It is known that SpA is associated with 
multiple genes, such as HLA-B27, TNF and IL23R [2]. 

However, the pathogenesis of SpA remains largely unknown. 
The complexity of the disorder indicates a multifactorial 
etiology involving multiple biological processes or pathways. 
In this work, we integrated SpA-associated genes from 
different resources (known disease genes in the OMIM 
database, proteomic and microarray experiments) and 
proposed an approach to prioritize candidate genes in the 
context of human interactome. We then took out the genes 
most likely associated with SpA to construct a protein-protein 
interaction (PPI) network of SpA and identified potential 
pathways involved in SpA. The PPI network and pathways 
could facilitate our understanding of the pathogenesis of SpA. 

II. MATERIALS AND METHODS 

A. Collection of SpA-active genes  
We collected genes active in SpA from three resources as 

follows: 

(1) the Online Mendelian Inheritance in Man (OMIM) 
database [3]: we searched the OMIM database with a 
keyword “Spondyloarthropathy” and found 8 causal 
genes: HLA-B, TNFA, IL23R, CYP2D6, TNFSF13, 
TNFSF13B, B2M and COL2A1. 

(2) Proteomic experiment results: quantitative proteomics 
approaches were applied to investigate changes in protein 
expression in AS (the most common prototype of SpA) 
monocytes in comparison with healthy controls [4]. We 
used the 43 genes whose encoded proteins were 
differentially expressed [4] as active genes in SpA. 

(3) The NCBI Gene Expression Omnibus (GEO) database: 
we searched the GEO database and found two microarray 
experiments related to SpA: GSE1402 (Affymetrix 
U95Av2) and GSE18781(Affymetrix HG_U133_Plus2). 
The GSE1402 experiment included a comparison of 
peripheral blood mononuclear cells (PBMC) from 
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juvenile SpA with that of normal individuals, and the 
GSE18781 experiment was an investigation of peripheral 
blood cells from 18 subjects with SpA and 25 normal 
individuals. Samples in the GSE18781 experiment were 
proceeded as two separate sets at different times: 11 SpA 
+ 12 control subjects in Set 1 and 7 SpA + 13 control 
subjects in Set 2. We treated the results of these two 
experiments as three separate datasets. 

To integrate gene expression data from the two different 
platforms, we mapped the probe sets of the platforms to 
Entrez Gene ID. This process yielded a set of 9448 genes 
common to the two platforms. For each gene in a dataset, we 
calculated the average expression level for probe sets 
associated to this gene, and filtered out genes whose mean 
expression ratios (SpA over control) in the two samples are 
greater than .67 (1/1.5) and less than 1.5. In the next step, we 
converted the expression value to its rank in the common 
genes [5]. Thereafter, a nonparametric two sample test, the 
Wilcoxon rank-sum test, was used to test if a gene is 
differentially expressed in the SpA and control samples and 
the p-value of the Wilcoxon rank-sum test was obtained. For 
such a large number of genes being simultaneously tested, the 
FDR [6] corrected p-values were used for screening 
differentially expressed genes. Given FDR level of 0.10, we 
found genes that are differentially expresses in the two 
samples for each of the three datasets. We then combined 
differentially expressed genes in the three datasets and 
identified 119 distinct genes potentially active in SpA. Finally, 
the combination of genes from the three recourses yielded a 
total of 168 SpA-active genes. These 168 potentially SpA-
active genes were used in a subsequent analysis (see Section 
III A). 

B. Protein-protein interaction data 
Weighted protein-protein interactions (PPI) of human 

beings were downloaded from version 8.3 of STRING [7]. 
STRING includes both physical and functional interactions 
integrated from numerous sources, including experimental 
repositories, computational prediction methods and public text 
collections; uses a scoring system to weigh the evidence of 
each interaction; and includes the interactions between 14532 
proteins (Entrez gene ID) of human genome. We normalized 
the interaction scores in STRING to the area [0, 1] and 
represented the weighted PPI network as a matrix W. 

Innate immunity-relevant human proteins and their 
interactions were downloaded from the InnateDB database [8] 
on April 25, 2011. Till the day we downloaded the data, this 
database includes 2310 human genes and 4819 interactions 
manually collected by literature review.   

C. Pathway data  
We downloaded pathway data from the FTP service of 

KEGG [9] (Kyoto Encyclopedia of Genes and Genomes) on 
April 11, 2011. The KEGG PATHWAY section is a 
collection of manually drawn pathway maps representing the 
information on the molecular interaction and reaction 
networks. The “hsa_pathway.list” file in this section includes 
a list of known proteins encoded by H. sapiens’s genome and 
the corresponding pathways in which these proteins are 
involved.  

D. Scoring and ranking genes 
Having a group of SpA-active genes as seeds, we 

developed a Katz’ centrality based index [10] to prioritize 
genes in the protein-protein interaction network. The starting 
point from the derivation is the observation that disease genes 
are typically close, in the associated protein network, to other 
disease genes [11-13]. Given a weighted human interactome 
represented as a matrix W corresponding to the interaction 
strength between genes, and a set D of k known disease-active 
genes as seeds, we define vector  T

nxxx ),...,,( 21=x as 
initially known activity of genes in the disease, with xi =1 if 
gene i is in the set D, xi=0 otherwise. It should be noted that 
our SpA-active gene set is a combination of OMIM, 
proteomics and microarray data, each of which actually has 
different confidence level for the study of disease 
pathogenesis. A good way is to set different weights for them. 
But determining the value of each weight makes the solution 
much more difficult. For simplicity, we just give them the 
same weight. 

Let T
nsss ),...,,( 21=s  be our score vector over the set 

of genes (where si indicates how strong i is as a disease-gene 
candidate),  

       ∑+=+

j

t
jiji

t
i swxs φ1                                           (1)                                              

where t indicates iteration time, and  φ  is a parameter that 
sets the relative contributions of the activity x and links in 
protein interaction networks W to the score. If φ  is small, the 
known activity is more important; if φ  is large, the coupling 
to the protein neighbors is more important. φ  needs to be 

calibrated with real data. The score could be obtained by 
performing the iteration until the algorithm converges, and 
then all genes in the protein-protein interaction network could 
be ranked according to their s-scores.  

Equation (1) can be represented as matrix form as follows: 

           Wsxs  φ+=                                                       (2) 

which can be solved by matrix algebra: 

          xWIs 1−−= ] [ φ                                                 (3) 

where 1WI −− ] [ φ represents the inverse of the matrix 
WI  φ− . We solved (3) by Jacobi iteration algorithm.  

The known k disease-active genes were used to determine 
the parameter. For different values ofφ , we performed leave-
one-out cross-validation on the known disease-active gene set 
D. Then φ  was taken as the value that resulted in the highest 
average rank of known disease genes. 

E. k-core and k-core layer 
The k-core of a graph is the maximal subgraph such that 

all its nodes has at least k links within the subgraph [14, 15]. 
The k-core layer lk is defined as the set of nodes that belong to 
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k-core but not to k+1-core, i.e., k-core is the union of k+1-core 
and k-core layer. A k-core subgraph of a graph can be 
generated by recursively deleting the vertices from the graph 
whose present degree is less than k. This process can be 
iterated to gradually zoom into the more connected parts of 
the network. The higher-level core corresponds to more 
densely connected part of the network. See Fig. 1 for an 
explanation. 

 

Figure 1.   Illustration of k-core and k-core layer. The 1-core layer are the 
blue nodes, the 2-core layer are green. The 1-core is the whole graph, the 2-

core is subgraph consisting of green and red nodes and the 3-core is the 
subgraph consisting of red nodes. 

F. P-value 
If we randomly draw n samples from a finite set, the 

probability of getting i samples with the desired feature by 
chance obeys the hypergeometric distribution with the 
following probability mass function:  
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where N is the size of the set, K is the number of items with 
the desired feature in the set. Then the probability, defined as 
the P-value, of getting at least k samples with the desired 
feature by chance can be obtained as the following, using the 
hypergeometric cumulative distribution function (CDF),  
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Given a significance level α , a P-value smaller than α  
demonstrates a low probability that the items with the desired 
feature are chosen by chance. Hence this P-value can be used 
to measure whether the n samples drawn from the set is more 
enriched with items of the desired feature than would be 
expected by chance [16]. 

III. RESULTS AND DISCUSSION  

A. Ranking genes in the PPI network  
We integrated OMIM data with the results of the 

proteomics and microarray experiments and obtained 168 
genes potentially active in the axial spondyloarthropathy 
disease. A total of 128 of the 168 genes were found present in 
the STRING PPI network, and these genes were used as seeds 
to construct the disease gene activity vector x in (3). For all 
the genes in the PPI network, we calculated the s-score vector 
by (3) and ranked the genes accordingly. We first determined 
the parameter φ  by leave-one-out cross-validation. 
Specifically, applying different values of φin the area (0, 
1/100), we successively took out one disease active gene and 
used the left genes as input to rank this one and checked the 
average ranks of all the seed genes.  In this way, φ  was taken 
as 5/1000, which resulted in the highest average rank 4272 of 
seed genes. Then we set φ  as 5/1000 and scored all the genes 
in the human PPI network according to (3). 

B. PPI network of SpA 
The s-score of a gene indicates its possibility associated 

with the disease. Setting 10% as a cut-off, we took out the 
genes whose s-scores were top 10% of all genes in the PPI 
network. We identified a total of 379 genes. Then we limited 
interactions in the STRING database to weights of at least 0.5, 
which corresponds to a medium-confidence human genome 
PPI network [7], and constructed a subnetwork spanned by 
these 379 genes. Finally, we obtained a PPI network 
associated with SpA, which included 367 nodes and 10906 
edges.  

Including 10906 interactions with strength at least 0.5 
between only 367 gene-coded proteins, the PPI network of 
SpA is densely connected. To understand its topology, we 
conducted k-core decomposition on the network. A so-called 
k-core decomposition is a way to visualize both of the 
connectivity of neighborhoods of nodes and their centrality 
[15]. In short, a k-core decomposition is obtained by 
iteratively deleting low-degree nodes to achieve a sequence of 
k-cores (maximal subgraphs with minimal degree k, see the 
Methods section). By and large, following the k-core 
decomposition is similar to zooming into the more central and 
more interconnected parts of the network. For the PPI network 
we studied, the innermost core is the 45-core, which includes 
197 nodes. In Fig. 2, we illustrate the node distribution in the 
hierarchical k-core layers of the PPI network and the number 
of seed genes in the core layers. This figure suggests that the 
network topology exhibits a core-periphery dichotomy [17, 18] 
- about two thirds of nodes in this network interact frequently 
and are thus interconnected densely to form an inner 41-core, 
while others communicate with fewer nodes and scatter in 
different outer core layers to form the periphery of the 
network. Fig.2 also shows that most seed genes locate at the 
periphery part whereas the inner core includes most of the 
non-seed genes. Specifically, a total of 116 seed genes appear 
in this network, in which only 14 are located in the inner core. 
All nodes in the core layers 1~20 and about half nodes in the 
core layers 21~40 are seed nodes. Therefore, as shown in 
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Fig.3, we partition the network into three parts accordingly—
the inner core is the 41-core, and the medium and outer layers 
correspond to core layers 21~40 and 1~20, respectively. It can 
be seen that seed genes in the outer and medium layers tend to 
interact with genes in the inner core, indicating that the inner 
core could be the modulating center of the network. 

 

Figure 2.  Distribution of k-core layers and seed nodes in the SpA PPI 
network.    

Furthermore, we searched the DrugBank database [19] for 
drugs treating SpA and their protein targets. We mapped the 
protein targets onto the SpA PPI network and found 6 targets 
in this network, i.e., PTGS2, MMP2, MAPK3, HRAS, EGF 
and ALB. They are drug targets for the two main classes of 
AS drugs [1]: non-steroidal anti-inflammatory drug such as 
Aspirin, Celecoxib and Sulindac; and disease-modifying 
antirheumatic drug such as Thalidomide and Methotrexate. As 
shown in Fig.3, five of the six targets are located in the inner 
core of the SpA PPI network, and only ALB situates at the 
medium layer, suggesting that the drugs may interfere with 
the disease by acting on proteins in the core. 

 

Figure 3.  Core-periphery topology of the SpA PPI network. Yellow, green 
and red nodes represent the inner core, the medium and outer core layer, 

respectively. Triangles are seed genes, and diamonds are targets of drugs for 
SpA.  

To explore the implications of this PPI network to SpA, we 
conducted gene ontology (GO) analysis. We used the P-value 
to quantitatively measure whether this PPI network is 
statistically significantly enriched with genes of a specific 
Gene ontology (GO) term. In Table I we listed the most 

significantly enriched GO terms presented in the network, 
with p-values smaller than 10–40. It can be seen that proteins in 
this network are significantly involved in biological processes 
of immune system, such as the regulation of granulocyte 
macrophage, natural killer cell proliferation, as well as the 
activation of leukocytes, lymphocytes and T cells, in 
consistent with the immune-mediated feature of SpA.  

TABLE I.  SELECTION OF THE MOST SIGNIFICANTLY ENRICHED GO 
TERMS IN THE SPA PPI NETWORK 

GO ID GO Term Total 
genes 

Mapped 
genes 

0032725 positive regulation of granulocyte 
macrophage colony-stimulating factor 
production 

5 5 

0032819 positive regulation of natural killer 
cell proliferation 

6 6 

0002376 immune system process 1429 124 
0006950 response to stress 2520 155 
0051716 cellular response to stimulus 3999 186 
0010941 regulation of cell death 1034 99 
0042127 regulation of cell proliferation 939 92 
0002694 regulation of leukocyte activation 288 53 
0051249 regulation of lymphocyte activation 261 51 
0050863 regulation of T cell activation 207 46 

 

 

Figure 4.  A subnetwork of the SpA PPI network involved in innate immune 
response. Yellow, green and red nodes represent the inner core, the medium 
and outer core layer of the SpA PPI network in Fig.3, respectively. Triangles 

are seed genes in Fig. 3. 

The immune system process protects human beings against 
diseases with increasing specificity. The innate immune 
system provides an immediate, but non-specific response to 
invading pathogens; and the adaptive immune system, which 
is activated by the innate response in case that pathogens 
successfully evade the innate response, adapts its response to 
improve its recognition of the pathogen. The innate immune 
response is important in the initiation of and interplay with the 
adaptive immune response. To investigate the association 
between the innate immune response and SpA, we constructed 
a subnetwork of the SpA PPI network involved in the innate 
immune response, by mapping proteins of the SpA network 
onto the PPI network of human innate immune response 
constructed from the InnateDB database (see Fig.4). This 
subnetwork includes more than half nodes of the SpA network, 
suggesting that the dysfunction of the innate immune system 
could be associated with the development of SpA. As can be 
seen in Fig.4, the innate immune subnetwork is significantly 
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enriched with core nodes and non-seed nodes of the SpA PPI 
network (p-values are 121001.7 −×  and 71014.2 −× , 
respectively). This observation indicates that a very large 
fraction of proteins identified by our algorithm (non-seed 
nodes) are involved in the innate immune response, 
suggesting that in the human genome PPI network, the known 
SpA active proteins (seed nodes in our study) are close to a 
common group of innate immune proteins. Thus our approach 
reveals the important role of innate immune system in the 
initiation and development of SpA. 

C. Pathways associated with SpA 
To identify SpA-relevant biological processes, we mapped 

the 379 SpA associated genes onto the KEGG and Biocarta 
pathways, respectively. Given significance level 05.0=α , we 
found that a total of 27 KEGG pathways are significantly 
enriched with genes in this group (see Table II). Similar 
pathways in the Biocarta database are also enriched with SpA 
associated genes. In Table III we just list four SpA gene 
enriched pathways included in the Biocarta database but not 
in the KEGG database.  

A central feature of SpA is inflammation, one of the first 
responses of the immune system to infection or irritation. As 
listed in Table II, SpA is related to a large fraction of 
pathways in immune system. Some other pathways, although 
not classified into immune system in the KEGG database, 
have been known to be highly associated with the function of 
immune response, such as apoptosis [20], MAPK signaling 
pathway [21], and cell adhesion molecule interactions [22]. 
Specifically, Table II includes several pathways related to 
pathogen recognition and inflammatory signalling in innate 
immune defences, in which the most important one is the 
Toll-like receptor (TLR) signalling pathway. The innate 
immune system relies on pattern recognition receptors (PRRs) 
to detect distinct pathogen-associated molecular patterns 
(PAMPs). Upon PAMP recognition, PRRs trigger a number 
of different signal transduction pathways. The pathways 
induced by PRRs ultimately result in the expression of a 
variety of proinflammatory molecules, such as cytokines, 
chemokines, cell adhesion molecules, and immunoreceptors, 
which together orchestrate the early host response to infection, 
mediate the inflammatory response, and also bridge the 
adaptive immune response [22] together. The family of TLRs 
is the major class of PRRs [22]. The association of TLR2 and 
TLR4 with SpA has been reported [23]. It was noticed that 
three major signalling pathways are responsible for mediating 
TLR-induced responses including NF-kB, mitogen-activated 
protein kinases (MAPKs), and IFN regulatory factors (IRFs) 
[22], while we found that the two pathways, MAPKs and NF-
kB, which play central roles in induction of a 
proinflammatory response, are involved in SpA. Tumor 
necrosis factor a (TNFa) is an important upstream protein of 
the NF-kB pathway, which binds to its receptor to recruit TNF 
receptor death domain (TRADD) and thus activates NF-kB. 
TNF inhibitors have been proven highly effective for the 
treatment of SpA [1]. In addition, we also found that SpA is 
associated with some proinflammatory molecule involved 
pathways, such as the chemokine signaling pathway, natural 
killer cell mediated cytotoxicity, Fc epsilon RI signaling 
pathway, and cell adhesion molecules interaction. These 

pathways indicate the process of innate immune response in 
the progress of SpA. On the other hand, it is known that B and 
T lymphocytes are responsible for the adaptive immune 
response [24]. Table II shows the association of B and T cell 
receptor signalling pathways with SpA, implying their 
function in the adaptive immune response in SpA. In fact, it 
has been known that both the innate and adaptive immune 
responses are involved and interdependent with each other in 
SpA [25]. 

TABLE II.  KEGG PATHWAYS SIGNIFICANTLY ENRICHED WITH SPA-
ASSOCIATED GENES. 

Pathway class Pathway name Total 
genes 

Mapped 
genes 

Cell 
Communication 

Focal adhesion 206 57 
Adherens junction 80 25 
Gap junction 93 18 

Cell Growth and 
Death 

Apoptosis 89 30 
p53 signaling pathway 69 16 
Cell cycle 119 20 

Cell Motility Regulation of actin 
cytoskeleton 219 45 

Endocrine 
System 

Insulin signaling pathway 138 35 
Adipocytokine signaling 
pathway 67 20 

GnRH signaling pathway 108 23 
Melanogenesis 105 16 

Immune System Chemokine signaling 
pathway 198 60 

T cell receptor signaling 
pathway 110 47 

B cell receptor signaling 
pathway 75 31 

Leukocyte transendothelial 
migration 122 37 

Fc epsilon RI signaling 
pathway 79 34 

Natural killer cell mediated 
cytotoxicity 138 43 

Toll-like receptor signaling 
pathway 102 44 

Hematopoietic cell lineage 88 33 
Signal 
Transduction 

Jak-STAT signaling pathway 155 51 
VEGF signaling pathway 77 27 
ErbB signaling pathway 87 37 
TGF-beta signaling pathway 87 18 
MAPK signaling pathway 276 57 
Wnt signaling pathway 152 18 

Signaling 
Molecules and 
Interaction 

Cell adhesion molecules 
(CAMs) 136 20 

Cytokine-cytokine receptor 
interaction 263 69 

 

Another prominent feature of SpA is new bone formation; 
meanwhile bone loss is also a common finding in SpA [26]. 
As can be seen in Table III, SpA is associated with bone 
remodeling, a process that maintains bone density and 
structure through a balance of bone resorption by osteoclasts 
and bone deposition by osteoblasts. Both ossification and 
osteoporosis symptoms of SpA are consequences of an 
imbalance in the regulation of these two sub-processes of 
bone remodelling. It is known that the WNT pathway 
regulates the balance between osteoclast and osteoblast 
function [27], verifying our result that SpA is associated with 
the WNT pathway (see Table II). 
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TABLE III.  SELECTION OF BIOCARTA PATHWAYS SIGNIFICANTLY 
ENRICHED WITH SPA-ASSOCIATED GENES. 

Pathway name Total 
genes 

Mapped 
genes 

Bone Remodelling 13 6 
Cytokines and Inflammatory Response 26 17 
NF-kB Signaling Pathway 22 13 
TNFR2 Signaling Pathway 17 8 

IV. CONCLUSIONS 
We have extracted data related to SpA—known SpA causal 

genes from the OMIM database, proteomic experiments from 
literature, and microarray experiments from the GEO database. 
Using these genes as seeds, we developed a Katz' centrality 
based index, s-score, to rank genes in the human PPI network. 
This score has only one parameter that needs to be calibrated 
by real data. The parameter has a clear biological 
interpretation so that its optimum value can give us some 
further insights. And the computation of s-score is easy 
implemented. Then we considered 379 top ranked genes as 
associated with SpA with high possibility. Based on these 
genes, we constructed a PPI network and identified potential 
pathways associated with SpA. The PPI network exhibits a 
core-periphery topology, in which most seed genes are located 
at the periphery part, while the inner core aggregates the non-
seed genes enriched with innate immune genes and drug 
targets for SpA, suggesting that the core could be the 
modulating center of the network. The pathways represent the 
well-known knowledge of SpA, i.e., immune mediated 
inflammation, as well as imbalanced bone modeling caused 
new bone formation and bone loss. This network approach 
represents an alternative method for analyzing the complex 
effects of candidate genes related to complex diseases. It may 
shed new lights on the pathogenesis of axial 
spondyloarthropathy from the perspective of network systems. 
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