
Inferring Gene Regulatory Networks from Multiple 
Time Course Gene Expression Datasets 

Bo-Lin Chen 
Division of Biomedical Engineering 

University of Saskatchewan 
Saskatoon, SK S7N 5A9, Canada 

bolin.chen@usask.ca 
 
 
 

Li-Zhi Liu 
Department of Mechanical 

Engineering 
University of Saskatchewan 

Saskatoon, SK S7N 5A9, Canada 
Lizhi.Liu@usask.ca 

 
 

Fang-Xiang Wu 
Division of Biomedical Engineering, 

Department of Mechanical 
Engineering University of 

Saskatchewan 
Saskatoon, SK S7N 5A9, Canada 

faw341@mail.usask.ca

Abstract—We proposed a scheme to infer gene regulatory 
networks from multiple time course gene expression datasets. 
As the scarcity of time course data, most current methods 
usually making the inferred gene regulatory network structure 
as an ill-posed one, and typically cannot handle multiple 
experimental datasets directly. On the other hand, gene 
expression data generated by different groups worldwide are 
increasingly accumulated. In this paper, we first formulate the 
inference of sparse and stable gene regulatory networks as a 
constraint optimization problem, which can be easily solved by a 
given single dataset. Then, two methods of network combination 
are proposed, which can combine structures inferred from 
various experimental datasets. After that, the parameters in 
gene regulatory network with that structure are estimated by 
solving another optimization problem. Finally, we test and 
validate our methods on synthetic datasets in a series of 
numerical experiments in terms of the structure accuracy and 
the model error. 

Keywords-gene regulatory network; network combination; 
sparsity; stability; constraint optimization; l1-norm 

I.  INTRODUCTION 
With the rapid advancement of cDNA and oligonucleotide 

microarray technologies, mRNA expression levels are now 
possible being measured on a genome-wide scale, which 
provide various descriptions of gene activities [1-3]. Inferring 
gene regulatory networks from such time course gene 
expression data has become increasingly essential in 
investigating functions of genes and proteins, and then 
understanding the complex biological functions and processes. 

A wide variety of methods have been proposed to reverse- 
engineer the gene networks, such as Boolean networks [4], 
Bayesian networks [5], genetic algorithms [6], neural 
networks [7], differential/difference equations [8, 9] and state 
space model [10]. Although these approaches are very useful 
in some specific areas, they usually restricted as the demand 
of a large amount of time course data. 

However, real-life gene regulatory networks may consist 
of thousands of genes, while the relative experimental 
measurement data involve in only several dozens of time 
points (generally less than 50) [3]. Therefore, the scarcity of 
time course data or so called the dimensionality problem is 
one of the root causes of major challenges, and then usually 
making the inferring of gene regulatory network structure an 

ill-posed one [1-3]. Moreover, the single set of time course 
data are generated under specific experimental conditions, and 
hence often fail in using them to construct gene regulatory 
networks accurately.  

To circumvent the problem of data scarcity, two strategies 
are typically adopted. One strategy is to add certain ad hoc 
assumptions to models. A common ad hoc assumption is that 
the connectivity of networks is less than a small fixed number 
(2 or 3) [4, 5, 8, 9]. With this assumption, parameters in 
models can be uniquely identified. Alternatively, some 
researchers have tried to exploit methods which can combine 
datasets under different experimental conditions. The gene 
experimental data generated by various groups worldwide 
become accumulated and can easily be accessed from public 
database or individual websites. Therefore, the latter strategy 
can greatly alleviate the difficulty of data deficiency and made 
the inferred gene regulatory networks more reasonable. It is 
worth to mention that multiple time course gene expression 
datasets cannot be simply arranged together, due to the 
normalization issues and the absence of temporal relationships. 

It is generally believed that gene regulatory networks are 
sparse and stable [11]. In most existing methods, sparsity was 
abused as ad hoc assumptions to avoid densely connected 
gene regulatory relationships among components of a network, 
such as adding the assumption that one gene interacts with 
only a couple of genes [1, 3, 8, 12]. Although the inferred 
networks by using these methods are sparse, they might not be 
stable that as a result do not appear to make reasonable 
biological sense.  

Generally, stability is used as a criterion to evaluate the 
qualification of the inferred gene networks [11], but rarely 
used as constraints to reverse engineering gene regulatory 
networks. Zalanos et al [13] proposed a method to infer sparse 
and stable gene regulatory network from perturbation data 
near the equilibrium states of the network. Wu et al [11] 
employed an optimization method to infer such networks from 
single set of time course data. The performances of their 
algorithms were investigated on synthetic datasets, and 
worked out with certain accuracy about the structure of 
networks. 

In terms of using multiple datasets, Yong Wang et al [2] 
proposed a method called GNR (gene network reconstruction 
tool) which can combine variety microarray datasets from 
different experiments. The method is based on linear 

2011 IEEE International Conference on Systems Biology (ISB)
978-1-4577-1666-9/11/$26.00 ©2011 IEEE

12 Zhuhai, China, September 2–4, 2011



programming and a decomposition procedure, and is 
developed for inferring gene networks with the consideration 
of sparsity of connections. 

In this paper we propose a scheme to infer sparse and 
stable gene regulatory networks from multiple datasets. 
Inferring gene regulatory networks consist of two issues: the 
structure identification and parameter estimation of the model. 
The remainder of the paper is organized as follows. Section II 
gives a brief introduction to gene regulatory networks, where 
the issue of inferring networks is formulated as a constraint 
optimization problem, which can be easily solved to generate 
a sparse and stable solution from each single set of data. 
Section III proposes two methods of network combination, 
which can combine structures that inferred from various 
multiple datasets. Once the structure is determined, the 
parameters of gene regulatory networks are estimated by 
solving another optimization problem in Section IV. To 
investigate the proposed method, in Section V, a sparse and 
stable gene regulatory network with five genes is tested by 
using synthetic data. In Section VI we draw some conclusions 
and briefly discuss about the future work along with this study. 

II. GENE REGULATORY NETWORKS 
Generally, a gene regulatory network consisting of n genes 

can be modeled as a dynamic system by a set of n differential 
equations with each gene expression level as variables 

( )
( ) ( )

    ( )
x t C x t S r

r f x t
= ⋅ + ⋅

=


                              (1) 

Here 1 2( ) [ ( ), ( ), ( )]T n
nx t x t x t x t R= ∈ is the concentration of 

mRNAs that reflect the expression levels of the genes. C is a 
diagonal matrix 1 2[ , , , ] n n

nC diag c c c R ×= − − − ∈ , where ci is 
a positive number representing the self-degradation rate of 
gene i. Vector 1 2[ , , ]T n

nr r r r R= ∈  is the reaction rates, 
which is a function of the concentrations of mRNAs, and 
matrix n nS R ×∈  represents the stoichiometric matrix of the 
biological network. For simplicity, assume that the reaction 
rate r is the linear combination of mRNAs concentrations  

( )r F x t= ⋅                                      (2) 
where n nF R ×∈ . Substituting (2) into (1) yields: 

( ) ( ) ( )x t C x t B x t= ⋅ + ⋅                            (3) 
where n nB SF R ×= ∈ . Matrix B describes the structure of 
gene regulatory network in the following meanings: bij>0 if 
gene j promotes gene i directly; bij=0 if gene j does not 
regulate gene i directly; and bij<0 if gene j represses gene i 
directly. Without loss of generality, assume that main 
diagonal elements of matrix B are zeros. To identify structure 
of gene regulatory network, we need to determine the sign of 
elements in matrix B. 

As gene expression data are discrete, we need to discretize 
the continuous system (3). By pre-multiplying the matrix Cte− , 
the equation (3) becomes 

( ) ( ) ( )Ct Ct Cte x t e C x t e B x t− − −⋅ − ⋅ ⋅ = ⋅ ⋅               (4) 
According to the formula of matrix exponential, the equation 
can be written as 

( )( ) ( )Ct Ctd e x t e B x t
dt

− −⋅ = ⋅ ⋅                      (5) 

Solving this differential equation, we can get the analytical 
solution of the continuous model, which is 

( )( ) (0) ( )
tCt C t

o
x t e x e B x dτ τ τ−= ⋅ + ⋅ ⋅∫                (6) 

In order to discretize the expression of ( )x t , let 

[ ] ( )x k x k t= ⋅∆                                    (7) 
and substituting (6) into (7), we can get the discrete form of 
the model, that is 

[ 1] [ ]x k A x k+ = ⋅                                  (8) 
where 1( )C t C tA e C e I B∆ − ∆= + − . 

It is worth to mention that C is a diagonal matrix.  Hence, 
both matrices C te ∆  and 1( )C tC e I− ∆ − are diagonal as well. 
Furthermore, it is obvious that all diagonal elements of 
matrices C te ∆  and 1( )C te I C∆ −− are positive numbers, hence 
all diagonal elements of matrix A are positive and all off 
diagonal elements have the same sign with the relative 
elements in matrix B. Therefore, inferring the structure of 
gene regulatory networks becomes the estimation of all 
elements of matrix A. 

Let [ ] n m
ijX x R ×= ∈  denote a single set of time course 

gene expression data that comes from a specific gene 
regulatory network, where n is the number of genes and m  is 
the number of time points at which gene expression levels are 
measured. Let [ ]x k denote the kth column of X, then we should 
have 

                [ 1] [ ] kx k Ax k ε+ = +                                 (9) 
for k =1, 2, …, m-1, where n

k Rε ∈  is the model error and/or 
measurement  error at time point k. 

Let 
( )1 :,1: 1X X m= −   and   ( )2 :, 2 :X X m=  

which are the sub-matrices of the first and the last 1m −  
columns of X , respectively. Then (9) can be written as 

2 1X AX ε= +                                   (10) 
where ( 1)

1 2 1[ , ,..., ] n k
k Rε ε ε ε × −
−= ∈ . Now the identification of 

gene regulatory network becomes determining an n × n 
matrix A such that the model errors is minimized, that is  

2
1 2 2

min     
n nA R

AX X
×∈

−                              (11) 

where 
2
⋅  is the Euclidean norm. 

To make the biological sense, matrix A should be sparse 
and stable. It is easy to understand the sparsity, but we would 
like to introduce more detail about what the “stable” means 
when terms to a matrix. In mathematics, a square matrix is 
said to be a stable matrix if and only if all its eigenvalue have 
negative real parts. In terms of a simply stable system, it can 
converge to nearby of an equilibrium point for all nearby 
initial conditions. Specifically, in the following system of 
linear differential equations 

'( ) ( )x t A x t= ⋅  
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It is obvious that the point ( ) 0x t = is an equilibrium point, 
and the trajectory ( )x t will converge to 0 for every initial 
value of (0)x  if and only if the matrix A  is a stable matrix. 
We can further employing Gershgorin circle theorem, which 
suggests that matrix A is stable if  

1
1n

ijj
a

=
≤∑  is true for all 

1, ,i n=  . 

Therefore, according to the optimization principle [14], l1-
norm approximation gives relatively large weight to small 
residuals, and then tends to produce sparse solutions of a 
problem. We adding an l1-regularization to the objective 
function (11) and further attaching the sable constraints to the 
optimization problem, then the identification of gene 
regulatory networks becomes solving the following 
optimization problem 

2
1 2 2 1

min     

s.t.         is stable
n nA R

AX X A

A

γ
×∈

− +
                      (12) 

where γ  is a positive constant and 
1 ijA a= ∑  is the l1-

norm of matrix A. Furthermore, in order to generate the 
specific expression of the model (12), we employ the 
Gershgorin circle theorem to express its stable constraint as 
follows: 

2
1 2 2 1

1

min     

s.t.       1    for all  1, ,

n nA R
n

ij
j

AX X A

a i n

γ
×∈

=

− +

≤ =∑ 
               (13) 

There are many optimization solvers that can solve the 
optimization problem (13). In this preliminary study, we will 
not focus on designing algorithms to solve it, but just employ 
some solvers to handle this problem, such as the standard 
MATLAB function fmincon, or the MATLAB routines of L1-
MAGIC which written by Emmanuel Candès and Justin 
Romberg [15]. Beside this, problem (13) can also be reduced 
to n small size optimization problems, for elements on each 
row of matrix A are mutually independent with each other, 
and therefore can be divided as 

2

1 2, 2 1

1

min     

s.t.       1

i

T T T T
i i

n

ij
j

X a X a

a

γ

=

− +

≤∑
                  (14) 

where 1 2[ , ,..., ]i i i ina a a a= is the ith row of matrix A, and 

2, ,2 ,3[ , ,..., ]i i i imX x x x= is the ith row of matrix 2X . The 
solution of problem (14) contributes a row to matrix A. Let Ae 
denote the matrix identified by solving either problem (13) or 
(14). 

By using optimization solvers, we can get an identification 
of the gene regulatory network from a single set of time 
course gene expression data. The sign of matrix Ae indicates a 
specific structure of the gene regulatory network. 

Before giving the idea of network combination, two issues 
about proposed method should be carefully addressed. First of 
all, the matrix Ae which identified by solving problem (13) 
usually has many elements whose values are not exactly zero, 
but very close to zero. Therefore, the first issue is to determine 
if an element in Ae is zero. One can design some complicated 

method to handle this issue. In this study, we consider an 
element is actually zero if its absolute value is less than 0.05 
which is 5% of the sum of absolute values on each row of Ae.  

The second issue is the choice of value of positive 
constant γ in problem (13). The large value of γ will result that 
a large number of elements in Ae are zeros while model 
residual is large, and vice versa. To our knowledge, there is no 
way to choose the optimal value for γ. In this study, we 
empirically choose the value of 0.02 for γ. 

III. MULTIPLE NETWORK COMBINATION 
The sign of elements in matrix A in equation (13) gives a 

group structure information of the gene regulatory network. 
Specifically, using 1, 0 and -1 represent the sign of each 
element, it is easy to get the adjacency matrix of the network, 
where aij=1, if gene j promotes gene i directly; aij=0 if gene j 
does not regulate gene i directly; and aij =-1 if gene j represses 
gene i directly. As we illustrated in Section II, let Ae denote 
the adjacency matrix identified from a single set of gene 
expression data by solving the problem (13). Since each single 
dataset can generate a specific structure of the gene network, 
but none of them can describe the real network exactly due to 
the scarcity of time point. Therefore, it becomes indispensable 
to infer a more reasonable gene network by using multiple 
datasets. 

Given k groups of gene expression data, let 
(1) (2) ( ), ,..., k
e e eA A A  denote each identified adjacency matrix 

(they are discrete, and further assume that each of them has 
the same number of gene and is arranged as the same order), 
then the following proposed network combination methods 
are aim to identify the maximum likelihood gene network 
from these candidacy adjacency matrix. For simplicity, we 
handle only one edge at a time, instead of taking the whole 
gene network into consideration. It is reasonable, because 
each edge in the network is independent, and makes the 
illustration of network combination method more clear. 

For any given edge in the network, let (1) (2) ( ), ,..., k
eij eij eija a a  

denote the identified results in matrices (1) (2) ( ), ,..., k
e e eA A A , 

respectively. Assume that there is no further prior 
information about the system. The network combination 
methods are to combine these inferred edges, thereby 
generating the structure of the network. 

Two methods of network combination are proposed here, 
using the statistic mean and mode of a given series, 
respectively. Either of methods can be used to infer gene 
regulatory networks, depending on the character of datasets. 

Firstly, the mean of a given series present an average 
meaning of the group of data. Let 

( )

1

1 k
p

ij eij
p

m a
k =

= ∑                               (15) 

denote the value of mean. Then, given a positive value ∆ , if 
ijm > ∆ , let 1eija = , if ijm−∆ ≤ ≤ ∆ , let 0eija = and if 

ijm < −∆ , let 1eija = − . By doing these processes on all 
edges, a new topological structure of the network can be 
generated according to the differences of mijs, which actually 
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combines the structures that inferred from multiple datasets. 
Here, the most important issue is to determine the value of ∆ , 
which indicates a threshold of network combination. In this 
study, we empirically choose 0.3 as its value. 

Secondly, another statistic “mode” means the value that 
occurs most often, and thus carries the information about the 
average of a group of data. Using the value of mode to 
represent the interactions between there two genes is the 
second way to do network combination. It is particularly 
useful when most of the identified edges between two genes 
are contrary and incompatible from different dataset. 

As differences between the character of mean and mode, it 
seems that network combination which uses the value of mean 
as the criterion result in a sparser network, while that use 
mode result in more interactions between genes. This is due to 
the fact that the value of mean will trend to close to zero, 
while the value of mode will either equals to “1” or “-1”, if 
most of the inferred edges are contrary. Furthermore, the 
increase number of datasets also contributes to more small 
value of mean. In practice, either of them can be used to infer 
the structure of networks, and it is better to pick the one that 
more reasonable, according to the character and the number of 
datasets and the prior information about systems. 

IV. PARAMETER ESTIMATION 
The network combination methods can generate the 

structure of gene regulatory networks by combining 
information from multiple datasets, thereby increasing the 
accuracy of inferred topological structure. We will further 
illustrate how to estimate the parameter of a gene regulatory 
network after giving the information of such structure. 
Without confusing, we still use Ae to denote the inferred 
adjacency matrix after network combination, then the 
problem of parameters estimation in gene regulatory network 
can be formulated as determining matrix A that minimizes the 
model errors of 

2
1 2 2

min     

s.t.             
n nA R

e

AX X

A has the same structure with A
×∈

−
    (16) 

where X1 and X2 are sub-matrices of X that illustrate in 
Section  II. Then the parameters of this network base on X  
are the best character of network of this specific single 
dataset. In order to employ the MATLAB standard function 
fmincon to solve model (16), we need to divide this model 
into n optimization problem, each having n variables which 
are elements on a row of matrix A. Similarly to the problem 
(13), model (16) can be written as n optimization problem, 
that is, 

2

1 2, 2
min    

s.t.       0< 1         if 1

            0             if 0

           -1  0      if 1

T T T
i i

ij eij

ij eij

ij eij

X a X

a a
a a

a a

−

≤ =

= =

≤ < = −

                  (17) 

Here the eija s  are elements in matrix eA .  In practice, it 
should be mentioned that the function fmincon only attempts 

to find a solution of the model that starting at an initial value. 
Therefore, it is sensitive to initial values and may only find 
the local optimal solution. To handle this problem, we 
randomly choose 100 initial values for problem (17), and the 
solutions that minimize the objective function are considered 
as the final optimal solution. Let Â denote the inferred matrix 
that reflects the regulatory relationships in the gene network. 

V. EVALUATION AND COMPUTATIONAL EXPERIMENTS 
To test the performance of the methods described above, 

several computational experiments are performed on 
synthetic datasets, where the inferred structures and network 
parameters can be easily compared with the original system. 

1

3

2

4

5

 
Figure 1. A gene regulatory network with five genes [11] 

(→: promotion,  ─┤: repression) 

To evaluate the accuracy of inferred structure of networks, 
we compare the sign of elements in A with the sign of those 
in Ae. Here A represents the real adjacency matrix of original 
system, and Ae characterize matrix that is inferred through 
network combination. Let r1, r2 and r3 denote the number of 
correctly identified positives, zeros and negatives, 
respectively. Then the accuracy of identification can be 
defined as 

1 2 3
2

r r r
accuracy

n
+ +

=                           (18) 

In terms of the estimation accuracy of parameters, 
similarly to the method suggested by Michal Ronen et al [16], 
we can measure the sum errors of inferred parameters, that is 

2
1 1

1 n n
measured predicted
ij ij

i j
E a a

n = =

= −∑∑                     (19) 

where measured
ija  is the element in matrix A , and predicted

ija  is 

the element that in matrix Â . 
In the following, we report on one group of numerical 

experiments that we have conducted to test our proposed 
methods. The experiments are performed on a simplified 
synthetic gene regulatory network, which consists of only 
five genes, used in [11]. The structure of the gene regulatory 
network is shown in Figure 1., and the adjacency matrix is 

0

1 1 1 0 0
1 1 0 0 1

0 1 1 0 0
1 1 0 1 0
0 0 0 1 1

A

− 
 − 
 =
 

− 
  

                         (20) 

where positive “1” at (i, j)-entry means gene j promotes the 
expression of gene i; negative “-1” at (i, j)-entry means gene j 
represses the expression of gene i; and zero “0” at (i, j)-entry 
means gene j does not directly affect the expression of gene i. 
At each experiment, the values of nonzero regulatory 
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parameters are assigned randomly, and the gene expression 
profiles are created by using model (8), with randomly 
chosen initial values x(0). 

Firstly, we study changes of accuracy of the inferred 
structure about the gene regulatory network, by varying the 
number of time points and altering conditions of network 
combination. To be more precise, we test the results of gene 
expression profiles with the time points m=3, 4 and 5, 
respectively. For each given length of gene expression 
profiles, we randomly generate 10000 stable matrices A with 
the same template A0 defined in (20), and then inferring the 
structure of gene networks by solving model (13) directly 

(which means using each single set of gene expression 
profiles without network combination), by using the above 
results and every five or ten solutions as a group to infer 
structures (which means using five or ten gene expression 
profiles datasets with network combination). The 
experiments results are shown in Figure 2, where m is the 
length of gene expression profiles, and N is the number of 
datasets that used to do network combination. Both results of 
network combination that using the statistic mean and mode 
are shown in this Figure. The more accurate results are given 
in Table 1. 
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m=5

m=4

m=3

N=1

 
Figure 2. Histograms of accuracy for the different number of time points with two network combination methods 

It can be clearly see from the table that both lengths of 
gene expression profiles and ways of network combination 
greatly influence the accuracy of inferred gene networks. 
However, the more significant conclusion indicates from the 
results is that network combination can dramatically increase 
the accuracy of the topological structure of gene network, not 
only largely better than that with same length of gene 
expression profiles, but even more accuracy than that with 
more time points.  

Table 1. The variance of the average accuracy 

 N = 1 N = 5 N = 10 
mean mode mean mode 

m=3 0.5251 0.6974 0.5758 0.7720 0.5888 
m=4 0.6601 0.8058 0.7850 0.8918 0.8358 
m=5 0.8553 0.9167 0.9521 0.9674 0.9716 

Secondly, we test the parameters error about the inferred 
gene regulatory networks. As illustrated in Section IV, we 
can estimate the parameters of networks with the specific 
inferred structures. In order to compare the average 
parameter errors of gene networks, we perform a group of 
numerical experiments on different length of gene expression 
profiles and different ways of network combination. The sum 
errors are measured at a specific condition by varying the 
number of datasets for network combination. Specifically, the 

length of gene expression profiles are three, four and five, 
respectively, while the ways of network combination changes 
between using statistic mean and mode. The numbers of 
datasets for network combination are one, five and ten 
respectively, and each of them is performed on 500 
experiments. The test results are shown in Figure. 3, and we 
can clearly cluclude that the more accuracy structure of 
networks, the less errors of the regulatory parameters. 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0.18

0.2

0.22

0.24

0.26

0.28
m = 3 mean
m = 3 mode
m = 4 mean
m = 4 mode
m = 5 mean
m = 5 mode

 
Figure 3. The comparision of parameters errors 
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Finally, we study the influence of noise in gene 
expression profiles to the accuracy of structure identification, 
as gene expression levels are noise contaminated in practice. 
To be reality, we consider each gene expression profile with 
four time points which are less than the number of genes in 
the network. Nine levels of system noise are added into 
system  (9), varying from 0% to 20%, respectively. At each 
noise  level, 10000 groups of gene regulatory systems are 
produced from randomly created networks with template A0 
defined in (20), and the gene expression profiles are 
generated by randomly choosing initial values and associated 
noises. The average accuracies with respect to different noise 
levels are plotted in Figure 3. It is unsurprising that the 
accuracy decreases with the increase of noise level. However, 
it is worth nothing that the results with network combination 
can still maintain higher accuracies. Specifically, the average 
accuracy with network combination (mean) using ten groups 
of datasets could still maintains around 65%, even the noise 
level soars to 20%, while that without network combination 
only stays at about 45%. 

0 2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
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 N = 1
 N = 5   (mean)
 N = 10 (mean)
 N = 5   (mode)
 N = 10  (mode)

 
Figure 4. The average accuracy with different noise 

levels 

It is well known that large amount of gene expression data 
can get a better identification about gene regulatory network. 
However, in reality, the number of time points in gene 
expression profile is far less than the number of genes, and it 
is also expensive to obtain. From the results of our numerical 
experiments, we can find that network combinations 
contribute another way to infer the accuracy networks, and it 
can generate the network with lower parameter errors. 

VI. CONCLUSION 
In this paper, we have proposed a method for inferring 

sparse and stable gene regulatory networks from multiple 
datasets of gene expression profiles. The results from our 
computational experiments have shown that the proposed 
methods can correctly find the majority connections and 
lower parameters errors in synthetic networks.  

In this study, we empirically choose the values for γ in 
problem (13) and the cut-off value to determine if an element 

is zero. In the future, we should develop a more objective 
method to choose these two values. Furthermore, the accuracy 
we proposed need to know the real network structure, while it 
is of course unavailable for the real experimental datasets. We 
will investigate the more general evaluation methods to 
handle real experimental datasets. 
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